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Figure 1: Performance illustrations on KITTI val. Red bounding box is ground truth, green is detector outputs. From left
to right: (a) RGB images (b) Result of state-of-the-art methods: PointPillars [15], SECOND [46], Point-RCNN [30] and
PV-RCNN [29]. (c) Result of our full self-attention (FSA) augmented baselines. Our method identifies missed detections
and removes false positives.

Abstract
Existing point-cloud based 3D object detectors use

convolution-like operators to process information in a lo-
cal neighbourhood with fixed-weight kernels and aggre-
gate global context hierarchically. However, non-local neu-
ral networks and self-attention for 2D vision have shown
that explicitly modeling long-range interactions can lead
to more robust and competitive models. In this paper,
we propose two variants of self-attention for contextual
modeling in 3D object detection by augmenting convolu-
tional features with self-attention features. We first incorpo-
rate the pairwise self-attention mechanism into the current
state-of-the-art BEV, voxel and point-based detectors and
show consistent improvement over strong baseline models
of up to 1.5 3D AP while simultaneously reducing their pa-
rameter footprint and computational cost by 15-80% and
30-50%, respectively, on the KITTI validation set. We

next propose a self-attention variant that samples a sub-
set of the most representative features by learning defor-
mations over randomly sampled locations. This not only
allows us to scale explicit global contextual modeling to
larger point-clouds, but also leads to more discriminative
and informative feature descriptors. Our method can be
flexibly applied to most state-of-the-art detectors with in-
creased accuracy and parameter and compute efficiency.
We show our proposed method improves 3D object detec-
tion performance on KITTI, nuScenes and Waymo Open
datasets. Code is available at https://github.com/
AutoVision-cloud/SA-Det3D.

1. Introduction
3D object detection has been receiving increasing atten-

tion in the computer vision and graphics community, driven
by the ubiquity of LiDAR sensors and its widespread ap-
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Method Task Modality Context Scalability
Attention + Convolution

Combination Stage Added

HG-Net [3] detection points global-static - gating Attention modules are
PCAN [53] place-recognition points local-adaptive - gating added at the end.

Point-GNN [31] detection points local-adaptive - -
GAC [38] segmentation points local-adaptive - - Attention modules fully
PAT [47] classification points global-adaptive randomly sample points subset - replace convolution and

ASCN [45] segmentation points global-adaptive randomly sample points subset - set-abstraction layers.
Pointformer [21] detection points global-adaptive sample points subset and refine -
MLCVNet [44] detection points global-static - residual addition

TANet [16] detection voxels local-adaptive - gating Attention modules are
PMPNet [49] detection pillars local-adaptive - gated-recurrent-unit inserted into
SCANet [17] detection BEV global-static - gating the backbone.

A-PointNet [20] detection points global-adaptive attend sequentially to small regions gating

Ours
(FSA/DSA) detection

points, voxels,
pillars, hybrid global-adaptive

attend to salient regions
using learned deformations residual addition

Attention modules are
inserted into

the backbone.

Table 1: Properties of recent attention-based models for point-clouds

plications in autonomous driving and robotics. Point-cloud
based 3D object detection has especially witnessed tremen-
dous advancement in recent years [15, 46, 30, 29, 23, 48, 50,
12, 55, 22]. Grid-based methods first transform the irregular
point-clouds to regular representations such as 2D bird’s-
eye view (BEV) maps or 3D voxels and process them using
2D/3D convolutional networks (CNNs). Point-based meth-
ods sample points from the raw point-cloud and query a lo-
cal group around each sampled point to define convolution-
like operations [25, 35, 41] for point-cloud feature extrac-
tion. Both 2D/3D CNNs and point-wise convolutions pro-
cess a local neighbourhood and aggregate global context by
applying feature extractors hierarchically across many lay-
ers. This has several limitations: the number of parame-
ters scales poorly with increased size of the receptive field;
learned filters are stationary across all locations; and it is
challenging to coordinate the optimization of parameters
across multiple layers to capture patterns in the data [52].

In addition, point-cloud based 3D object detectors have
to deal with missing/noisy data and a large imbalance in
points for nearby and faraway objects. This motivates the
need for a feature extractor that can learn global point-cloud
correlations to produce more powerful, discriminative and
robust features. For example, there is a strong correlation
between the orientation features of cars in the same lane and
this can be used to produce more accurate detections espe-
cially for distant cars with fewer points. High-confidence
false positives produced by a series of points that resemble
a part of an object can be also be eliminated by adaptively
acquiring context information at increased resolutions.

Self-attention [36] has recently emerged as a basic build-
ing block for capturing long-range interactions. The key
idea of self-attention is to acquire global information as a
weighted summation of features from all positions to a tar-
get position, where the corresponding weight is calculated
dynamically via a similarity function between the features
in an embedded space at these positions. The number of pa-

rameters is independent of the scale at which self-attention
processes long-range interactions. Inspired by this idea,
we propose two self-attention based context-aware modules
to augment the standard convolutional features—Full Self-
Attention (FSA) and Deformable Self-Attention (DSA).
Our FSA module computes pairwise interactions among all
non-empty 3D entities, and the DSA module scales the op-
eration to large point-clouds by computing self-attention on
a representative and informative subset of features. Our ex-
periments show that we can improve the performance of
current 3D object detectors with our proposed FSA/DSA
blocks while simultaneously promoting parameter and com-
pute efficiency.

Contributions

• We propose a generic globally-adaptive context ag-
gregation module that can be applied across a range
of modern architectures including BEV [15], voxel
[46], point [30] and point-voxel [29] based 3D detec-
tors. We show that we can outperform strong base-
line implementations by up to 1.5 3D AP (average pre-
cision) while simultaneously reducing parameter and
compute cost by 15-80% and 30-50%, respectively, on
the KITTI validation set.

• We design a scalable self-attention variant that learns
to deform randomly sampled locations to cover the
most representative and informative parts and aggre-
gate context on this subset. This allows us to ag-
gregate global context in large-scale point-clouds like
nuScenes and Waymo Open dataset.

• Extensive experiments demonstrate the benefits of our
proposed FSA/DSA modules by consistently improv-
ing the performance of state-of-the-art detectors on
KITTI [10], nuScenes [2] and Waymo Open dataset
[33].
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(a) Self-attention induced graph (b) Full self-attention module (FSA) (c) Deformable self-attention module (DSA)
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Figure 2: Architectures of the proposed FSA and DSA modules.

2. Related Works

3D Object Detection Current 3D object detectors include
BEV, voxel, point or hybrid (point-voxel) methods.
BEV-based methods like MV3D [5] fuse multi-view repre-
sentations of the point-cloud and use 2D convolutions for
3D proposal generation. PointPillars [15] proposes a more
efficient BEV representation and outperforms most fusion-
based approaches while being 2-4 times faster. Voxel-based
approaches, on the other hand, divide the point-cloud into
3D voxels and process them using 3D CNNs [55]. SEC-
OND [46] introduces sparse 3D convolutions for efficient
3D processing of voxels, and CBGS [56] extends it with
multiple heads. Point-based methods are inspired by the
success of PointNet [24] and PointNet++ [25]. F-PointNet
[23] first applied PointNet for 3D detection, extracting
point-features from point-cloud crops that correspond to 2D
camera-image detections. Point-RCNN [30] segments 3D
point-clouds using PointNet++, and uses the segmentation
features to better refine box proposals. Point-Voxel-based
methods like STD [50], PV-RCNN [29] and SA-SSD [12]
leverage both voxel and point-based abstractions to produce
more accurate bounding boxes.
Relationship to current detectors: Instead of repeat-
edly stacking convolutions, we propose a simple, scalable,
generic and permutation-invariant block called FSA/DSA
to adaptively aggregate context information from the entire
point-cloud. This allows remote regions to directly commu-
nicate and can help in learning relationships across objects.
This module is flexible and can be applied in parallel to con-
volutions within the backbone of modern point-cloud based
detector architectures.

Attention for Context Modeling Self-attention [36] has
been instrumental to achieving state-of-the-art results in
machine translation and combining self-attention with con-
volutions is a theme shared by recent work in natural
language processing [42], image recognition [1], 2D ob-

ject detection [19], activity recognition [39], person re-
identification [54] and reinforcement learning [51].
Using self-attention to aggregate global structure in point-
clouds for 3D object detection remains a relatively unex-
plored domain. PCAN [53], TANet [16], Point-GNN [31],
GAC [38], PMPNet [49] use local context to learn context-
aware discriminative features. However relevant contex-
tual information can occur anywhere in the point-cloud
and hence we need global context modeling. HGNet [3],
SCANet [17], MLCVNet [44] use global scene semantics
to improve performance of object detection, but the global
context vector is shared across all locations and channels
and does not adapt itself according to the input features
leading to a sub-optimal representation. PAT [47], ASCN
[45], Pointformer [21] build globally-adaptive point rep-
resentations for classification, segmentation and 3D detec-
tion. But because they use the costly pairwise self-attention
mechanism, the self-attention does not scale to the entire
point-cloud. Consequently, they process a randomly se-
lected subset of points, which may be sensitive to outliers.
To process global context for 3D object detection and scale
to large point-clouds, Attentional PointNet [20] uses GRUs
[7] to sequentially attend to different parts of the point-
cloud. Learning global context by optimizing the hidden
state of a GRU is slow and inefficient, however.
In contrast, our method can processes context adaptively for
each location from the entire point-cloud, while also scaling
to large sets using learned deformations. Since the global
context is fused with local-convolutional features, the train-
ing is stable and efficient as compared to GRUs or stand-
alone attention networks [27]. Table 1 compares our work
with recent point-cloud based attention methods.

3. Methods

In this section, we first introduce a Full Self-Attention
(FSA) module for discriminative feature extraction in 3D
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Figure 3: Proposed FSA/DSA module augmented network architectures for different backbone networks.

object detection that aims to produce more powerful and
robust representations by exploiting global context. Next,
inspired by 2D deformable convolutions [8] we introduce
a variant of FSA called Deformable Self-Attention (DSA).
DSA can reduce the quadratic computation time of FSA and
scale to larger and denser point-clouds. The two proposed
modules are illustrated in Figure 2.

3.1. Formulation

For the input set X = {x1, x2, ...xn} of n correlated fea-
tures and i ∈ {1, ...n}, we propose to use self-attention in-
troduced by Vaswani et al. [36] to exploit the pairwise sim-
ilarities of the ith feature node with all the feature nodes,
and stack them to compactly represent the global structural
information for the current feature node.

Mathematically, the set of pillar/voxel/point features and
their relations are denoted by a graph G = (V, E), which
comprises the node set V = {x1, x2, ...xn ∈ Rd}, to-
gether with an edge set E = {ri,j ∈ RNh , i = 1, ..., n
and j = 1, ..., n}. A self-attention module takes the set of
feature nodes, and computes the edges (see Figure 2 (a)).
The edge ri,j represents the relation between the ith node
and the jth node, and Nh represents the number of heads
(number of attention maps in Figure 2 (b)) in the attention
mechanism across d feature input channels as described be-
low. We assume that Nh divides d evenly. The advantage

of representing the processed point-cloud features as nodes
in a graph is that now the task of aggregating global context
is analogous to capturing higher order interaction among
nodes by message passing on graphs for which many mech-
anisms like self-attention exist.

3.2. Full Self-Attention Module

Our Full Self-Attention (FSA) module projects the fea-
tures xi through linear layers into matrices of query vectors
Q, key vectors K, and value vectors V (see Figure 2(b)).
The similarities between query qi and all keys, kj=1:n, are
computed by a dot-product, and normalized into attention
weights wi, via a softmax function. The attention weights
are then used to compute the pairwise interaction terms,
rij = wijvj . The accumulated global context for each
node vector ai is the sum of these pairwise interactions,
ai =

∑
j=1:n rij . As we mentioned in our formulation, we

also use multiple attention heads, applied in parallel, which
can pick up channel dependencies independently. The final
output for the node i is then produced by concatenating the
accumulated context vectors ah=1:Nh

i across heads, passing
it through a linear layer, normalizing it with group normal-
ization [43] and summing it with xi (residual connection).

Advantages: The important advantage of this module
is that the resolution at which it gathers context is inde-
pendent of the number of parameters and the operation is
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Method PointPillars [15] SECOND [46] Point-RCNN [30] PV-RCNN [29]
3D BEV Param FLOPs 3D BEV Param FLOPs 3D BEV Param FLOPs 3D BEV Param FLOPs

Baseline 78.39 88.06 4.8 M 63.4 G 81.61 88.55 4.6 M 76.9 G 80.52 88.80 4.0 M 27.4 G 84.83 91.11 12 M 89 G
DSA 78.94 88.39 1.1 M 32.4 G 82.03 89.82 2.2 M 52.6 G 81.80 88.14 2.3 M 19.3 G 84.71 90.72 10 M 64 G
FSA 79.04 88.47 1.0 M 31.7 G 81.86 90.01 2.2 M 51.9 G 82.10 88.37 2.5 M 19.8 G 84.95 90.92 10 M 64.3 G

Improve. +0.65 +0.41 -79% -50% +0.42 +1.46 -52% -32% +1.58 - -37% -38% +0.12 - -16% -27%

Table 2: Performance comparison for moderate difficulty Car class on KITTI val split with 40 recall positions

permutation-invariant. This makes it attractive to replace a
fraction of the parameter-heavy convolutional filters at the
last stages of 3D detectors with self-attention features for
improved feature quality and parameter efficiency.

Complexity: The pairwise similarity calculation is
O(n2d) in nature. The inherent sparsity of point-clouds
and the efficient matrix-multiplication based pairwise com-
putation makes FSA a viable feature extractor in current 3D
detection architectures. However, it is necessary to trade
accuracy for computational efficiency in order to scale to
larger point-clouds. In the next section, we propose our
Deformable Self-Attention module to reduce the quadratic
computation time of FSA.

3.3. Deformable Self-Attention Module

Our primary idea is to attend to a representative subset of
the original node vectors in order to aggregate global con-
text. We then up-sample this accumulated structural infor-
mation back to all node locations. The complexity of this
operation is O(m2d), where m << n is the number of
points chosen in the subset. In order for the subset to be
representative, it is essential to make sure that the selected
nodes cover the informative structures and common char-
acteristics in 3D geometric space. Inspired by deformable
convolution networks [8] in vision, we propose a geometry-
guided vertex refinement module that makes the nodes self-
adaptive and spatially recomposes them to cover locations
which are important for semantic recognition. Our node
offset-prediction module is based on vertex alignment strat-
egy proposed for domain alignment [26, 11]. Initially m
nodes are sampled from the point-cloud by farthest point
sampling (FPS) with vertex features xi and a 3D vertex po-
sition vi. For the ith node, the updated position v′i is calcu-
lated by aggregating the local neighbourhood features with
different significance as follows:

x∗
i =

1

k
ReLU

∑
j∈N (i)

Woffset(xi − xj) · (vi − vj) (1)

v′i = vi + tanh(Walignx
∗
i ) (2)

where Ni gives the i-th node’s k-neighbors in the point-
cloud and Woffset and Walign are weights learned end-to-end.
The final node features are computed by a non-linear pro-
cessing of the locally aggregated embedding as follows:

x′i = max
j∈N (i)

Woutxj (3)

Next, the m adaptively aggregated features {x′1....x′
m} are

then passed into a full self-attention (FSA) module to model
relationships between them. This aggregated global infor-
mation is then shared among all n nodes from the m rep-
resentatives via up-sampling. We call this module a De-
formable Self-Attention (DSA) module as illustrated in Fig-
ure 2(c).

Advantages: The main advantage of DSA is that it can
scalably aggregate global context for pillar/voxel/points.
Another advantage of DSA is that it is trained to collect
information from the most informative regions of the point-
cloud, improving the feature descriptors.

4. Experiments
4.1. Network Architectures

We train and evaluate our proposed FSA and DSA mod-
ules on four state-of-the-art architecture backbones: Point-
Pillars [15], SECOND [46], Point-RCNN [30], and PV-
RCNN [29]. The architectures of the backbones are illus-
trated in Figure 3. The augmented backbones can be trained
end-to-end without additional supervision.
For the KITTI dataset, the detection range is within
[0,70.4] m, [-40,40] m and [-3,1] m for the XYZ axes, and
we set the XY pillar resolution to (0.16, 0.16) m and XYZ
voxel-resolution of (0.05, 0.05, 0.1) m. For nuScenes, the
range is [-50,50] m, [-50,50] m, [-5,3] m along the XYZ
axes and the XY pillar resolution is (0.2, 0.2) m. For the
Waymo Open dataset, the detection range is [-75.2, 75.2] m
for the X and Y axes and [-2, 4] m for the Z-axis, and we
set the voxel size to (0.1, 0.1, 0.15) m. Additionally, the
deformation radius is set to 3 m, and the feature interpo-
lation radius is set to 1.6 m with 16 samples. The self-
attention feature dimension is 64 across all models. We
apply 2 FSA/DSA modules with 4 attention heads across
our chosen baselines. For DSA, we use a subset of 2,048
sampled points for KITTI and 4,096 sampled points for
nuScenes and Waymo Open Dataset. We use standard data-
augmentation for point clouds. For baseline models, we
reuse the pre-trained checkpoints provided by OpenPCDet
[34].

4.2. Implementation Details

KITTI: KITTI benchmark [10] is a widely used bench-
mark with 7,481 training samples and 7,518 testing sam-
ples. We follow the standard split [5] and divide the training
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Model Car - 3D Car - BEV Cyclist - 3D Cyclist - BEV
Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

MV3D [5] 74.97 63.63 54.00 86.62 78.93 69.80 - - - - - -
PointPillars [15] 82.58 74.31 68.99 90.07 86.56 82.81 77.10 58.65 51.92 79.90 62.73 55.58
SECOND [46] 83.34 72.55 65.82 89.39 83.77 78.59 71.33 52.08 45.83 76.50 56.05 49.45

PointRCNN [30] 86.96 75.64 70.70 92.13 87.39 82.72 74.96 58.82 52.53 82.56 67.24 60.28
STD [50] 87.95 79.71 75.09 94.74 89.19 86.42 78.69 61.59 55.30 81.36 67.23 59.35

3DSSD [48] 88.36 79.57 74.55 92.66 89.02 85.86 82.48 64.10 56.90 85.04 67.62 61.14
SA-SSD [12] 88.75 79.79 74.16 95.03 91.03 85.96 - - - - - -
TANet [16] 83.81 75.38 67.66 - - - 73.84 59.86 53.46 - - -

Point-GNN [31] 88.33 79.47 72.29 93.11 89.17 83.90 78.60 63.48 57.08 81.17 67.28 59.67
PV-RCNN [29] 90.25 81.43 76.82 94.98 90.65 86.14 78.60 63.71 57.65 82.49 68.89 62.41

PV-RCNN + DSA (Ours) 88.25 81.46 76.96 92.42 90.13 85.93 82.19 68.54 61.33 83.93 72.61 65.82

Table 3: Performance comparison of 3D detection on KITTI test split with AP calculated with 40 recall positions. The best
and second-best performances are highlighted across all datasets.

Model Mode mAP NDS Car Truck Bus Trailer CV Ped Moto Bike Tr. Cone Barrier
PointPillars [15] Lidar 30.5 45.3 68.4 23.0 28.2 23.4 4.1 59.7 27.4 1.1 30.8 38.9
WYSIWYG [13] Lidar 35.0 41.9 79.1 30.4 46.6 40.1 7.1 65.0 18.2 0.1 28.8 34.7
PointPillars+ [37] Lidar 40.1 55.0 76.0 31.0 32.1 36.6 11.3 64.0 34.2 14.0 45.6 56.4

PMPNet [49] Lidar 45.4 53.1 79.7 33.6 47.1 43.0 18.1 76.5 40.7 7.9 58.8 48.8
SSN [57] Lidar 46.3 56.9 80.7 37.5 39.9 43.9 14.6 72.3 43.7 20.1 54.2 56.3

Point-Painting [37] RGB + Lidar 46.4 58.1 77.9 35.8 36.2 37.3 15.8 73.3 41.5 24.1 62.4 60.2
PointPillars + DSA (Ours) Lidar 47.0 59.2 81.2 43.8 57.2 47.8 11.3 73.3 32.1 7.9 60.6 55.3

Table 4: Performance comparison of 3D detection with PointPillars backbone on nuScenes test split. “CV”, ”Ped” , “Moto”,
“Bike”, “Tr. Cone” indicate construction vehicle, pedestrian, motorcycle, bicycle and traffic cone respectively. The values are
taken from the official evaluation server https://eval.ai/web/challenges/challenge-page/356/leaderboard/
1012.

Difficulty Method Vehicle
3D AP 3D APH

StarNet [18] 53.7 -
PointPillars [15] 56.6 -

PPBA [6] 62.4 -
MVF [5] 62.9 -

L1 AFDet [9] 63.7 -
CVCNet [4] 65.2 -

Pillar-OD [40] 69.8 -
†SECOND [46] 70.2 69.7
PV-RCNN [29] 70.3 69.7

SECOND + DSA (Ours) 71.1 70.7
L2 †SECOND [46] 62.5 62.0

PV-RCNN [29] 65.4 64.8
SECOND + DSA (Ours) 63.4 63.0

Table 5: Comparison on Waymo Open Dataset validation
split for 3D vehicle detection. Our DSA model has 52%
fewer parameters and 32% fewer FLOPs compared to SEC-
OND and 80% fewer parameters and 41% fewer FLOPs
compared to PV-RCNN. †Re-implemented by [34]

samples into train and val split with 3,712 and 3,769 sam-
ples respectively. All models were trained on 4 NVIDIA
Tesla V100 GPUs for 80 epochs with Adam optimizer [14]
and one cycle learning rate schedule [32]. We also use the
same batch size and learning rates as the baseline models.

nuScenes nuScenes [2] is a more recent large-scale
benchmark for 3D object detection. In total, there are 28k,
6k, 6k, annotated frames for training, validation, and test-
ing, respectively. The annotations include 10 classes with a

long-tail distribution. We train and evaluate a DSA model
with PointPillars as the backbone architecture. All previ-
ous methods combine points from current frame and pre-
vious frames within 0.5 s, gathering about 300 k points per
frame. FSA does not work in this case since the number
of pillars in a point cloud is too large to fit the model in
memory. In DSA, this issue is avoided by sampling a rep-
resentative subset of pillars. The model was trained on 4
NVIDIA Tesla V100 GPUs for 20 epochs with a batch size
of 8 using Adam optimizer [14] and one cycle learning rate
schedule [32].

Waymo Open Dataset Waymo Open Dataset [33] is
currently the largest dataset for 3D detection for au-
tonomous driving. There are 798 training sequences with
158,081 LiDAR samples, and 202 validation sequences
with 39,987 LiDAR samples. The objects are annotated in
the full 360◦field of view. We train and evaluate a DSA
model with SECOND as the backbone architecture. The
model was trained on 4 NVIDIA Tesla V100 GPUs for 50
epochs with a batch size of 8 using Adam optimizer [14]
and one cycle learning rate schedule [32].

5. Results

5.1. 3D Detection on the KITTI Dataset

On KITTI, we report the performance of our proposed
model on both val and test split. We focus on the average
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precision for moderate difficulty and two classes: car and
cyclist. We calculate the average precision on val split with
40 recall positions using IoU threshold of 0.7 for car class
and 0.5 for cyclist class. The performance on test split is
calculated using the official KITTI test server.
Comparison with state-of-the-art: Table 2 shows the re-
sults for car class on KITTI val split. For all four state-of-
the-art models augmented with DSA and FSA, both vari-
ants were able to achieve performance improvements over
strong baselines with significantly fewer parameters and
FLOPs. On KITTI test split, we evaluate PV-RCNN+DSA
and compare it with the models on KITTI benchmark. The
results are shown in Table 3. On the car class DSA shows
an improvement of 0.15 3D AP on the hard setting, while
for the smaller cyclist class we achieve significantly bet-
ter performance than all other methods with upto 4.5 3D
AP improvement on the moderate setting. Overall, the re-
sults consistently demonstrate that adding global contextual
information benefits performance and efficiency, especially
for the difficult cases with smaller number of points.

5.2. 3D Detection on the nuScenes Dataset

To test the performance of our methods in more chal-
lenging scenarios, we evaluate PointPillars with DSA
modules on the nuScenes benchmark using the official
test server. In addition to average precision (AP) for
each class, nuScenes benchmark introduces a new metric
called nuScenes Detection Score (NDS). It is defined as
a weighted sum between mean average precision (mAP),
mean average errors of location (mATE), size (mASE), ori-
entation (mAOE), attribute (mAAE) and velocity (mAVE).
Comparison with state-of-the-art: We first compare our
PointPillars+DSA model with PointPillars+ [37], a class-
balanced re-sampled version of PointPillars inspired by
[56]. DSA achieves about 7% improvement in mAP and
4.2% improvement in NDS compared to PointPillars+, even
for some small objects, such as pedestrian and traffic cone.
Compared with other attention and fusion-based methods
like PMPNet and Point-Painting, DSA performs better in
the main categories of traffic scenarios such as Car, Truck,
Bus and Trailer etc. Overall, our model has the highest mAP
and NDS score compared to state-of-the-art PointPillars-
based 3D detectors.

5.3. 3D Detection on the Waymo Open Dataset

We also report performance on the large Waymo Open
Dataset with our SECOND+DSA model to further validate
its effectiveness. The objects in the dataset are split into
two levels based on the number of points in a single ob-
ject, where LEVEL1 objects have at-least 5 points and the
LEVEL2 objects have at-least 1 point inside. For eval-
uation, the average precision (AP) and average precision
weighted by heading (APH) metrics are used. The IoU

threshold is 0.7 for vehicles.
Comparison with the state-of-the-art: Table 5 shows
that our method outperforms previous state-of-the-art PV-
RCNN with a 0.8%AP and 1%APH gain for 3D object de-
tection while having 80% fewer parameters and 41% fewer
FLOPs on LEVEL1. This supports that our proposed DSA
is able to effectively capture global contextual information
for improving 3D detection performance. Better perfor-
mance in terms of APH also indicates that context helps to
predict more accurate heading direction for the vehicles. On
LEVEL2, we outperform the SECOND baseline by 0.9%
AP and 1.0% APH. Overall SECOND+DSA provides the
better balance between performance and efficiency as com-
pared to PV-RCNN. The experimental results validate the
generalization ability of FSA/DSA on various datasets.

5.4. Ablation studies and analysis

Ablation studies are conducted on the KITTI validation
split [5] for moderate Car class using AP@R40, in order to
validate our design choices.

Model variations In our ablation study with PointPillars
backbone in Table 6, we represent the number of 2D con-
volution filters as Nfilters, self-attention heads as Nh, self-
attention layers as Nl, sampled points for DSA as Nkeypts,
deformation radius as rdef and the up-sampling radius as
rup.
Effect of number of filters: We note that both FSA and
DSA outperform not only the models with similar param-
eters by 0.97% and 0.87% respectively, but also the state-
of-the-art models with 80% more parameters by 0.65% and
0.55%. This indicates that our modules are extremely pa-
rameter efficient. Finally, we also note that if the number
of parameters and compute are kept roughly the same as
the baseline(Row-D), DSA outperforms the baseline by a
large margin of 1.41%. We also illustrate consistent gains
in parameter and computation budget across backbones in
Figure 4.
Effect of number of self-attention heads and layers
(Row-A): We note that increasing heads from 2 to 4 leads to
an improvement of 0.37% for PointPillars. Since increasing
number of self-attention layers beyond a certain value can
lead to over-smoothing [28], we use 2 FSA/DSA layers in
the backbone and 4 heads for multi-head attention.
Effect of number of sampled points (Row-B): For DSA,
we also vary the number of keypoints sampled for compu-
tation of global context. We note that the performance is
relatively robust to the number of sampled points.
Effect of deformation and upsampling radius (Row-C):
For DSA, we note that the performance is generally robust
to the deformation radius upto a certain threshold, but the
up-sampling radius needs to be tuned carefully. Generally
an up-sampling radius of 1.6m in cars empirically works
well.
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Model Nfilters Nh Nl Nkeypts rdef rup 3D AP Params FLOPs
baseline (64,128,256) - - - - - 78.39 4.8M 63.4G

(64,64,128) - - - - - 78.07 1.5M 31.5G
(64,64,64) 2 2 - - - 78.67 1.0M 31.3G

(A) 4 1 - - - 78.34 1.0M 31.5G
4 2 - - - 79.04 1.0M 31.7G
4 4 - - - 78.56 1.0M 32.0G

(64,64,64) 4 2 512 3 1.6 78.70 1.1M 32.4G
(B) 1024 78.95 1.1M 32.4G

2048 78.94 1.1M 32.4G
4096 78.90 1.1M 32.4G

(64,64,64) 4 2 2048 2 1.6 78.93 1.1M 32.4G
(C) 1.4 1.6 78.22 1.1M 32.4G

3 2 78.10 1.1M 32.4G
3 1 78.96 1.1M 32.4G

(D) (64,128,256) 4 2 2048 2 1 79.80 5.1M 73.5G

Table 6: Ablation of model components with PointPillars
backbone on KITTI moderate Car class of val split.
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Figure 4: 3D AP on moderate Car class of KITTI val split
(R40) vs. number of parameters (Top) and GFLOPs (Bot-
tom) for baseline models and proposed baseline extensions
with Deformable and Full SA.

Effect of noise on performance We introduce noise
points to each object similar to TANet [16], to probe the
robustness of representations learned. As shown in Fig-
ure 5, self-attention-augmented models are more robust
to noise than the baseline. For example, with 100 noise
points added, the performance of SECOND and Point-
RCNN drops by 3.3% and 5.7% respectively as compared
to SECOND-DSA and Point-RCNN-DSA, which suffer a
lower drop of 2.7% and 5.1% respectively.

Effect of number of object points on performance We
sort the cars based on the numbers of points in them and
divide them into 3 groups. Then we calculate the 3D AP
across every group. As shown in Figure 6, the effect of
the self-attention module becomes apparent as the num-
ber of points on the cars decreases. For objects with very
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Figure 5: 3D AP of SECOND-DSA (orange) & Point-
RCNN-DSA (violet) vs. SECOND & Point-RCNN baseline
(light-steel-blue) for noise-points per ground-truth bound-
ing box, varying from 0 to 100 on KITTI val moderate
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Figure 6: 3D AP of PointPillars-FSA, PV-RCNN-FSA and
respective baselines vs.number of points in the ground-truth
bounding box on KITTI val

few points, FSA can increase the 3D AP for PointPillars by
2.8% and PV-RCNN by 1.5%.

6. Conclusions
In this paper, we propose a simple and flexible self-

attention based framework to augment convolutional fea-
tures with global contextual information for 3D object de-
tection. Our proposed modules are generic, parameter and
compute-efficient, and can be integrated into a range of
3D detectors. We explore two forms of self-attention: full
(FSA) and deformable (DSA). The FSA module encodes
pairwise relationships between all 3D entities, whereas the
DSA operates on a representative subset to provide a scal-
able alternative for global context modeling. Quantitative
and qualitative experiments demonstrate that our architec-
ture systematically improves performance of 3D object de-
tectors.
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