
Supplementary Materials for
Can Optical Trojans Assist Adversarial Perturbations?

1. Detailed description of the algorithm for
designing an adversarial Optical Trojan

Algorithm 1 shows how we design the Optical Trojan, it
can be described as:

Firstly, we search the an adversarial patch which mini-
mizes the first part of loss function on Eq. 3. This is done
by the variant of projected gradient descent (PGD) for l∞
attacks [2]. The updating function of the adversaries δ can
be written as:

δi+1 = Proj
(
δi − α sgn

(
∇L(f(x+Mδi), y

targ)
))

,
(1)

where the Proj is a projection operator which in our case
clips the δ to be feasible in image space, α the learning rate,
f the current neural network, M the patch mask, sgn the
sign function. Through n iterations, we can compute the
optimal adversarial patch for given fixed classifier f .

Secondly, we optimized the Eq. 3 by ADAM [1] with
patch adversaries x+δ as well as the rest of clean examples
x. We repeatedly alternate two steps until the kernel/loss
convergences.

2. Hyperparameter Selection

In Table 1, we report all the important hyperparameters
we used in the experiment. We initialize the size of the
kernel to be 35 × 35 pixels, which corresponds to a kernel
scale of 1. We then vary it in the range of 85% to 115% to
ensure robustness.

3. Image-kernel Examples

Figures 1, 2 and 3 show some examples of what the im-
ages for each respective class pair looks like when they pass
through the learned kernel. These images are also shown
with an increasing order of semantic class distances. The
top rows in each represent the raw image with the adversar-
ial patch of size 20x20 pixels positioned at the center bot-
tom of the image. Table 2 shows the corresponding Clean
Accuracy and Attack Success Rate stats for the different
class pairs and weights, for reference.

Algorithm 1 Constructing Optical Trojan
Input: Training data collection J ; Target Model fθ; Target
label ytargj ; Patch mask M ; Learning rate α; PGD iterations
n; kernel iterations m;
Output: Optical Trojan kernel σ(t);
Initialization: Random initialize σ(t) from uniform
distribution U(0, 1);

1.repeat
2. Sample (xj , yj) from J where yj ̸= ytargj

3. Random initialize δj from uniform distribution
U(0, 1); 4. for i ∈ 1, 2, . . . , n do
5. Update patch adversaries δj for (xj , y

targ
j ) via Eq.

(1)
6. end
7. for i ∈ 1, 2, . . . ,m do
8. Update σ(t) with xj + δj ,xJ\{j} via Adam:
optimize Eq. 3
9. end
10. until convergence

3.1. Binary Clean Accuracy

In Figures 4 and 5, we look at the binary clean accuracy,
whose metric is similar to that we had for the attack success
rate. It is the fraction of correct classifications in which
the output logits of the primary class are greater than those
of the secondary class in each class pair. We observe the
same trend that we witnessed before, however the values
are closer to 1.0 because binary classification is an easier
task for a deep neural network image classifier.

References
[1] Diederik P. Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. CoRR, abs/1412.6980, 2015.
[2] A. Madry, Aleksandar Makelov, L. Schmidt, D. Tsipras, and

Adrian Vladu. Towards deep learning models resistant to ad-
versarial attacks. ArXiv, abs/1706.06083, 2018.



Table 1: List of Important Hyperparameters

Hyperparameters Used Description
ω 0.25, 0.50, 0.75 regularizer in the loss function
epochs 50 num. of passes for data
batch size 20 num. of images for each class
image noise 0.01 noise added to image after kernel
tsize 15, 20, 25 size of adversarial patch
n 100 iterations for PGD
Trojan lr 0.05 learning rate for PGD
toffset 20 offset distance for adv. patch
kernel lr 0.1 learning rate for kernel loss
kernel step 10 iterations of kernel training
kernel size 35 size of kernel

Table 2: Clean Accuracy and Attack Success Rate stats for the (coyote, white wolf), (tree frog, cassette) and (refrigerator goldfish) class
pairs

Class Pair ω Clean Accuracy Attack Success Rate
primary secondary no kernel kernel no kernel kernel

0.25 0.67 0.69 0.72 0.86
coyote white wolf 0.50 0.67 0.69 0.72 0.75

0.75 0.67 0.70 0.72 0.71
0.25 0.74 0.62 0.82 0.95

tree frog cassette 0.50 0.74 0.69 0.82 0.69
0.75 0.74 0.67 0.82 0.74
0.25 0.72 0.67 0.22 0.36

refrigerator goldfish 0.50 0.72 0.75 0.22 0.31
0.75 0.72 0.75 0.22 0.32



Figure 1: Visualization of the images for a particular class pair
(white wolf and coyote) before it goes through a kernel, and after.

Figure 2: Visualization of the images for a particular class pair
(tree frog and cassette) before it goes through a kernel, and after.

Figure 3: Visualization of the images for a particular class pair
(goldfish and refrigerator) before it goes through a kernel, and af-
ter.

Figure 4: ω value comparison on Binary Clean Accuracy. [N=49]

Figure 5: Patch size comparison on Binary Clean Accuracy.
[N=49, ω = 0.5]


