
Supplementary material

This supplementary document summarizes the following experimental results:

• Detailed description of the synthetic test set (section 1).

• Ablation study of the proposed system (section 2).

• Evaluation on real testing downloaded from the internet (section 3).

• Additional visual comparisons (section 4).

1. Test Set Details
Our synthetic test set is composed of 12,000 images synthesized with clean natural images and graphics patterns drastically

different from training set. We used 4 types of patterns: stickers, lines, text, and logos. For each type of pattern, we synthesize
test images at 3 different size levels: large, medium, and small. Sizes are defined slightly different across different patterns
as it is very difficult to stipulate a common meaningful definition of effective size taken by a pattern for all 4 patterns (e.g.
number of pixels overtaken by the rendered pattern in an image is a good measure of size for stickers and logos but not for
text, since to achieve same amount of area as stickers/logos, a text box would occupy much larger part of image). During test
set synthesis, we do not perform random attribute alignment between graphics patterns and image. We list the exact definition
of size for each category and statistics used during test set synthesis for each category and size level below. Example images
are as shown in figure 1

Stickers/logos The effective size of stickers/logos pattern is defined as the ratio between number of pixels overwritten by
patterns in an image and the total number of pixels of that image. During synthesis, we render a random number of patterns
onto image such that the total effective area is within range for that size level.

• Small: size ˜ Uniform(0.001, 0.016), number of patterns ∈ [1, 2]

• Medium: size ˜ Uniform(0.016, 0.064), number of patterns ∈ [1, 4]

• Large: size ˜ Uniform(0.064, 0.4), number of patterns ∈ [1, 12]

Lines The effective size of lines is defined as the ratio between width of a line and the length of shorter side of an image.
Note although we use term line, the pattern rendered includes both line segment as well as free-form curves.

• Small: size ˜ Uniform(0.008, 0.02), number of patterns ∈ [1, 10]

• Medium: size ˜ Uniform(0.02, 0.06), number of patterns ∈ [1, 10]

• Large: size ˜ Uniform(0.06, 0.15), number of patterns ∈ [1, 6]

Text The effective size of text is dictated by both the size of a glyph (roughly, width of a single character relative to image
width) and the total area of bounding box of text in the image since we could have a very long string of small font text that
occupies entire image or a very large single character. We used following number during synthesis

• Small: glyph size ˜ Uniform(0.05, 0.1), bounding box size ∈ [0.002, 0.016]

• Medium: glyph size ˜ Uniform(0.1, 0.2), bounding box size ∈ [0.016, 0.25]

• Large: glyph size ˜ Uniform(0.15, 0.4), bounding box size ∈ [0.25, 0.6]
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Figure 1. Example test images from each category and size level

2. Ablation Study of Proposed Solution
We perform ablation study on each element of our proposed solution and show the effectiveness of each proposed element

in boosting the performance.

2.1. Proposed Attribute Randomization

For data synthesis, we compare our random graphics pattern attribute blending scheme with 1) a simple and straight-
forward attribute random perturbation, 2) no attribute perturbation. In the simple perturbation scheme, we randomly adjust
pattern attributes (e.g. make pattern brighter/darker, less/more saturated, etc.) irrespective of the corresponding local/global
attribute at the target location in the image

Overall Performance on Test Set
mIoU MAE F0.3 F2

Proposed 0.745 0.022 0.873 0.863
Simple 0.667 0.031 0.843 0.793
None 0.606 0.042 0.799 0.743

Table 1. Quantitative comparison of our proposed attribute randomization versus a simple randomization scheme and no randomization

2.2. Impact of JPEG Compression

Albeit already discussed in other scenarios (e.g. Photoshop face manipulation detection by Wang et al. [5]), models
trained for our problem heavily relies on low-level image features, and therefore we emphasize the necessity of applying
JPEG compression to training data for achieving reasonable generalization to real online images. To this end, we show in
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Figure 2. F0.3 score as a function of the JPEG compression quality factor. A lower quality factor means less quantization levels on DCT
coefficient and therefore stronger blocking artifacts and poorer image quality. Only performance degradation of our proposed model and
BASNet is shown for figure clarity, but all models are heavily influenced.

figure 2 the performance (F-measure) of different models, trained with/without JPEG compression, on test set under different
JPEG compression settings. As can be seen, without JPEG compression during training, model performance is severely
impaired by blocking artifacts introduced by JPEG compression even at quality level 90.

2.3. Network Architecture

We investigate the effectiveness of cascading scheme by training variants of our multi-scale cascade network with 1-
level (i.e. no cascade), multi-scale input 2/3/4-level cascade, and single scale input 3-level cascade (SS 3-level). For fair
comparison, we keep total size (number of parameters) of feature extractors of each network roughly the same. Specifically,
we used 12-resblocks for 1-level network feature extractor, 6-resblocks for each of two feature extractors of 2-level network,
4-resblocks for each of three feature extractors of 3-level network, and 3-resblocks for each of four feature extractors of
4-level network. As shown in table 2, although 1-level network demonstrates on-par/slightly better performance on large
patterns, our usage of cascading scheme improves consistency of performance across different pattern sizes. The 3-level
cascade network that only uses single scale input (input at original resolution of 256x256) achieves similar performance as
compared to its multi-scale input counterpart. but it should be noted that: 1) multi-scale version still has better consistency
across patterns sizes, 2) single scale version generates very large feature maps at all hidden layers and the computation budget
required is much higher at both training and inference time. The extra computation budget limits the possibility of using a
larger backbone at each cascade level or cascading more levels.

Performance on Test Set
Small Medium Large Gap between Large and Small

mIoU F0.3 mIoU F0.3 mIoU F0.3 |∆mIoU | |∆F0.3|
1-level 0.545 0.695 0.735 0.856 0.809 0.923 0.262 0.228
2-level 0.582 0.732 0.790 0.910 0.801 0.920 0.219 0.188
3-level 0.664 0.809 0.796 0.913 0.782 0.902 0.118 0.093
4-level 0.616 0.782 0.757 0.893 0.724 0.869 0.108 0.087

SS 3-level 0.645 0.788 0.781 0.906 0.820 0.926 0.175 0.138

Table 2. Quantitative comparison of models with different number of cascade levels. Note that 3-level model performs best on small and
medium size patterns and has smallest performance gap between performance on large and small pattern

2.4. Multi-stage training

Deep supervision has been demonstrated to be effective in training segmentation networks and is widely adopted by
numerous works [2, 3, 4, 6, 1]. Our multi-stage training can be perceived as a special form of deep supervision. Therefore, we
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compare our training scheme with training entire multi-scale cascade network jointly with supervision on each sub-network.
Table 3 shows that our multi-stage training scheme enables our cascade network to achieve better performance.

Overall Performance on Test Set
mIoU MAE F0.3 F2

Multi-stage 0.745 0.022 0.873 0.863
Joint 0.565 0.047 0.755 0.722

Table 3. Quantitative comparison of multi-stage training versus simultaneous joint training

3. Wild Data Test
We compare performance of our proposed model and competing models on 100 images collected from popular social

media website using same metric as in the main text. Collected images are manually labeled. As shown in figure 3 (a, b) and
table 4, our proposed model displays best performance on these wild images. Some visual comparison examples are shown
in figure 4. Note that the overall performance is poorer as compared with synthetic test set because some images are heavily
corrupted by blur and noise.
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(a) Precision-Recall Curve (b) F-measure vs. Thresholds

Figure 3. Precision-recall and F-measure curve of each competing methods evaluated on images collected from popular social media
websites. The models here are the same as the ones in the main result section of the paper (i.e. no extra training or additional data used)

Overall Performance on Test Set
mIoU MAE F0.3 F2

Ours 0.631 0.044 0.776 0.793
Unet 0.445 0.071 0.610 0.685
DLV3 0.410 0.052 0.541 0.546

BASNet 0.410 0.063 0.569 0.541
PFANet 0.541 0.044 0.696 0.707
SFPN 0.540 0.050 0.683 0.700

Table 4. Quantitative comparison of competing methods on data from wild

4. Additional Visual Comparisons
Additional results of the visual comparisons are shown in Figure 5, Figure 7, Figure 6, and Figure 8. For each category,

we show the perturbations of different sizes, and compare the performance with the competing methods.
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Real images downloaded from the internet

(a) Image (b) GT (c) Ours (d) DLV3 (e) UNet (f) BASNet (g) PFANet (h) SFPN

Figure 4. Visual comparison of the proposed method and the competing methods on wild data collected from popular social media websites
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More Test Set Visual Comparisons (1): Stickers

(a) Image (b) GT (c) Ours (d) DLV3 (e) UNet (f) BASNet (g) PFANet (h) SFPN

Figure 5. Visual comparison of the proposed method and the competing methods on stickers
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More Test Set Visual Comparisons (2): Lines

(a) Image (b) GT (c) Ours (d) DLV3 (e) UNet (f) BASNet (g) PFANet (h) SFPN

Figure 6. Visual comparison of the proposed method and the competing methods on lines
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More Test Set Visual Comparisons (3): Text

(a) Image (b) GT (c) Ours (d) DLV3 (e) UNet (f) BASNet (g) PFANet (h) SFPN

Figure 7. Visual comparison of the proposed method and the competing methods on text
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More Test Set Visual Comparisons (4): Logo

(a) Image (b) GT (c) Ours (d) DLV3 (e) UNet (f) BASNet (g) PFANet (h) SFPN

Figure 8. Visual comparison of the proposed method and the competing methods on logos
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