
Visual Reasoning using Graph Convolutional Networks for
Predicting Pedestrian Crossing Intention

Tina Chen†, Renran Tian‡, and Zhengming Ding♯

†Department of Electrical & Computer Engineering, IUPUI, USA
‡Department of Computer Information Technology, IUPUI, USA

♯Department of Computer Science, Tulane University, USA
chen289@iupui.edu, rtian@iupui.edu, zding1@tulane.edu

Abstract

Autonomous vehicles being able to anticipate rather
than just react to pedestrian behavior is vital for the har-
monious existence of the two on the road. Previous meth-
ods for predicting pedestrian crossing intention from the
ego-view relied on bounding box location, and if any, lim-
ited visual features for their prediction. However, decisions
made on the road by drivers and pedestrians are heav-
ily dependent on context, which should be taken into ac-
count when trying to predict what pedestrians on the road
intend to do. In this paper, we propose using rich vi-
sual features in graph convolutional autoencoders to en-
code the relationship between the pedestrian and its sur-
rounding objects to reason their crossing intention. To fur-
ther improve prediction results, we also incorporate pedes-
trian bounding boxes and human pose estimation in the
prediction module. Our model differs in that we consider
the effects other road objects/agents have on the pedestrian
through visual reasoning of those objects/agents. We evalu-
ate our model’s performance using balanced accuracy and
F1-score to show that we are able to outperform the state-
of-the-art. Our model is able to predict crossing inten-
tion with 0.79 balanced accuracy, and is able to predict
particularly better for cases where the pedestrian has no
crossing intention. The code for our model is released at
https://github.com/chen289/Visual-GCN .

1. Introduction

Human drivers are able to navigate complicated driving
scenarios in urban environments where there are constant
streams of vehicles, pedestrians, and other road users. For
vehicles and pedestrians to harmoniously co-exist on the
road, and share the road efficiently, there are sets of rules
that both follow. However, this is not a perfect world, and
sometimes the rules are not sufficient or are disregarded.

Figure 1. A block diagram of the multiple steps in our pedestrian
crossing intention model, which reasons rich visual features from
the ego-view to reason the pedestrian’s crossing intention. Vi-
sual features of relevant traffic objects/agents are embedded us-
ing a graph autoencoder to model the relationship the pedestrian
has with their surroundings. Human pose estimation of the pedes-
trian along with the graph autoencoder embedding are fed into an
LSTM encoder-decoder to predict the pedestrian’s crossing inten-
tion.

When this happens and ambiguous situations arise, drivers
make decisions based on their intuition to avoid dangerous
scenarios.

For autonomous vehicles (AVs) to successfully navigate
on the road, they must be able to make critical decisions
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based on the continuously changing driving environment.
Pedestrians are one of the most vulnerable road users so
how AVs interact with pedestrians is important. Most cur-
rent methods approach this with pedestrian trajectory pre-
diction to determine whether the pedestrian will cross in
front of the ego-vehicle. They do so by observing previ-
ous trajectory or behavior and predict future trajectory us-
ing recurrent neural networks (RNNs). Predicting pedes-
trian trajectory is not a naturalistic way for AVs to interact
with pedestrians. Pedestrians do not operate with specific
steps in mind, and human drivers don’t interpret pedestrian
behavior down to precise movements. Rather, pedestrians
have end goals, and perform activities to reach those end
goals, such as crossing the street.

When there is potential for the ego-vehicle and pedes-
trian’s path to intersect, instead of predicting trajectory, we
can predict on the pedestrian’s intention to cross. This is
more similar to how human drivers navigate around pedes-
trian activity. Drivers first determine whether the pedestrian
wants to cross the street based on the pedestrian’s behavior,
and if the answer is yes, then the driver uses a combination
of the surrounding environment and the pedestrian’s behav-
ior to determine whether the pedestrian will cross the street
in front of the ego-vehicle.

To create a system more closely resembling how human
drivers interact with pedestrians, we propose an intention
prediction model that takes into consideration not only the
pedestrian’s behavior, but also elements of the ego-scene.
Unlike existing works that only rely on bounding boxes or
pose estimation, which doesn’t take into consideration the
reason for the movements, we utilize pedestrian bounding
box and pose estimation in conjunction with the pedestrian
and the surrounding objects’ visual appearance to provide
further context for motivation. Furthermore, we model the
pedestrian’s and surrounding objects’ visual appearance us-
ing graph convolution to model the pedestrian’s relationship
with their surroundings. To reduce computation cost and
time, we train a graph autoencoder to encode the relation-
ships into a lower dimension. Fig. 1 shows the multiple
steps and modules in our proposed prediction model.

We test our model on the Pedestrian Intention Estima-
tion (PIE) [17] dataset, and show that our model outper-
forms the state-of-the-art in pedestrian crossing intention
prediction. In particular, our use of visual reasoning from
the pedestrians and objects from the whole ego-view greatly
improves prediction on no crossing intention cases. In sum-
mary, the contributions in our paper is twofold: 1) We pro-
pose a neural network that predicts pedestrian crossing in-
tention through visual reasoning of the ego-scene. 2) We
improve upon the state-of-the-art pedestrian crossing inten-
tion prediction methods.

2. Related Work

2.1. Pedestrian Trajectory Prediction

Many works have been proposed to predict pedestrian
trajectory in dense areas using human-human interaction
models. Social-LSTM [1] uses a “Social” pooling layer
to share hidden states between nearby pedestrians to learn
their interaction behaviors. Social-GAN [5] improves per-
formance through adversarial training against a recurrent
discriminator to predict multiple trajectories, and uses a
“global” pooling layer to model social interactions for all
pedestrians in the scene. These methods are better suited
for static, bird’s-eye view cameras where the focal point of
the camera does not change.

For on-board cameras, not only is the scene constantly
changing, but also the relative size and distance of objects
to the ego-vehicle as the ego-vehicle is also moving. Bhat-
tacharyya et al. [3] uses a two-stream Bayesian RNN to
jointly predict the ego-vehicle’s future movement and speed
with the pedestrian’s future trajectory. Rasouli et al. [17]
builds upon Bhattacharyya et al. by using LSTMs, and
adding a pedestrian intention prediction branch to improve
trajectory prediction. Trajectory prediction can be used to
infer intention prediction, but only up to a certain point into
the future. Since trajectory prediction is such a precise pre-
diction of the pedestrian’s future movements, it is suscepti-
ble to change with the passing of every time step. This is not
how human driver’s interpret other road users’ actions. Hu-
man drivers do not plan out the potential trajectory pedes-
trians may take, but rather interpret pedestrian end goals,
and the types of actions the pedestrian will take to reach
that end goal. For long-term prediction, and mutual under-
standing between road users, intent should be the preferable
prediction.

2.2. Pedestrian Intention Prediction

Pedestrian intention prediction research has gained more
attention in recent years with the release of the Joint Atten-
tion in Autonomous Driving (JAAD) [18] and Pedestrian
Intention Estimation (PIE) [17] datasets. Rasouli et al. pro-
posed JAAD to study pedestrian crossing behavior in traf-
fic scenes. To this end, JAAD is annotated with pedestrian
behavior (e.g., crossing/not crossing, walking, standing),
pedestrian bounding boxes, pedestrian attributes, pedes-
trian appearance, environment tags, and ego-vehicle action.
Later, Rasouli et al. proposed PIE which not only contains
the same types of annotations as JAAD, but additionally an-
notated with more traffic-related bounding boxes, and con-
ducted a subject research survey to quantitatively measure
pedestrian crossing intention. PIE is the first dataset of its
kind to define intention as something other than action la-
bels.

When JAAD was the only dataset with naturalistic driv-
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ing and pedestrian action behaviors annotated, the intention
prediction methods were predicting future action. Gujjar
and Vaughan [4] use a three-dimensional convolutional en-
coder with a convolutional LSTM (convLSTM) decoder to
generate future images based on observed images to classify
future crossing action. Varytimidis et al. in [22] uses con-
volutional neural networks to extract features of the pedes-
trian’s head for head orientation estimation, and features of
the legs for motion estimation to classify crossing behav-
ior. Fussi-Net [16] uses early, late, and combined fusion of
bounding boxes and pose estimation to reduce false posi-
tives and predict crossing intention.

2.3. Visual Features for Behavior Reasoning

At the start of using RNNs for pedestrian trajectory or
intention prediction, the pedestrian’s location via a single
point representation or bounding box coordinates were the
only inputs into the neural networks. By excluding the con-
text of the rest of the image, a lot of information regarding
the motivation behind the pedestrian’s behavior is lost, this
is especially true for traffic scenes where the environment is
constantly changing. Liang et al. [10] improved prediction
results on ETH & UCY [15, 9] and ActEV/VIRAT [14, 2]
by considering visual features of both the pedestrian and the
pedestrian’s surrounding to encode both person-scene and
person-object relationships. Rasouli et al. in [17] expands
the size of the pedestrian bounding box to capture the space
around the pedestrian, and uses convLSTMs to extract fea-
tures from the expanded bounding box to provide context
for intention prediction. SF-GRU [19] uses pedestrian vi-
sual features and context around the pedestrian to predict
crossing action using stacked GRUs.

2.4. Neural Networks on Graphs and Scene Model-
ing

Graph neural networks are a useful method for modeling
irregular data in the non-Euclidean domain. In more recent
works, graph convolutional networks (GCNs) have general-
ized the convolutional operation on unstructured graph data
[8]. Rather than shifting a filter across an image, graph
convolution aggregates neighboring node information using
the adjacency matrix. GCNs have already been applied to
many other domains. Joshi et al. in [6] use GCNs to opti-
mize the Travelling Salesman Problem. Works [7, 23] apply
GCNs to molecular structures to better understand them and
generate novel structures for drug design. In our domain,
Social-STGCNN [13] uses GCNs to model the social inter-
actions between pedestrians, and the temporal connections
in a spatio-temporal graph to predict future trajectories. In
[12], Liu et al. uses segmentation and graph convolution to
create scene graphs across frames to model the spatiotem-
poral relationship the pedestrian has with other object in-
stances to predict crossing intention. Different from these

works, we use extracted visual features as features of the
graph node, whereas [13, 12] do not consider the visual fea-
tures of the pedestrian or scene objects. Furthermore, we
use a graph autoencoder to learn the graph representation in
a lower dimension, which allows us to cut down on compu-
tation time and cost.

3. The Proposed Method
The imagery and perspective from the ego-view is con-

stantly changing. Human drivers continuously process
these changes, and make decisions based on what they see.
Other road users (e.g., pedestrians, cyclists) and objects
(e.g., cars, traffic signs) all affect how the ego-vehicle and
other road users behave. This motivates us to use relevant
visual information from the entire scene to predict pedes-
trian intention.
Problem Formulation. We define intention and the task
at hand similarly to PIE [17]. Intention, I ∈ {0, 1}, is
measured through aggregated subject responses that are re-
scaled to be in the range of [0, 1]. Thus, we train intention
prediction as a binary classification task. For each pedes-
trian, p, our system observes bounding boxes, Bp, human
pose estimation, Ep, and visual features of other objects,
F , from time 1 to Tobs to predict the pedestrian’s crossing
intention.

3.1. Overall Network Architecture

Fig. 2 shows the overall network architecture of our
proposed model. Rather than relying only on previous tra-
jectory information to predict future intention, we extract
pedestrian and object visual features, and model their rela-
tionships through graph convolutional networks. In sum-
mary, our model has the following key components:

• Pedestrian pose module extracts human pose estima-
tion using the bounding box sequence.

• Graph autoencoder module uses convolutional graph
autoencoder network and visual feature representa-
tions of pedestrians and objects to model the relation-
ships between them.

• Intention prediction module leverages the visual in-
formation and embeddings from the two previous
modules to predict pedestrian crossing intention with
an LSTM encoder-decoder.

3.2. Pedestrian Pose Module

In this module, we use an off-the-shelf human pose esti-
mation framework [21] trained on the MS COCO [11] key-
point detection dataset to extract 17 human keypoints of
every pedestrian in the PIE dataset. In contrast to other
methods that only use the bounding box coordinates, by
also using pose, we gain information on the pedestrian’s

3105



Figure 2. Overall network architecture for our proposed pedestrian crossing intention prediction model. This architecture combines HRNet
for human pose estimation, VGG16 for visual appearance feature extraction, graph convolutional autoencoder for encoding graphs, and an
LSTM encoder-decoder for predicting intention. This model observes 15 frames to predict the crossing intention for the future 45 frames.
⊕ denotes concatenation of features, ct is the LSTM cell state, and ht is the LSTM hidden states.

posture and gaze. Pose can tell us the pedestrian’s move-
ment status (e.g., walking, standing, crouching), and gaze
the pedestrian’s focal point. Both of which are indicators of
the pedestrian’s intent.

For 1,800 pedestrians in PIE, we extracted 740,901
unique poses for the dataset. For the pedestrian our model
is predicting intention on, we have the human keypoint rep-
resentation of shape Tobs × 32. There are 17 keypoints
in the MS COCO format, and each point has an x and
y coordinate, so a complete pose estimation will have 32
values. Pose and bounding box coordinates are concate-
nated together to form a person pose embedding of shape
Tobs × 36. Each bounding box coordinate is in the format
(xtl, ytl, xbr, ybr). As shown in Fig. 2, the person pose em-
beddings are the input features for the decoder LSTMs in
the intention prediction module.

3.3. Graph Autoencoder Module

In this module, we extract visual features from all objects
and pedestrians in an image, and model their relationship to
the main pedestrian through graph convolutional networks.
We further reduce the dimensions of the graph by training a
graph autoencoder to decrease feature size and computation
costs.

Object Features. To be able to understand the scene and
the pedestrian’s reasoning, we use a pre-trained classifica-
tion algorithm [20] for visual feature extraction. Using the
bounding box annotations in PIE, we extract visual features
for every object and pedestrian according to the bounding
box coordinates. We use the results from the first fully con-
nected layer of the classification algorithm instead of the
last layer to get a feature vector of size (1× 4096) for each
pedestrian and object in the frame. We will use these feature
vectors to represent each object in a graph representation of
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Figure 3. Configuration of the graph autoencoder with convolu-
tional layers. The encoder embeds the input, X , into a lower di-
mension. The decoder attempts to reconstruct the embedding back
into the original input. For our intention prediction module, we use
the embedded data as input.

the scene.

Graph convolution. Using the same graph shape as [12],
we represent pedestrians and objects in a frame as nodes in
the graph. The center node is the pedestrian we are predict-
ing intention on, with edges connecting to all other objects
and pedestrians in the scene. The node features are the ex-
tracted visual features of the object the node is representing.
Following [8], we define layer propagation as:

f(X(l), A) = σ(AX(l)W (l)), (1)

where the rows of X are the feature vectors of the nodes, A
is the adjacency matrix, W is the learnt weight matrix, l is
the layer, and σ is the activation function.

Graph Autoencoder. For each frame, the feature vector
for each node in the graph is shape (1 × 4096), and the
maximum number of nodes, N , that can be in the graph
is 32. To lower computational cost and time, we use the
graph convolution layers in an autoencoder configuration.
The proposed autoencoder is trained to learn to reconstruct
the scene graphs so that we can reduce the size of the scene
graphs from (N × 4096) to (N × 256). The autoencoder
configuration is shown in Fig. 3.

3.4. Intention Prediction Module

As previously discussed, there are two types of inputs
for our intention prediction module. The input for the
LSTM encoder is the embedding from the graph autoen-
coder. Each sequence is represented by an embedding of
shape (Tobs × 32 × 256) that is flattened before being fed
into the LSTM encoder. The input for the LSTM decoder

is the concatenation of the pedestrian bounding box, pose
estimation, which has a shape of (Tobs × 36), and the rep-
resentations from the LSTM encoder.

The LSTM decoder is initialized with the last hidden
state of the LSTM encoder. The encoder representations
are calculated from the encoder state and a fully connected
layer. Pedestrian intention is calculated from the decoder
state and a fully connected layer. The predicted intention is
a probability of crossing that is rounded to 0 for no crossing
intention, and 1 for having crossing intention.

4. Evaluation
4.1. Implementation

Graph Autoencoder. For the feature vectors, x, we
use VGG16 to extract visual features from the pedestri-
ans and objects. We use a two-layer GCN that performs
two propagations in the forward pass to embed our X from
(N × 4096) → (N × 512) → (N × 256). We use
ReLu activations for each convolutional layer, learning rate
of 0.001, and train for 50 epochs. To train our graph au-
toencoder, we use the same training set as designated by
PIE’s split. We implement our graph convolutional au-
toencoder using deep learning library PyTorch Geometric
(PyG) whose source code is at https://github.com/
rusty1s/pytorch_geometric.

Intention Prediction. Both the encoder and decoder of
our intention prediction module uses LSTMs with 128 hid-
den units, softsign activation, 0.4 dropout, and 0.2 recurrent
dropout. HRNet is used to extract the human pose estima-
tion used for the decoder input.

4.2. Datasets

PIE. Our model is trained and tested on the Pedestrian
Intention Estimation (PIE) dataset. It is a public dataset col-
lected by researchers at York University [17] with 6 hours
of naturalistic driving data on urban streets recorded at 30
fps. PIE is the first of its kind to measure pedestrian inten-
tion quantitatively through aggregating subject responses in
their research study. Subjects were asked to watch a pedes-
trian in a video clip collected from the ego-vehicle, and an-
swer on a five-point scale whether the pedestrian wants to
cross the street. 15 subjects viewed the 1,842 video clips,
and their answers were aggregated and re-scaled to [0,1] to
use as the probability of crossing. Additional annotations in
PIE include pedestrian and object bounding boxes, pedes-
trian behavior, pedestrian demographics, object attributes,
and ego-vehicle sensor data.

Following [17], our model observes 15 frames (0.5 sec-
onds), and predicts the pedestrian’s crossing intention for
the future 45 frames (1.5 seconds), meaning each sample is
60 frames (2 seconds). We also follow the same train, vali-
dation, and test set splits as [17] to ensure fair comparison of
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Method BA F1 (Y = 1) F1 (Y = 0)

PIE 0.61 0.87 0.36
Ours 0.79 0.83 0.55

Table 1. Comparison between PIE and our proposed model using
balanced accuracy, and F1-score for each class as evaluation met-
rics.

Method Avg. Accuracy Avg. F1
PIE 0.62 0.70
Ours 0.79 0.78

Table 2. Results from randomly sampling testing set to create a
balanced dataset. Comparing the average accuracy and F1-score
from randomly sampling 10 times.

our results. PIE has 432 video clips with pedestrians with no
crossing intention, and 1,410 video clips with pedestrians
with crossing intention. This is converted to 12,274 samples
with no crossing intention, and 49,341 samples with cross-
ing intention. Due to the dataset being imbalanced (0 ≪ 1),
we use evaluation metrics and sampling methods that will
correct for the imbalance.

Evaluation Metrics. As previously mentioned, PIE is
heavily imbalanced with 4 times more crossing than not
crossing samples. To correct the imbalance, we use three
error metrics for pedestrian crossing intention prediction:

1. Balanced Accuracy (BA): Accuracy is used to measure
binary classifiers, and balanced accuracy is used when
the dataset is imbalanced as it accounts for both pos-
itive and negative classes. Balanced accuracy is the
average of sensitivity and specificity.

BA =
sensitivity + specificity

2
(2)

2. F1-Score: Measures the balance between precision
and recall. We will report the F1 score for each class
to evaluate the performance for both crossing and not
crossing cases.

F1 = 2× precision× recall

precision + recall
(3)

3. Accuracy with Random Sampling: To create a bal-
anced dataset, we randomly sample the test set to
achieve an even split between the two classes. This
equates to 8,904 samples for each class to create a bal-
anced 17,808 sample test set. We evaluate the balanced
test set with accuracy. We randomly sample 10 times
and take the average accuracy.

4.3. Results and Analysis

Baseline Model. We compare our model with the
most recent method proposed in PIE. We train PIE’s inten-
tion prediction module, which uses context visual features
around the pedestrian and the pedestrian bounding boxes in
a convLSTM encoder-LSTM decoder model.

Main Results. Table 1 compares the crossing inten-
tion prediction results between PIE and our model. The
“BA” column computes the balanced accuracy of the pre-
dictions, indicating how well each model performed. The
“F1” columns calculate the balance between recall and pre-
cision for each class.

Comparing BA, our model outperforms PIE by 18
points. The F1-scores give insight into how our model out-
performs PIE by such a large margin. PIE is able to predict
slightly better on crossing cases, but our model performs far
better on not crossing cases compared to PIE. However, for
both models, it is still more difficult to predict not crossing
cases correctly. This is most likely due to there not being
enough no crossing cases in the training set.

Additionally, our random sampling results in Table 2
show our model consistently outperforms PIE when we
have a balanced dataset. Our model is able to predict cross-
ing intention with 17 more points in accuracy, and also have
an 8 point higher F1-score. Our model is able to use contex-
tual visual features to better predict when pedestrians have
no intention to cross the street.

5. Conclusion

In this paper we present a pedestrian crossing intention
prediction model that utilizes pedestrian and object visual
appearances to reason the pedestrian’s motivation. We first
preprocess the data from PIE to extract human pose esti-
mation and visual feature representations. Then we encode
the pedestrian’s relationship with their surrounding pedes-
trians and objects using a graph convolutional autoencoder
network. To predict crossing intention, we utilize an LSTM
encoder-decoder on the pedestrian bounding boxes, human
pose estimation, and visual features graph embedding. We
demonstrate that our model is able to outperform the state-
of-the-art through visual reasoning of the surrounding envi-
ronment.

In future work, datasets can benefit from collecting more
no crossing intention cases. Both crossing and no crossing
intention cases are critical for pedestrian safety, but it is far
harder to predict no crossing intention cases, and that may
be due to a shortage in samples. To further expand visual
feature extraction of the scene, we can utilize scene segmen-
tation to gather a holistic view from the ego-vehicle.
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