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Abstract

Accurate motion state estimation of Vulnerable Road
Users (VRUs), is a critical requirement for autonomous
vehicles that navigate in urban environments. Due to
their computational efficiency, many traditional autonomy
systems perform multi-object tracking using Kalman Fil-
ters which frequently rely on hand-engineered association.
However, such methods fail to generalize to crowded scenes
and multi-sensor modalities, often resulting in poor state
estimates which cascade to inaccurate predictions. We
present a practical and lightweight tracking system, SDV-
Tracker, that uses a deep learned model for association and
state estimation in conjunction with an Interacting Multi-
ple Model (IMM) filter. The proposed tracking method is
fast, robust and generalizes across multiple sensor modal-
ities and different VRU classes. In this paper, we detail
a model that jointly optimizes both association and state
estimation with a novel loss, an algorithm for determin-
ing ground-truth supervision, and a training procedure. We
show this system significantly outperforms hand-engineered
methods on a real-world urban driving dataset while run-
ning in less than 2.5 ms on CPU for a scene with 100 ac-
tors, making it suitable for self-driving applications where
low latency and high accuracy is critical.

1. Introduction
Self-Driving Vehicles (SDVs) depend on a robust auton-

omy system to perceive actors and anticipate future actions
in order to accurately navigate the world. Interacting well
with Vulnerable Road Users (VRUs) [27] such as pedestri-
ans and bicyclists requires good motion estimates. A clas-
sical autonomy system that uses structured prediction for
actor trajectory prediction [6, 11, 5] needs not only high de-

Figure 1. Association and tracking of pedestrians is challenging in
dense, urban environments. We propose a real-time learned asso-
ciation and tracking system with IMM filtering that incorporates
LiDAR + camera modalities and show improvements on the task
of both association and state estimation.

tection rates to identify objects in the scene, but also robust
tracking performance to estimate the motion state. Prob-
abilistic tracking using filters can be a reliable method to
estimate the motion state [34]. These methods attempt to
refine the motion estimates of previously tracked objects by
associating them with a given set of detections in the scene
at the current timestamp.

Failures in association cause inaccurate state estimates,
often leading to cascading errors in future associations, state
estimations, and trajectory predictions resulting in improper
autonomy behavior [30]. In simple scenes, engineered so-
lutions do well. However, associating VRUs in crowded,
urban environments is challenging due to occlusions, crowd
density, varying motions and intermittent detector false pos-
itives or false negatives. Any errors in association break the
strict assumption for probabilistic filtering regarding obser-
vations belonging to the same actor, leading to egregious
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errors. Incorporating detectors for additional sensor modal-
ities, such as LiDAR and camera detectors, improves over-
all recall, but increases the likelihood of mis-association,
especially as each sensor has different failure modes and
noise characteristics. Learned approaches offer improved
performance, but are often restricted to the 2D image plane
[31], require a fixed number of objects [8], need expensive
feature extraction on specialized GPU hardware [38], or can
run only offline [37], making them unsuitable to self-driving
applications.

To address these limitations, we propose SDVTracker,
a learned association and tracking system for improving
motion estimation of VRUs in challenging, self-driving do-
mains. Fig. 1 demonstrates our approach performing well
in dense crowds across many classes of VRUs including
pedestrians, bicyclists, and skateboarders. As the number
of VRUs in the scene increases, we show that this method
scales better than classical approaches. Our approach gener-
alizes to multi-sensor tracking, improving recall and track-
ing when both LiDAR and camera detections are used as
asynchronous input. In addition to learning association,
we propose a novel method to jointly estimate association
and state, which leads to improved performance. Further,
we show a method of incorporating our learned associa-
tion and state within a tracking system that uses an Inter-
acting Multiple Model (IMM) filter. Finally, SDVTracker
offers real-time performance on commodity CPUs, making
it well-suited for compute-limited platforms.

2. Related Work
As more autonomous capabilities are added to vehicles,

it is critical for these intelligent vehicles to understand and
predict the behavior of humans that they interact with to op-
erate safely. Ohn-Bar and Trivedi [28] provide a thorough
survey into three areas of active research where humans and
automated vehicles interact, including humans inside the in-
telligent vehicle, humans around the vehicle, and humans
operating surrounding vehicles. In this work, we focus on
understanding the motion of humans around the SDV.

2.1. Filter-based Tracking

A conventional algorithm to perform the motion state es-
timation from observations is the Kalman Filter (KF) [21].
This algorithm works in two steps that get applied recur-
sively: prediction and update. In the prediction step, the
filter produces estimates of the state variables and their un-
certainties. The update step is performed when the new
measurement arrives, in which the filter corrects the state
by combining the new measurement and the filter prediction
weighted by their certainties. This filter, and its variants, are
a common class of filter-based methods [1], and are widely
used due to their ability to produce better state estimates
than those based on a single measurement. However, the KF

is limited to linear functions for the state transition as well
as the observation model. In our case, this reduces our abil-
ity to correctly track objects that can have non-linear mo-
tions, such as accelerations. The Extended Kalman Filter
(EKF) overcomes this constraint by linearizing these func-
tions, but it is often difficult to tune a single filter for all the
motion modalities we encounter for each object. In this pa-
per, we use the Interacting Multiple Model (IMM) [10] al-
gorithm because it overcomes these limitations by tracking
with multiple models concurrently and fusing their predic-
tions weighted by their confidences. Furthermore, the IMM
has been shown to offer performance similar to the best mo-
tion model.

2.2. Tracking-by-Detection

Most recent work on Multi-Object Tracking (MOT) uti-
lize the tracking-by-detection paradigm [37, 18, 14, 13, 36,
17, 25, 31, 32, 8, 29] where detections are provided each
time-step by a detector, and tracking is performed by link-
ing detections across time. As a result, the task of ob-
ject tracking becomes a data association problem. Most
tracking-by-detection methods solve the association prob-
lem in one of two ways, either in an online (step-wise) fash-
ion [18, 14, 13, 36, 25, 31, 8, 29] or in an offline (batch-
wise) manner [37, 17, 32]. Online methods associate new
detections at each time-step to the existing tracks, and the
association is posed as a bipartite graph matching prob-
lem. On the other hand, offline methods often consider the
entire sequence, and data association is cast as a network
flow problem. Online methods are appropriate for real-
time applications like autonomous driving where offline ap-
proaches are well-suited for offline tasks like video surveil-
lance. In this work, we leverage a step-wise approach as
we are interested in real-time autonomous navigation where
computation efficiency is as important as accuracy.

2.3. Classical Association Techniques

To solve the data association problem, incoming detec-
tions at the current timestamp need to be paired to existing
objects from the last timestamp. To avoid matching in the
entire measurement space, every detection that lies within a
certain region, or gating region, of an object is considered a
candidate. A problem arises when multiple candidates fall
within this region. A common way to solve this involves
ranking each object-detection pair and then performing a
bijective mapping. The bijective mapping forces each ob-
ject to associate with only one detection. This mapping can
be performed using common matching algorithms such as
greedy best-first matching or the Munkre’s algorithm [26].

A common method for ranking each object-detection is
to score each detection based on the proximity to the pre-
dicted object [2]. Based on this, we consider three func-
tions:
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Figure 2. Overview of the association and tracking system. SDVTracker scores the candidate pairs with a learned model to estimate the
association probability. After enforcing 1-to-1 correspondence through greedy assignment, we use the learned associations and motion
estimates as observations within an IMM update.

1. Intersection-over-Union (IoU) score: Many trackers
use ranking functions based a measurement of over-
lap between predictions and detections [4]. This score
is defined as the ratio between the area of intersection
and the area of union of the detection and predicted
polygons.

2. L2 Distance: As part of the update step, the IMM
needs to compute the residual or innovation, which is
the difference between the predicted detection and the
new detection. The L2 norm of the residual can be
used as a matching score.

3. Mahalanobis Distance: The IMM computes the gain
or blending factor that determines the relative weight
of the new detection in the update step. This gain is
used to scale the residual vector, and the L2 norm of
the resulting vector can be used as a matching score.
This association metric has been previously explored
in [35], where it is used to filter infeasible associations.

2.4. Learned Association Techniques

More recently Recurrent Neural Networks (RNNs) have
been used for association [8, 25, 31], which motivates our
use of a RNN for association in this work. However, our
proposed method and the previous work utilize RNNs in
different ways. [8] uses a single Long-Short Term Mem-
ory (LSTM) to associate all detections to all tracks. How-
ever, it requires the number of objects to be fixed and known
beforehand, which is not feasible for autonomous driving
in urban environments. [25] uses an LSTM to estimate
the affinity matrix between all detections and tracks one
row at a time. Most similar to our approach is the work
of Sadeghian et al. [31], who use three separate LSTMs
to model the appearance, motion, and interaction of the
tracked objects over time. Each track has its own mem-
ory for each of the LSTMs, and appearance, motion, and
interaction features are extracted for each detection using

a set of Convolution Neural Networks (CNNs). The out-
put of the LSTMs and the CNNs are fed into a multi-layer
neural network to estimate the likelihood that the detection
should be associated to the track. Unlike [31], our proposed
method uses a single LSTM to model multimodal features
of an object over time. Furthermore, in addition to an as-
sociation probability, our approach predicts a score for each
possible match in order to improve association in heavily
crowded scenes, and we estimate the state of the object to
improve tracking. Finally, our method tracks objects in 3D
where [31] tracks objects in the 2D image plane. Further-
more, there have been recent developments in the field of
learned end-to-end joint detection and motion forecasting
[20, 22, 15, 16, 7] that improve on the state-of-the-art. How-
ever these approaches are often compute intensive, take sig-
nificantly more time to run (around 50ms-100ms) and are
often harder to debug due to reduced visibility into the his-
tory of the state estimated at the object level.

2.5. 3D Object Tracking

The vast majority of the previous work performs object
tracking in the image plane [37, 18, 14, 13, 36, 17, 25, 31,
32]. However, to autonomously navigate a vehicle through
the world, we need to reason about the environment in 3D
or from a bird’s eye view. Furthermore, the bird’s eye view
is a natural representation for fusing multiple sensor modal-
ities like LiDAR, camera and RADAR. Rangesh et al. [29]
extends [36] to the bird’s eye view to track vehicles. In [29],
vehicles are detected with an image-based detector and lo-
calized in the bird’s eye view using a flat ground assumption
or with 3D measurements from LiDAR when available. The
life-cycle of tracks is handled through a Markov Decision
Process (MDP) where the policy is learned, and tracks are
associated with detections using a Support Vector Machine
(SVM). In this work, our proposed method is capable of
fusing detections from various sensing modalities including
LiDAR and image-based detectors. Furthermore, we asso-
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ciate objects across sensors and time using a RNN.

3. Proposed Method
The overall architecture of the system is depicted in Fig.

2. We use detections generated at each time step indepen-
dently from LiDAR and camera sensors. To generate de-
tections from LiDAR, we use LaserNet [23], and the de-
tections from the camera sensors are generated using Reti-
naNet [19]. Similar to [29] and [33], the image-based de-
tections are then augmented with a range estimate by pro-
jecting the LiDAR points in the image plane and using the
median range value of the points associated to create 3D
bounding boxes.

The proposed method is depicted in Fig. 3. During in-
ference, the model takes an object-detection pair as input,
and produces its association and state (At t = 0, we initial-
ize all detections as objects and skip association and state
estimation). For each object, we generate a set of potential
association candidates with a corresponding score. The set
of potential association candidates is created by predicting
an association/mis-association probability for every pair. If
the probability of association is higher than mis-association,
then we add the pair to our set of potential association can-
didates. Afterwards, we perform greedy assignment based
on the predicted score to create unique object-detection as-
sociations. We refine the detections with our predicted state
estimate before using them as observations in the IMM.

After updating the state for objects, we need to prune our
existing hypothesis set of objects that are currently alive in
the scene. Objects that have not been observed for more
than τ time-steps are removed from the scene. For objects
that have not been observed for≤ τ time-steps, we extrapo-
late their position to the next timestamp based on their past
velocity.

In the following sections, we describe in detail feature
extraction from detection-object pairs, the network archi-
tecture, the multi-task loss function and the ground-truth
association used during training.

3.1. Feature Extraction

We extract three different types of features: shape, mo-
tion and difference features. The shape features include
polygon length, width, height and center coordinates. The
motion features include the object’s previous and predicted
state. The difference features, as the name suggests, are
obtained by subtracting two attributes ( difference in pre-
dicted object position and the detection position, difference
between the object box dimensions and the detection box
dimensions). We also use the timestamp and detector confi-
dence as input to the model. While we could use a separate
network for feature extraction or use the features from the
internal activation layers of the detectors, we decided to uti-
lize these lightweight features in order to keep our method

real-time and sensor-agnostic.

3.2. Learning Joint Association and Tracking

The learned model produces association probabilities,
scores and state estimates. For this work, we implement
a single-cell LSTM as well as a Multi-Layer Perceptron
(MLP). Both network architectures can be seen in Fig. 4
and we compare the performance of each in Section 4.4.

To learn association and tracking jointly, we utilize a
multi-task loss. For the task of association, we propose
learning a unique training target comprised of an associa-
tion probability and score. The association probability is
framed as a binary classification problem in which we try
to categorize candidates as associations or mis-association.
The association probability is used to identify a list of po-
tential candidates that could potentially be associated. Fur-
thermore, the score is used to rank associations, when there
are more than one potential candidates for association. The
loss function for the association task is defined as,

`assoc = `prob + wscore · `score, (1)

where `prob is the binary cross entropy used to learn the
association probability, `score an L2 loss on the regressed
score, and wscore is used to weight the two losses.

In addition to learning association, we learn a posterior
state update for the object. The state of the object at time t
is defined as follows:

st = [xt, yt, v
x
t , v

y
t ] (2)

σt = [σxt , σyt , σvx
t
, σvy

t
] (3)

where (xt, yt) is the position of the object, (vxt , v
y
t ) is the

velocity of the object, and (σxt
, σyt

, σvx
t
, σvy

t
) are the cor-

responding standard deviations. We learn the state using the
following loss [12]:

`state =
∑
i

((
st,i − s∗t,i

)2
2σ2

t,i

+ log σt,i

)
(4)

where st,i is the i-th element of the state vector at time t,
σt,i is the corresponding standard deviation, and s∗t,i is the
ground-truth state. The total multi-task loss is

`total = `assoc + wstate · `state, (5)

where wstate is used to weight the relative importance of
the two tasks.

3.3. Training Procedure

For training the network for association and tracking, we
use a dataset with time-consistent IDs for labels. To pro-
vide direct supervision for the association task, we require a
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Figure 3. Proposed architecture of the learned association and state estimation model. We perform feature extraction for each candidate
pair and learn whether the pair is a true association and the posterior state estimate of the object with uncertainties. We learn a probability
of association and an association score to break ties between multiple competing candidates. We show that learning both a probability and
a score are beneficial to the task of association, as well as the learned posterior state estimate improves overall tracking performance.

Figure 4. Network architecture used for LSTM and MLP net-
works. (a) For the LSTM, we use a single LSTM cell with 64
hidden units and a single layer fully-connected encoder-decoder.
The network takes the feature descriptor, the cell state (Ct−1) and
the hidden state (Ht−1) for the object as input to produce associa-
tion outputs and new cell (Ct) and hidden states (Ht). (b) For the
MLP, we use six fully connected layers with 64 units each.

function that maps a candidate object-detection pair to a bi-
nary value indicating a true or false association, along with
a score.

Given a set of detections Dt = {D1
t , D

2
t , . . . , D

N
t } at

time t and a set of objects Ot−1 = {O1
t−1, O

2
t−1, . . . , O

M
t−1}

from time t − 1, the goal of ground-truth association is to
define a mapping f : Ot−1 7→ Dt using the labeled data
Lt−1 and Lt at time t − 1 and t. To handle the case where
the object does not match to any detection, a null detection
is added to Dt. For each objectOi

t−1 ∈ Ot−1, we first iden-
tify the label Lj

t−1 ∈ Lt−1 with the maximum IoU overlap
with the object. Afterwards, we find all detections in Dt

with an IoU≥ 0.1 with the label Lj
t at time t. All candidate

detections are added to the training set as a true association,

and their score is defined as

yscore = ‖φ(Lj
t−1)−φ(Oi

t−1)‖2+‖φ(L
j
t )−φ(Dk

t )‖2 (6)

where Dk
t is a candidate detection and φ(·) computes the

object’s centroid.

During inference the model will encounter mis-
associations as well. Therefore, the model needs to learn to
identify false associations. To accomplish this, we augment
the dataset with examples of mis-associations. For every
true association, Dk

t and Oi
t−1, we identify all Dn

t ∈ Dt

where ‖φ(Oi
t−1) − φ(Dn

t )‖2 < r and do not have an
IoU ≥ 0.1 with Lj

t . We add a detection at random from
this subset as a false association.

By predicting an association probability and a score, our
method is robust to false positives due to duplicate detec-
tions. The probability allows us to identify all potential as-
sociation candidates, including the true detection as well as
false positives. The score then allows us to select the best
candidate and discard the duplicate detections. In our exper-
iments, we demonstrate the importance of predicting both.

Another advantage of breaking the problem of associa-
tion into learning a probability and a score is that it elim-
inates the need for any engineered threshold to identify
matches. Finding such thresholds can be challenging in
the context of using different sources for detections with
different error characteristics, e.g. image-based detections
may have a higher range of uncertainty as compared to Li-
DAR detections. Besides, different VRU classes have dif-
ferent motion characteristics, e.g. bikes can move faster
than pedestrians; therefore, different classes could have dif-
ferent scores. Our proposed method, considers all candi-
dates with an association probability greater than the mis-
association probability, and it identifies the best match with
the score. As a result, we eliminate the need for any engi-
neered thresholds.
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4. Experimental Results

4.1. Experimental Setup

We evaluate our method on a self-collected detection
and tracking dataset, ATG4D [23], which contains 5,000 se-
quences in the training set, 900 sequences for the test set and
500 sequences for validation set. Each sequence is captured
at 10Hz intervals. The data is collected using a Velodyne
64E LiDAR along with a camera sensor, while driving in an
urban setting. We evaluate on our self-collected dataset, as
opposed to an open source dataset such as KITTI [9], due
to the latter only having the ”car” and the ”pedestrian” class
annotated for the tracking benchmark. The missing anno-
tations for the ”bike” class are crucial to prove a real-time
multi-class association and tracker aimed at self-driving ap-
plications. Additionally, our dataset is much larger (5000 vs
21 training sequences, 900 vs 29 test sequences), making it
more suitable to prove any claims we have about a scalable
self-driving tracking system in sections 4.7 and 4.8.

For the experiments in the paper, we generate detections
as described in Section 3. To reduce the detection-object
pairs that we run inference for, we prune the list of all pos-
sible pairings based on a gating radius, r. This is common
practice within tracking [2] and makes the problem tractable
by not considering impossible associations.

For our experiments, we set r = 4 m since it accommo-
dates both slow moving pedestrians and fast moving bikes
and τ = 5 for our object track life management. We set
wscore = 0.02 and wstate = 0.06 while training models.
Finally, the individual motion models in the IMM are de-
signed to be adapted to the different motion modalities we
encounter: static, constant velocity, and accelerating.

4.2. Evaluation Metrics

We evaluate the performance of methods using standard
multi-object tracking metrics [3, 24] to compare tracking
methods. These include evaluating the Multi-Object Track-
ing Accuracy (MOTA), Multi-Object Tracking Precision
(MOTP), Mostly Tracked (MT), Mostly Lost (ML) and ID
Switches (IDSW). However, these metrics fail to capture the
quality of velocity estimates. Measuring the accuracy of the
estimated velocity is imperative to evaluating tracking per-
formance for trackers that are used by dependent systems
to predict behavior. To resolve this gap in the metrics, we
propose two new metrics: Multi-Object Tracking Velocity
Error (MOTVE) and Multi-Object Tracking Velocity Out-
liers (MOTVO).

We define MOTVE as the average velocity error for all

true positive objects. This is computed as

MOTVE =

T∑
t=0

M∑
i=1

||vit − v̂it||2
T∑

t=0
gt

(7)

where v̂it and vit refer to the estimated velocity of i-th object
and its corresponding ground-truth label at time t respec-
tively. The number of object-label pairs present at time t
are denoted by gt.

We define MOTVO as the fraction of the object-label
pairs where the velocity error is greater than a threshold,

MOTVO =

T∑
t=0

n∑
i=1

1[‖vit − v̂it‖2 > ν]

T∑
t=0

gt

(8)

where 1[·] is an indicator function. For this evaluation, we
set ν to 1 m/s for pedestrians and 1.5 m/s for bicyclists. This
measures the number of egregious velocity errors and gives
an indication about how robust the system is to producing
velocity outliers.

4.3. Performance Comparison

We compare our learned method for joint association
and tracking to the classical association methods described
in Section 2.3, due to their widespread use in filter-based
tracking for real-time systems. We evaluate all methods on
unimodal (LiDAR Only) and multimodal (LiDAR + Cam-
era) configurations. All methods use the same IMM tracker.
The results are detailed in Table 1. Our proposed SD-
VTracker significantly improves system performance over
other methods for both sensor modalities. For the LiDAR
only system, we see improvements such as a 16% reduction
in MOTVE, a 6.23% reduction in ID switches and a 2%
reduction in false positives, over the next best method. Ma-
halanobis association has the best MOTP by 0.09 cm, but
does not translate to better velocity estimates. This further
demonstrates the need of metrics that measure higher order
states when evaluating object tracking in 3D.

Furthermore, as more sensors are added to the system,
we see an improvement in the overall MOTA and false neg-
atives of methods. This is most likely due to additional
modalities increasing the confidence in existing tracks, or
adding detections in situations where none were observed.
However, this comes at the cost tracking more objects, in-
creasing the absolute number of velocity outliers. We show
that our learned methods can better incorporate new sen-
sor observations by reducing velocity outliers by 17%, ID
switches by 16% and false positives by 5%. While Maha-
lanobis association sees a degradation in performance by
around 3.3%, our learned method sees an increase in veloc-
ity outliers by 0.2%, all the while tracking more objects.
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Table 1. Comparison of Tracking Methods Across Multiple Sensor Modalities
Sensing

Modalities
Method MOTA ↑ MOTVO ↓ MOTVE ↓

FP ↓ FN ↓ IDSW ↓ MOTP ↓ MT ↑ ML ↓ Frag ↓
Ped Bike Ped Bike

LiDAR

IoU-based Association 67.6486 3.572 2.377 0.170 0.287 394840 510918 44855 0.3527 0.389 0.164 39385

L2 Association 67.9379 3.204 2.373 0.158 0.281 391298 508561 42092 0.3519 0.390 0.163 38850

Mahalanobis Association 68.4670 2.956 2.041 0.157 0.271 370060 516321 37788 0.3466 0.386 0.165 40026

SDVTracker (Ours) 68.9816 2.199 1.633 0.131 0.248 362560 510970 35433 0.3475 0.391 0.162 38438

LiDAR
+

Camera

IoU-based Association 66.5809 4.236 2.549 0.192 0.295 416723 503642 51731 0.3586 0.384 0.167 43417

L2 Association 68.1027 3.303 2.334 0.162 0.294 386467 497147 43991 0.3554 0.388 0.163 40572

Mahalanobis Association 68.6031 3.056 2.118 0.160 0.287 366913 504202 39521 0.3498 0.385 0.165 41251

SDVTracker (Ours) 69.4405 2.204 1.827 0.133 0.268 346651 504744 33118 0.3485 0.388 0.162 40008

Table 2. Effect of Learning Joint Tracking and Association
Network IMM Learning State MOTA ↑ MOTVO ↓ MOTVE ↓ IDSW ↓

MLP X 69.2221 2.448 0.1446 37594

MLP X X 69.3863 2.385 0.1413 34698

LSTM X 69.2877 2.428 0.1419 35862

LSTM X 69.3971 2.240 0.1528 34031

LSTM X X 69.4405 2.292 0.1393 33118

Table 3. Effect of Learning Probability and Score
Association Output MOTA ↑ MOTVO ↓ MOTVE ↓ IDSW ↓

Probability Only 69.1837 2.544 0.1466 35419

Score Only 69.3618 2.551 0.1448 39461

Probability and Score 69.4405 2.292 0.1393 33118

4.4. Impact of Recurrent Networks

We implement two learned network architectures for our
learned association and tracker. For the recurrent network,
we train on truncated sequences of length 20. We compare
the performance of a Recurrent Neural Network (RNN) to
a feedforward Multi-Layer Perceptron (MLP) in Table 2.
While both networks outperform classical association meth-
ods, we see a small increase in performance with the recur-
rent network.

4.5. Ablation on Joint Association-State Estimation

To understand the impact of jointly learning association
and state estimation, we trained a recurrent and a feed-
forward network with and without including state estima-
tion learning as a model output. The results are outlined in
Table 2. We see that regressing the state information im-
proves performance for both network architectures. Fur-
ther, we investigate how the model’s learned state compares
with the filtered IMM state. We see that while the model’s
learned state produces fewer velocity outliers, its average
velocity and MOTA are worse compared to using the IMM,
which motivates our hybrid method.

4.6. Ablation on Score Regression

We evaluate the effectiveness of learning both an associ-
ation probability and a score, as discussed in Section 3, in
Table 3. For the probability only model, we break ties be-
tween candidate detections based on the higher probability.
For the score only model, we considered all scores below

Figure 5. As the number of pedestrians in a scene grows, our
method is increasingly more effective at reducing velocity outliers
than engineered methods. Analysis was performed on over 900
scenes bucketed by the number of pedestrians across a 25s inter-
val, with each bucket including at least 20 scenes.

0.1 as candidate associations. Based on the results, we see
that neither breaking ties with the probability or threshold-
ing based on the score perform better than explicitly learn-
ing a probability and a score.

4.7. Impact of VRU Density

In dense crowds, a mis-association can cause a tracked
object to have poor velocity estimates, which degrades sys-
tem performance. Fig. 5 examines the performance of SD-
VTracker as the number of pedestrians and bikes in a scene
is increased in terms of ID switches and velocity outliers.
As VRU density increases, our proposed method performs
better than hand-engineered association on both metrics. In
scenes with 100+ pedestrians, the learned model reduces
poor velocity estimates by 45%, demonstrating our learned
model approach scales better than classical methods.

4.8. Runtime Performance

We show the runtime performance of the system in Fig.
7, evaluated on a four core Intel i7 CPU and a NVIDIA RTX
2080Ti GPU. We see that model runs under 5 ms for 500
actors on a CPU and under 3 ms on a GPU. It is interesting
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Figure 6. (left) Classical Mahalanobis association and tracking. (right) SDVTracker, our system for learned association and tracking, which
shows fewer velocity outliers. Circles represent tracked VRUs and orange vectors represent velocity estimates.

to note that for scenes with less than 100 VRUs, it is faster
to run on CPU than using a dedicated GPU.

4.9. Qualitative Performance

Fig. 6 shows representative output of the classical Maha-
lanobis association and tracking compared to SDVTracker
on a typical scene with VRUs. We see fewer velocity out-
liers, which yields better self-driving vehicle performance.
Please refer to the provided supplemental video to see the
SDVTracker in operation.

5. Conclusion and Future Work

We presented SDVTracker, a method for learning multi-
class object-detection association and motion state estima-
tion applicable in the self-driving domain. We demonstrate
that this algorithm improves tracking performance in a va-
riety of metrics. In addition, we introduce new tracking
metrics important in self-driving applications that measure
the quality of the velocity estimates and show that SDV-
Tracker significantly outperforms the compared methods.
Furthermore, we demonstrate that SDVTracker generalizes
to multiple sensor modalities, increasing recall with the ad-
dition of the camera sensing modality. Finally, we show
this method is able to handle scenes of 100 actors in under
2.5 ms, making it suitable for operation in real-time appli-
cations.

The performance of the learned state obtained directly
from the LSTM was similar to the one obtained by the
IMM, opening a door for new experiments to potentially re-
move the IMM from the algorithm while maintaining the
performance. We plan to also augment the algorithm to
learn the object life policy, controlling when to birth new
objects and reap old ones. Finally, we further plan to extend
SDVTracker by adding additional sensors, such as RADAR,
to the system.

Figure 7. Model inference runtime on CPU and GPU as a function
of the number of actors in a scene. The model scales approxi-
mately linearly with the number of actors and for a typical scene
with 100 actors runs under 2.5 ms on CPU.

References

[1] B Allotta, Andrea Caiti, Riccardo Costanzi, F Fanelli, Da-
vide Fenucci, E Meli, and A Ridolfi. A new auv navigation
system exploiting unscented kalman filter. Ocean Engineer-
ing, 113:121–132, 2016.

[2] Yaakov Bar-Shalom, Fred Daum, and Jim Huang. The prob-
abilistic data association filter. IEEE Control Systems Mag-
azine, 29(6):82–100, 2009.

[3] Keni Bernardin and Rainer Stiefelhagen. Evaluating mul-
tiple object tracking performance: the clear mot metrics.
EURASIP Journal on Image and Video Processing, 2008:1–
10, 2008.

[4] Erik Bochinski, Volker Eiselein, and Thomas Sikora. High-
speed tracking-by-detection without using image informa-
tion. In 2017 14th IEEE International Conference on Ad-
vanced Video and Signal Based Surveillance (AVSS), pages
1–6. IEEE, 2017.

3019



[5] Henggang Cui, Vladan Radosavljevic, Fang-Chieh Chou,
Tsung-Han Lin, Thi Nguyen, Tzu-Kuo Huang, Jeff Schnei-
der, and Nemanja Djuric. Multimodal trajectory predictions
for autonomous driving using deep convolutional networks.
In IEEE International Conference on Robotics and Automa-
tion (ICRA), 2019.

[6] Nemanja Djuric, Vladan Radosavljevic, Henggang Cui, Thi
Nguyen, Fang-Chieh Chou, Tsung-Han Lin, Nitin Singh,
and Jeff Schneider. Uncertainty-aware short-term motion
prediction of traffic actors for autonomous driving. IEEE
Winter Conference on Applications of Computer Vision
(WACV), 2020.

[7] Sudeep Fadadu, Shreyash Pandey, Darshan Hegde, Yi Shi,
Fang-Chieh Chou, Nemanja Djuric, and Carlos Vallespi-
Gonzalez. Multi-view fusion of sensor data for improved
perception and prediction in autonomous driving. arXiv
preprint arXiv:2008.11901, 2020.

[8] Hafez Farazi and Sven Behnke. Online visual robot track-
ing and identification using deep LSTM networks. In 2017
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 6118–6125. IEEE, 2017.

[9] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we
ready for autonomous driving? the kitti vision benchmark
suite. In Conference on Computer Vision and Pattern Recog-
nition (CVPR), 2012.

[10] Anthony Genovese. The interacting multiple model algo-
rithm for accurate state estimation of maneuvering targets.
2001.

[11] Joey Hong, Benjamin Sapp, and James Philbin. Rules of the
road: Predicting driving behavior with a convolutional model
of semantic interactions. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
8454–8462, 2019.

[12] Alex Kendall and Yarin Gal. What uncertainties do we need
in bayesian deep learning for computer vision? In Advances
in neural information processing systems, pages 5574–5584,
2017.

[13] Suna Kim, Suha Kwak, Jan Feyereisl, and Bohyung Han.
Online multi-target tracking by large margin structured
learning. In Asian Conference on Computer Vision, pages
98–111. Springer, 2012.

[14] Cheng-Hao Kuo, Chang Huang, and Ramakant Nevatia.
Multi-target tracking by on-line learned discriminative ap-
pearance models. In 2010 IEEE Computer Society Con-
ference on Computer Vision and Pattern Recognition, pages
685–692. IEEE, 2010.

[15] Ankit Laddha, Shivam Gautam, Gregory P Meyer, Car-
los Vallespi-Gonzalez, and Carl K Wellington. Rv-fusenet:
Range view based fusion of time-series lidar data for joint
3d object detection and motion forecasting. arXiv preprint
arXiv:2005.10863, 2020.

[16] Ankit Laddha, Shivam Gautam, Stefan Palombo, Shreyash
Pandey, and Carlos Vallespi-Gonzalez. Mvfusenet: Im-
proving end-to-end object detection and motion forecasting
through multi-view fusion of lidar data. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 2865–2874, 2021.

[17] Philip Lenz, Andreas Geiger, and Raquel Urtasun. Fol-
lowMe: Efficient online min-cost flow tracking with
bounded memory and computation. In Proceedings of the
IEEE International Conference on Computer Vision, pages
4364–4372, 2015.

[18] Yuan Li, Chang Huang, and Ram Nevatia. Learning to asso-
ciate: Hybridboosted multi-target tracker for crowded scene.
In 2009 IEEE Conference on Computer Vision and Pattern
Recognition, pages 2953–2960. IEEE, 2009.

[19] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and
Piotr Dollár. Focal loss for dense object detection. In Pro-
ceedings of the IEEE international conference on computer
vision, pages 2980–2988, 2017.

[20] Wenjie Luo, Bin Yang, and Raquel Urtasun. Fast and furi-
ous: Real time end-to-end 3d detection, tracking and motion
forecasting with a single convolutional net. In Proceedings of
the IEEE conference on Computer Vision and Pattern Recog-
nition, pages 3569–3577, 2018.

[21] Peter S Maybeck. Stochastic models, estimation, and con-
trol. Academic press, 1982.

[22] Gregory P Meyer, Jake Charland, Shreyash Pandey, Ankit
Laddha, Shivam Gautam, Carlos Vallespi-Gonzalez, and
Carl K Wellington. Laserflow: Efficient and probabilistic
object detection and motion forecasting. IEEE Robotics and
Automation Letters, 6(2):526–533, 2020.

[23] Gregory P. Meyer, Ankit Laddha, Eric Kee, Carlos Vallespi-
Gonzalez, and Carl K. Wellington. Lasernet: An effi-
cient probabilistic 3d object detector for autonomous driv-
ing. In The IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), June 2019.

[24] Anton Milan, Laura Leal-Taixé, Ian Reid, Stefan Roth, and
Konrad Schindler. Mot16: A benchmark for multi-object
tracking. arXiv preprint arXiv:1603.00831, 2016.

[25] Anton Milan, S Hamid Rezatofighi, Anthony Dick, Ian Reid,
and Konrad Schindler. Online multi-target tracking using
recurrent neural networks. In Thirty-First AAAI Conference
on Artificial Intelligence, 2017.

[26] James Munkres. Algorithms for the assignment and trans-
portation problems. Journal of the society for industrial and
applied mathematics, 5(1):32–38, 1957.

[27] World Health Organization. Dept. of Violence, Injury Pre-
vention, World Health Organization. Violence, Injury Pre-
vention, and World Health Organization. Global status re-
port on road safety: time for action. World Health Organi-
zation, 2009.

[28] Eshed Ohn-Bar and Mohan Manubhai Trivedi. Looking at
humans in the age of self-driving and highly automated ve-
hicles. IEEE Transactions on Intelligent Vehicles, 1(1):90–
104, 2016.

[29] Akshay Rangesh and Mohan Manubhai Trivedi. No blind
spots: Full-surround multi-object tracking for autonomous
vehicles using cameras and lidars. IEEE Transactions on
Intelligent Vehicles, 4(4):588–599, 2019.
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