
Cross-modal Matching CNN for Autonomous Driving Sensor Data Monitoring

Yiqiang Chen
RAMS Reliability Technology Lab

Huawei Technology Co., Ltd.
chenyiqiang@huawei.com

Feng Liu, Ke Pei
TTE-DE RAMS Lab

Huawei Technology Co., Ltd.
{feng.liu1, peike}@huawei.com

Abstract

Multiple sensor types have been increasingly used in
modern autonomous driving systems (ADS) to ensure safer
perception. Through applications of multiple modalities of
perception sensors that differ in their physical properties,
obtained data complement to each other and provide a more
robust view of surroundings. On the other hand, however,
sensor data fault is inevitable thus lead to wrong percep-
tion results and consequently endangers the overall safety
of the vehicle. In this paper, we present a cross-modal Con-
volutional Neural Networks (CNN) for autonomous driving
sensor data monitoring functions, such as fault detection
and online data quality assessment. Assuming the overlap-
ping view of different sensors should be consistent under
normal circumstances, we detect anomalies such as mis-
synchronisation through matching camera image and LI-
DAR point cloud. A masked pixel-wise metric learning loss
is proposed to improve exploration of the local structures
and to build an alignment-sensitive pixel embedding. In our
experiments with a selected KITTI dataset and specially tai-
lored fault data generation methods, the approach shows a
promising success for sensor fault detection and point cloud
quality assessment (PCQA) results.

1. Introduction
In recent years, researches on Autonomous Driving (AD)

technologies have made significant progresses and received
increasing attentions from both industry and academia. It is
expected that AD systems could drastically reduce the num-
ber of traffic accidents caused by human carelessness and
negligences. This expectation gives the safety property of
AD systems in their operational domains into an unprece-
dented high importance.

Since the perception system captures the environment in-
formation through different types of sensors such as camera,
radar, and LIDAR, inevitable sensor data faults are regarded
as one of the major potential causes to the failure of the per-
ception algorithms such as object detection, semantic seg-

Figure 1. Impact of camera-LiDAR synchronization on object de-
tection. The green box denotes a lidar based 3D detection bound-
ing box projected onto the 2D image and the yellow box denotes
a 2D detection bounding box. The misaligned object detections
may lead to a wrong fusion result.

mentation, scene recognition etc. This exposes the intended
functional safety and, furthermore, overall safety of the ve-
hicle into great dangers and can be even life-threatening for
passengers in the vehicle and other road users.

Sensor data faults are usually classified into two types:
cross-sensor fault and single sensor fault. Single sensor
fault patterns are extensively studied in the literature [9].
Single sensor faults could be either caused by internal mal-
functions (e.g., broken lens, defect transmitter/receiver) or
disturbing external factors (e.g., occlusions).

One of the widely accepted methods to tackle sensor
faults of safe-critical systems is sensor redundancy. But
this might lead to the cross sensor fault caused by either
misalignment from wrong extrinsic calibration [28] or mis-
synchronization [17] (see Fig. 1). When two sensors, for
instance a camera and a LIDAR, take two independent mea-
surements of environment, the measurements need to be
aligned and happen at the same time in order to fuse the
measurements to build an accurate perception of the envi-
ronment. Without proper synchronization and calibration,
multiple sensors could provide inaccurate, ambiguous view
of the environment, leading to potentially catastrophic out-
comes.

In order to improve safety guarantees and avoid afore-
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Figure 2. The cross-sensor matching module runs in parallel with
the perception pipeline. An alert will be sent to sensor fusion mod-
ule when an inconsistency is detected between different sensors.

mentioned issues, it is the key to design and implement a
sensor monitoring system as an input verification for ma-
chine learning based perception tasks. This monitoring sys-
tem is expected to provide the capability of self-assessment
to the perception system. It helps to improve safety and ro-
bustness during the deployment through monitoring the per-
formance continuously and allows to take preventive mea-
sures when the data quality below an expected level, e.g.
changing sensor fusion strategy (Fig. 2). This is a crucial
prerequisite, the quality of an automated driving functions
strongly depends on the reliability of the perception data.

The most of state-of-the-art methods [9] concentrate on
detecting a specific single sensor fault, in this work, we
propose a novel sensor data monitoring method detecting
both unspecific single and cross data fault for AD percep-
tion and fusion systems. We match sensor data from differ-
ent modalities by using a cross-modal Siamese CNN. The
CNN is trained by a proposed pixel-wise metric learning
loss to learn a common latent space in which both modali-
ties are projected and corresponding LIDAR point and im-
age pixel pairs are closer than mismatched pairs. Different
from the cross modal retrieve problem, the fine-grained fea-
ture matching is more crucial than the scene level semantic
matching for cross-sensor data validation and monitoring,
since the misalignment in real scenarios can be very sub-
tle. Thus we propose that the cross modal joint embedding
is extracted on the pixel level to explore local features and
fine-grained structures in order to enforce the discriminabil-
ity of alignment.

One of the major challenges of learning-based fault de-
tection methods is the difficulty of collecting the fault-
perturbed data. Real faults are comparatively rare events
and randomly occur generally at very low frequency. It’s
hard if not impossible to collect a sufficient amount of real
data to perform the detection task. To tackle this problem,
we apply a self-supervised training mode in which we ran-
domly generalize misaligned sensor data. We experimen-
tally show that the detection can work not only for the gen-
eralized misaligned fault types but also for unseen single
sensor faults.

Moreover, we propose the point cloud-image distance to
be considered as reduced-reference point cloud quality as-
sessment (RR-PCQA) under the premise of the alignment of

sensors and the quality of RGB image. RR-PCQA aims to
evaluate the quality of a distorted point cloud through partial
information of the corresponding reference. We consider
the RGB image of the overlapping field of view as such
partial information. With further experiments, we show this
distance could have a proper correlation with the perfor-
mance degradation of the LIDAR based 3D object detection
model. This proves further that our proposed measurement
could be an appropriate monitoring method for autonomous
driving perception and fusion systems.

To summarize, the main contributions of our paper are
followings: 1) A cross-modal matching CNN is first ap-
plied for autonomous driving sensor data fault detection and
monitoring. And a masked pixel-wise contrastive loss is de-
signed in order to better explore local features and structures
for matching task. 2) Unlike most fault detection meth-
ods working only for specific fault types and requiring fault
data, our method could work for unseen fault types and train
without collecting fault data thanks to the self-supervised
learning procedure. 3) Under guarantee of alignment of the
sensors and image quality, we show that the proposed point
cloud-image distance can be employed as traffic scene RR-
PCQA method which is barely studied in the state of the
art.

2. Related work
Sensor fault analysis and detection. Sensor data mon-

itoring is one of the key factors of the perception system
monitoring mechanism. To fulfil requirements on ensuring
the intended functionality of sensors, many single sensor
fault analysis and detection methods have been proposed
in the literature. For LIDAR sensor, contamination is one
of the common sensor fault. Contaminations or damages
on the sensor in the front reduce the amount of transmit-
ted light both in the sender and the receiver path. Rivero et
al. [19] examined the effect of dirt on the performance of
a LIDAR and analyzed the sensor’s uncertainty in raw data
position measurements. James et al. [14] classified and de-
tected different types of contaminations of LIDAR using
a deep learning approach. They artificially contaminated
LIDAR sensor for data generation and train a deep neural
network following a multi-view concept. Some other work
investigate noise of LiDAR point cloud. Segata et al. [23]
analyzed a set of estimated distance traces obtained with a
LiDAR sensor and develops a stochastic error model. Xie et
al. [27] proposed a suitable and practical method of calcu-
lating the LIDAR signal-to-noise ratio. Diehm et al. [4]
studied crosstalk noise in the acquired data and proposed
data-based spatio-temporal filtering.

The online quality monitoring for camera images can be
performed by no-reference image quality assessment (NR-
IQA) which is an extensively studied research topic. Qual-
ity assessment is applied to ensure and improve the qual-
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Figure 3. Overview of the cross-modal matching CNN architecture. CNN feature extractions are performed prospectively on the RGB
image and the projected point cloud image. The distance map is calculated on each pixels on the two result feature maps. The loss is
calculated based on each point of the distance map over a sparsity mask.

ity of visual contents delivered to the end-users. Saad et
al. [20] leveraged the statistical features of discrete cosine
transform (DCT) to estimate the NR-IQA values. In [1],
Bianco et al. pre-trained a deep model on the large-scale
database for image classification task and then fine-tuned
it for NR-IQA task. For especially camera fault in au-
tonomous driving context, [5] showed that on moving sys-
tems most artifacts can be detected by analyzing the frames
in a sequence of images from a camera for static image
parts. [2] [3] used CNN to detect soiling degradation of ve-
hicle fisheye camera. Qiu et al. [18] studied blurry artifacts
of cameras caused by defocus, motion and haze. Generated
synthetic data are used for training the CNN.

Compared to single sensor fault analysis, cross sensor
fault analysis and detection is seldom studied in the liter-
ature. RegNet [21] perfomed online calibration of camera
and LIDAR by a CNN which can also be used as a sensor
monitoring module. Zhu et al. [15] uses the deviation of
object detection of two sensors for cross-validation.

Point cloud data assessment. Refer to the consensus
in IQA, there are three different types of PCQA metrics,
namely, full-reference (FR), reduced-reference (RR) and
no-reference (NR) metrics. The state-of-the-art methods
mainly focus on the FR-PCQA and apply to single object
point cloud data, for example point-to-plane distance [25].
With absence of no distortion data, FR-PCQA is not appli-
cable for online monitoring task. NR-PCQA and RR-PCQA
are barely proposed in the state-of-the-art. To the best of
our knowledge, our proposed method is the first to tackle
the traffic scene PCQA.

Deep metric learning and Cross modal matching. The
goal of metric learning is to quantify the similarity among
samples using an optimal distance metric. Contrastive
loss [10] and triplet loss [22] are two basic types of loss
functions for deep metric learning. With a similar spirit
of increasing and decreasing the distance between similar
and dissimilar data samples, respectively, the former one
takes pairs of sample as input while the latter is composed
of triplets. Deep metric learning has proven effective in a

wide variety of computer vision tasks, such as person re-
identification [29], image retrieval [26] and face recogni-
tion [22].

However, most of existing metric learning methods are
designed for unimodal matching, which cannot effectively
model the relationship of features captured from different
modalities. Cross modal matching is mostly applied to mul-
timodal data for vision and language matching. For ex-
ample, Liong et al. [16] introduced a deep coupled metric
learning that designs two nonlinear transformations to re-
duce the modality map. Frome et al. [7] proposed a deep
visual semantic embedding model mapping visual features
and semantic features into a shared embedding space, using
a hinge rank loss as the objective function.

3. Method

Our approach is based on a consistency assumption:
when all sensors work well, their contents should be con-
sistent in some way. Once inconsistency occurs, it is caused
by either single-sensor or cross-sensor fault. From a se-
curity perspective, a further possibility could be an attack
that disrupts the proper behavior of the sensor. Additionally
we assume a very low probabilistic event that both sensors
fail simultaneously and still show consistency between their
data. Similarly, attacking two different sensors and keeping
consistent should be extremely hard and therefore as un-
likely occurrences.

The overall procedure of our CNN is shown in Fig. 3.
Our method can generally be applied to different sensor
modalities and combinations, in this paper, we focus on the
matching between LIDAR point cloud and camera image
due to popular applications in automated vehicles. In the
following sections, we introduce the network architecture,
the proposed pixel-wise contrastive loss, and network train-
ing details.
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3.1. Siamese network and Contrastive loss

First we describe the classic contrastive loss which is the
most commonly used loss function in Siamese architecture
[10]. The objective is to minimize the distance between
a positive pair and separate any two negative pairs with a
distance margin. The contrastive loss is defined as:

Econtrastive =
1

N

N∑
y ‖f(xi)− f(xj)‖2 +

(1− y) ·max(m− ‖f(xi)− f(xj)‖ , 0)2

Where xi, xj are input pair. m is a constant margin. y is
the label of the input pair: y = 1 for positive pairs and y = 0
for negative pairs, f is the projection of neural networks.

The parameters are shared between the sub-networks in
a Siamese architecture, that means the weights of the two
sub-networks are the same and updated in the same way.
Weight sharing guarantees that the learned distance metric
is symmetric, i.e. d(a, b) = d(b, a). The gradient is additive
across the sub-networks due to the weight sharing.

3.2. Network architecture

The goal of this work is to detect and monitor the input
data for the perception systems. To this end, we leverage the
strength of CNN for feature extraction. We design the ar-
chitecture inspired by classic Siamese neural networks [10]
and the cross-modal calibration deep networks [21], [13].

The network takes as input an RGB image, the corre-
sponding LiDAR point cloud, and the camera calibration
matrix. The point cloud is first converted into a sparse depth
map as a pre-processing step. This is done by projecting the
LiDAR point cloud onto the image plane using the perspec-
tive transformation.

Then we normalize both the RGB image and the sparse
depth map as input of the CNN. The network primarily con-
sists of two asymmetric branches, each performing a series
of convolutions (see Fig. 3). The weight of the two branches
is not shared, since our cross-modal metric is not symmet-
ric. For the RGB branch we use the first three blocks of
the ResNet-18 network [11] (the first convolution and two
following ResNet blocks). For the depth branch, we use a
same architecture as the RGB stream, but the first convo-
lution has single input channel. In ResNet-18, high-level
semantic information is encoded with consecutive down-
sampling operations for image classification task. However,
this procedure weakens the spatial capacity. The reason to
use only a few low-level layers of ResNet-18 for network
backbones is two-fold. First, this helps to saving the compu-
tation cost, since the resource used for monitoring function
should be limited. Secondly, to preserve sufficient spatial
details which are crucial for our matching task.

Figure 4. Cross-modal matching learns a shared embedding space
where RGB image features and LIDAR point cloud features can be
compared. Points with the same color are from the same modality.

3.3. Masked pixel-wise contrastive loss

Joint embedding learning aims to find a shared latent
space under which the embeddings of images and LIDAR
point clouds can be directly compared (see Fig. 4). Con-
trastive loss is utilized to encourage the distance of matched
point cloud-image pairs to be smaller than mismatched pairs
on this common latent space.

Unlike the classic Siamese networks that calculates the
contrastive loss for pair of image instances, our loss cal-
culation is performed at pixel level (see Fig. 3). It means
that feature embedding is extracted for each point and the
distance is measured between pixels on the latent feature
space. This motivates the network to explore the fine-
grained spatial information and restrict attention to the local
structures which is important for subtle matching task. To
this end, a distance layer is applied to calculate the pixel-
to-pixel distance of each RGB image feature map and pro-
jected point cloud feature map. Contrastive loss is then cal-
culated on each point on this distance map.

Since only part of the pixels on RGB image plane get a
corresponding LIDAR point projection, the projected point
cloud image is sparse. It is meaningless that compare a
RGB pixel to a blank position. Thus, we extract a spar-
sity mask encoding which position is projected by a LIDAR
point. The contrastive loss map is spatially averaged over
the mask. The introduced masked pixel-wise contrastive
loss is finally formulated as following:

E =
1

N

N∑
i=1

1

‖M‖HW

H−1∑
h=0

W−1∑
w=0

Mhw

[
y ‖Iihw − Lihw‖2

+(1− y) ·max(m− ‖Iihw − Lihw‖ , 0)2
]

Where N is the batch size, M is the sparsity mask, H
and W are height and weight of the feature map. I and L
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(a)

(b)

(c)

Figure 5. Self-supervised negative pair generation. (a) Synthetic mis-calibrated negative pair example by applying random rotation and
translation to extrinsic calibration. (b) Synthetic mis-synchronised negative pair example by timely shifting image and point cloud. (c)
Wrapping feature maps by a random vector field to generate pixel-wise misaligned negative pairs.

are image and LIDAR feature embedding. y is the matching
label.

For inference, the point cloud-image distance metric is
obtained by spatially averaging the distance map over the
sparsity mask.

3.4. Self-supervised training procedure

In order to learn a proper distance metric, both positive
and negative pairs should be provided. Positive pairs are the
perfectly matched pixels of projected point cloud and im-
age. Negative pairs are mismatched pixels. Matched point
cloud can be collected easily without human annotations.
Real mismatched cases are extremely rare and it is im-
possible to collect enough representative samples. Hence,
to overcome that obstacle, we propose four different ap-
proaches to generate synthetically mismatched pairs (see
Fig. 5).

1. Replace the corresponding RGB image by one of the
adjacent frames in the same video sequence to make
mis-synchronization effect.

2. Add an extra translation and rotation to the ex-
trinsic calibration to make mis-calibration effect,
like [21], [13].

3. Use a projected point cloud and another random but
not corresponding RGB image in training set to make
a mismatched pair.

4. Generate a random vector field map. Each vector
points to another position on the map. The feature map
is wrapped following this vector field, that means we
replace the point embedding on current position by the
embedding of other position on feature map in order to
make mismatched pixel pairs.

With the first three ways, we make negative pairs on ma-
nipulating on input data at instance level. In order to di-
versify further training examples, we build negative pairs at
pixel level with the last method.

The random generation is performed online so that no
duplicate negative pairs appear during training. This helps
to avoid overfitting. And the data collection and labeling
work is reduced by this self-supervised training procedure.

3.5. Training details

Our training of the proposed DNN is organized into 50
epochs with the Adam optimizer that adaptively estimates
the moments. We set the parameters of the optimizer to the
suggested default values. The learning rate is fixed at 10−3

initially. After 30 epochs, the learning rate is reduced to
10−4. The input image is resized to 621 × 188. Random
crop to 576× 176 and random flip are performed.

The batch size is set to 64. To balance the number of
positive and negative pairs, each batch consists of half pos-
itive and half negative pairs. Negative pairs are generated
randomly by one of the four ways mentioned before. The
extent is also uniformly random. The mis-synchronization
range is 2˜10 frames. The decalibration translation range
is 0˜0.5m and rotation range is 0˜5 degrees. The pixel dis-
placement range is 2˜20 pixels on feature map.

It is common that the training convergence of deep met-
ric learning can be easily compromised by the fact that the
vast majority of the training samples will produce gradients
with magnitudes that are zero. Hard example mining is a
common solution for this problem. In order to converge
to a better result, we perform a harder example generation
by reducing the upper limit of the negative example ranges
mentioned above after 30 epochs. Mismatched pairs formed
by a point cloud and another random image are not used any
more after 30 epochs, since they are relative easy examples.
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Figure 6. The evolution of point cloud-image distance for
different severities of rotation/translation decalibration, mis-
synchronisation and image blur. The severity levels 1˜5 corre-
spond to 1˜5 degrees rotation decalibration, 0.1˜0.5m translation
decalibration, displacement of (2,4,6,8,10) frames, and Gaussian
blur of kernel size (7, 9, 11, 13,15) and sigma (2, 2.5, 3, 3.5, 4).

4. Experiments
In this section, we provide systematic analysis of the

proposed approach with empirical experiments based on
open datasets and synthetically generated mis-alignment
between selected combination of sensor data. We conclude
with qualitative as well as quantitative results on LiDAR-
camera data combination specifically from the KITTI [8]
autonomous driving benchmark. We evaluate our proposed
matching method from two different aspects: sensor fault
detection and PCQA. The experimental details and obtained
results are presented in the following sections.

4.1. Dataset

We evaluate our approach on the KITTI dataset [8],
which contains both RGB images and Velodyne LIDAR
point cloud sequences. The calibration matrix are also pro-
vided. Since we need consecutive frames to generate mis-
synchronisation samples, the raw recordings of the KITTI
dataset are taken. We employ the 26/09 driving sequences,
since they consist of a high number of sequences with good
scene variation. We randomly choose 40 sequences for
training, 2 sequences for validation and 3 sequences for test.

4.2. Sensor fault detection

4.2.1 Qualitative point cloud-image distance analysis
under misalignment and noise

First we investigate the case with cross sensor fault. Differ-
ent levels of mis-synchronisation and mis-calibrations are
introduced to the whole test set. We then investigate the sin-
gle sensor fault, which is not seen in the training procedure.
For camera fault, we add to image different levels of Gaus-
sian blur and black regions which simulate lens occlusion.

(a)

(b)

Figure 7. Occlusion case examples. (a) The input image with syn-
thetic occlusion. (b) The corresponding feature distance map.

The corresponding mean and standard deviation of the point
cloud-image distance on the test set suffered from different
levels of cross sensor fault and camera fault are shown in
Fig 6. And an example of distance map with occulted image
is shown in Fig 7. To simulate LIDAR fault, we introduce
two types of point cloud noises. The first one is adding n%
noisy points to the point cloud. The position of the noisy
point follow the Gaussian distribution of the original point
cloud. The second one is perturbing n% points. The points
are randomly moved 0˜0.5m along a random direction (see
Fig 8). In the similar way, we calculate the mean and stan-
dard deviation of the point cloud-image distance on the test
set suffered from different levels of point cloud noise. The
noise level and the distance relations are shown in the Fig 9.
From all these curves, the proposed point cloud-image dis-
tance shows an obvious increase while adding either cross
or single sensor fault. For the occlusion case, we can find
a corresponding highlighted region on the distance map
which reveals a severe mismatch. Overall, we can conclude
the output distance of our CNN is an reasonable metric to
measure the matching levels.

4.2.2 Sensor fault detection evaluation

In the next, we evaluate quantitatively the fault detection
performance of our method. We form a fault detection
test set which includes half positive examples from the
raw Kitti test sequences and half negative examples from
the test sequences with fault injection of random type and
level. The fault types include mis-synchronization, mis-
calibration, image blur, point cloud noise and perturbation.

Since state-of-the-art methods only handle specific type
of fault. There is no approach close to our general fault de-
tection dealing with both unspecific single and cross sen-
sor fault. Therefore, we set up different variants of loss
and features of our method for comparison, which is shown
in Tab 1. We introduced the Area under precision-recall
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(a)

(b)

Figure 8. Point cloud noise examples. (a) Adding noisy points. (b)
Perturbing position of part of LIDAR points.

Methods P-R AuC
R18-C1 feat map + instance-level loss 87.1
R18-C3 feat map + masked pixel-wise loss 86.8
R18-C1 feat map + pixel-wise loss w/o mask 93.9
R18-C1 feat map + masked pixel-wise loss 98.1

Table 1. Sensor fault detection results with variants of feature map
and loss functions

Curve (AuC) for evaluation. Compared to using deeper
ResNet-18 feature layers (R18-C3), classic instance level
contrastive loss and the proposed loss function without the
mask, our proposed full method shows a superior perfor-
mance. This shows the pixel-wise loss and lower level fea-
tures are effective to extract spatial details for cross-modal
matching. And the sparsity mask is useful to filter valid
regions for matching. This proves the effectiveness of our
model architecture and demonstrates that our approach is
suitable for online sensor data monitoring task.

There are some points to notice. First, the single sensor
faults we add are all synthetic, but we can consider that they
have similar effects as real faults, since they can degrade the
detector’s performance. These faults can be detected with-
out being seen in the training set, we can say that there is
no over-fitting to a specific fault type and the model could
generalize well to other real sensor faults. Secondly, slight
misalignment or noise will probably not degrade signifi-
cantly the perception performance. The distance threshold
for monitoring alert should be defined in function of robust-
ness of the sensor fusion module by some offline validation
tests.

Figure 9. The evolution of point cloud-image distance over differ-
ent levels of point cloud noise.

4.3. Reduced-reference Point cloud Assessment

The introduced sensor fault detection is sensitive to both
single and cross data fault and to even unseen fault. But
the downside is that it’s difficult to localize the source of
fault. In fact, image data fault can be generally detected
by various IQA approaches and sensor data mis-alignment
can be revealed by online calibration approaches [12]. Af-
ter excluding these two cases, point could data fault analysis
lacks necessary means. Hence, another possible application
of the point cloud-image distance is the PCQA task. In this
section, we evaluate the proposed approach as PCQA met-
ric.

4.3.1 Full referenced point cloud distance

Since there is no NR-PCQA or RR-PCQA for point cloud
of outdoors street scene in the state-of-the-art. We refer to
the common used point cloud distance for comparison. The
Chamfer Distance [6] between two point clouds is defined
as the sum of squared distances of the nearest points be-
tween the two clouds.

The Earth Mover’s Distance (EMD) [6] is originally a
measure of dissimilarity between two multidimensional dis-
tributions. A bijection between two point clouds is solved
for each point. The distance is defined as the sum of squared
distances of the corresponding points.

4.3.2 Evaluation metrics

Following most IQA works, two evaluation criteria are
adopted in our paper: the Spearman’s Rank Order Corre-
lation Coefficient (SROCC) and the Linear Correlation Co-
efficient (LCC). SROCC is a measure of the monotonic re-
lationship between the ground-truth and model prediction.
LCC is a measure of the linear correlation between the
ground-truth and model prediction.
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4.3.3 Relation to Object detector performance drop

For IQA task, the assessment standard based on human sub-
jective perception. So the IQA datasets are normally anno-
tated by human. But it is difficult for human to perceive
point cloud quality. Unlike the color images whose viewer
is human, the end user of point cloud is perception algo-
rithms, for example, 3D object detection. So in this work,
we propose a new method to evaluate PCQA. We use the
performance drop of an object detector over test set as as-
sessment ground-truth. The larger performance drops, the
lower quality of point cloud.

We employ PointRCNN [24] as our reference object de-
tection method. PointRCNN is two-stage object detection
approach directly from raw point cloud: The first stage for
proposal generation and the second for proposal refinement.
We add different levels of noise to validation set and evalu-
ate the PointRCNN to get the performance drops. The ob-
tained noise level and detector performance drop relation
is shown in Fig 10. Note that here the training and vali-
dation data used for PointRCNN is KITTI object detection
benchmark, since there is no object detection ground-truth
for raw data sequences. It is of minor importance, since our
objective is to explore the noise level and performance drop
relationship.

4.3.4 Evaluation result

From the Fig 8 of the previous section, we got already the
relation between our distance metric and the noise levels.
Based on that, we build the relation between our distance
metric and the performance drop, shown in Fig 11. We can
see a qualitatively linear relation between these. Further-
more, we use SROCC and LCC to evaluate quantitatively
this correlation. We repeat the same experimental procedure
to the chamfer distance and EMD to make a comparison. To
save computation time, we use only 30% points of a point
cloud to calculate chamfer distance and EMD distance. The
results are shown in Tab 2. We can conclude that our point
cloud-image distance has a more considerable correlation
with the performance drop and faster execution than cham-
fer distance and EMD. This proves that our approach is a
fair RR-PCQA method for online monitoring.

5. Conclusion and future direction

In this paper, we present a novel approach for au-
tonomous driving sensor data monitoring. The novelty of
our approach is a cross-model matching CNN trained with
a masked pixel-wise contrastive loss. This loss function di-
rects the model to optimize according to both local features
and structures, it guides pixel embedding towards cross-
modal alignment-sensitive representation. To address the
scarcity of data containing faults, we also proposed viable

distance metric LCC SROCC GPU time
Chamfer distance [6] 0.536 0.620 16.0s
EMD [6] 0.528 0.429 21.3s
Our pc-image distance 0.843 0.920 3ms

Table 2. The point cloud data assessment results and execution
time for distance measure of one single example. Proposed
method compared to other point cloud distances.

Figure 10. The evolution of mAP score drop of point RCNN over
different levels of point cloud noise.

Figure 11. The point cloud-image distance and point RCNN mAP
drop relation curve.

methods to generate plausible faulty sensor data in order
to make the training procedure fully self-supervised. The
learned point cloud-image metric shows promising fault
detection results with cross-sensor fault and unseen single
sensor fault. Furthermore, we empirically show that our
model can work as a RR-PCQA for autonomous driving
scene point cloud. As one of the future directions, it is
interesting to explore and incorporate contrastive learning
methods such as the normalized temperature-scaled cross
entropy loss to this task.
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