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Abstract

Labelling of human behavior analysis data is a com-
plex and time consuming task. In this paper, a fully au-
tomatic technique for labelling an image based gaze be-
havior dataset for driver gaze zone estimation is pro-
posed. Domain knowledge is added to the data record-
ing paradigm and later labels are generated in an auto-
matic manner using Speech To Text conversion (STT). In
order to remove the noise in the STT process due to dif-
ferent illumination and ethnicity of subjects in our data,
the speech frequency and energy are analysed. The re-
sultant Driver Gaze in the Wild (DGW) dataset contains
586 recordings, captured during different times of the day
including evenings. The large scale dataset contains 338
subjects with an age range of 18-63 years. As the data
is recorded in different lighting conditions, an illumina-
tion robust layer is proposed in the Convolutional Neural
Network (CNN). The extensive experiments show the vari-
ance in the dataset resembling real-world conditions and
the effectiveness of the proposed CNN pipeline. The pro-
posed network is also fine-tuned for the eye gaze prediction
task, which shows the discriminativeness of the representa-
tion learnt by our network on the proposed DGW dataset.
Project Page: https://sites.google.com/view/
drivergazeprediction/home

1. Introduction

One of the primary drivers of progress in deep learning
based human behavior analysis is availability of large la-
belled datasets [31, 15]. It is observed that the process of
labelling becomes non-trivial for complicated tasks. In this
paper, we argue that by adding domain knowledge about the
task during the data recording paradigm, one can automat-
ically label the dataset quickly. The behavior task chosen
in this paper is estimation of driver gaze in car. Distracted
driving is one of the main causes of traffic accidents [6].

It is important to understand the far-reaching negative im-
pacts of this killer, which is particularly common among
younger drivers [6, 16]. According to a World Health Or-
ganization report [25], there were 1.35 million road traffic
deaths globally in 2016 and it is increasing day by day. In
order to prevent this, efforts are being made to develop Ad-
vanced Driver Assistance Systems (ADAS), which will en-
sure smooth and safe driving by alerting the driver or taking
control of the car (handover), when a driver is distracted or
fatigued. One important information, which some ADAS
needs is a driver’s gaze behaviour, in particular, where is the
driver looking? Over past few years, monitoring driver’s be-
haviour as well as visual attention have become interesting
topics of research [44, 20]. Analysis of driver’s sparse gaze
zone provides an important cue for understanding a driver’s
mental state. In vision-based driver behaviour monitoring
systems, coarse gaze direction prediction instead of exact
gaze location is usually acceptable [13, 42, 40, 36, 39, 41].
The coarse gaze regions are defined as the in-vehicle areas,
where drivers usually look at while driving, for e.g. wind-
shield, rear-view mirror, side mirrors, speedometer etc. As
per recent studies [41, 13], head pose information is also
relevant in predicting the gaze direction. This hypothesis
fits well with real and natural driving behaviour. In many
cases, a driver may move both head and eyes, while look-
ing at a target zone. Accurate driver’s gaze detection re-
quires a very specific set of sensors [28, 44], which capture
detailed information about the eyes and pupil movements
but these can cause an unpleasant user experience. Addi-
tionally, manual data labelling is a tedious task, which re-
quires time as well as domain knowledge. In this work,
fully automatic labelling can be fairly quickly done by in-
troducing speech during the dataset recording. Our Speech
to Text (STT) based labelling technique reduces the above-
mentioned limitations of the earlier works. Moreover, this
paper can provide help in collaborative driving scenarios,
while the vehicle operates in semi-autonomous mode. The
main contributions of this paper are as follows:

• Traditionally, computer vision based datasets are either
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Figure 1. The proposed Driver Gaze in the Wild (DGW) dataset. Please note the different recording environments and age range.

labelled manually or using sensors, which makes the la-
belling process complicated. To the best of our knowl-
edge, this is the first method for speech based automatic
labelling of human behavior analysis dataset. The process
of labelling in our paper is automatic and does not require
any invasive sensors or manual labelling. This makes
the task of collecting and labelling data with fairly large
number of participants faster. Proposed method requires
lesser time (∼30 sec) generating the labels as compared
to manual labelling (∼10 min). Additionally, the voice
frequency-based detection is used for extracting data sam-
ples missed by automatic speech to text method.

• An ‘in the wild’ dataset - Driver Gaze in the Wild (DGW)
containing 586 videos of 338 different subjects is col-
lected. To the best of our knowledge, this is the largest
publicly available driver gaze estimation dataset (Fig. 1).

• As the dataset has been recorded with different illumina-
tion conditions, a convolutional layer robust to illumina-
tion is proposed.

• We have performed eye gaze representation learning to
judge the generalization performance of our network.
(See Supplementary Material)

2. Prior Work

With the progress in autonomous and smart cars, the re-
quirement for automatic driver monitoring has been ob-
served and researchers have been working on this problem
for a few years now. For driver’s attention estimation, eye
tracking is the most evident solution. It is done via sen-
sors or by using computer vision based techniques. Sensor
based tracking mainly utilize dedicated sensor integrated
hardware devices for monitoring driver’s gaze in real-time.
These devices require accurate pre-calibration and addition-
ally these devices are expensive. Few examples of these
sensors are Infrared (IR) camera [14], contact lenses [28],
head-mounted devices [13, 12] and other systems [3, 49].
All of these above-mentioned systems have sensitivity to-
wards outdoor lighting, difficulty in hardware calibration
and system integration. Additionally, constant vibrations
and jolts during driving can effect system’s performance.
Thus, it is worthwhile to investigate image processing based
zone estimation techniques.

Prior studies for vision based gaze tracking are mainly
focused on two types of zone estimation methods: head-

Table 1. Comparison of in-car gaze estimation datasets.

Ref. # Sub # Zones Illumination Labelling

[2] 4 8
Bright &

Dim 3D Gyro.

[18] 12 18 Day Manual
[4] 50 6 Day Manual

[35] 6 8 Day Manual

[40] 10 7
Diff.

day times Manual

[13] 16 18 Day
Head-
band

[41] 3 9 Day
Motion
Sensor

Ours 338 9 Diff. day times Automatic

pose based only [24, 41] and both head-pose and eye-gaze
based [38, 35]. In an interesting work, Lee et al. [18] intro-
duced a vision-based real-time gaze zone estimator based
on a driver’s head moment mainly composed of yaw and
pitch. Further, Tawari et al. [36] presented a distributed
camera based framework for gaze zone estimation using
head pose only. Additionally, [36] collected a dataset from
naturalistic on-road driving in streets, though containing six
subjects only. For the gaze zone ground truth determina-
tion, human experts manually labelled the data. Driver’s
head pose provides partial information regarding the his/her
gaze direction as there may be an interplay between eye ball
moment and head pose [5]. Hence, methods totally relying
on head pose information may fail to disambiguate between
the eye movement with fixed head-pose. Later, Tawari et
al. [35] combined head pose with horizontal and vertical
eye gaze for robust estimation of driver’s gaze zone. Ex-
perimental protocols are evaluated on the dataset collected
by [36] and it shows improved performance overhead mo-
ment [36]. In another interesting work, Fridman et al. [4, 5]
proposed a generalized gaze zone estimation using the ran-
dom forest classifier. They validated the methods on a
dataset containing 40 drivers and with cross driver testing
(test on the unseen drivers). When the ratio of the classi-
fier prediction having the highest probability to the second
highest probability is greater than a particular threshold, the
decision tree branch is pruned. Similarly, [38] combined 3D
head pose with both 3D and 2D gaze information to predict
gaze zone via a support vector machine classifier. Choi et
al. [2] proposed the use of deep learning based techniques
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to predict categorized driver’s gaze zone. Recently, Wang
et al. [41] proposed an Iterative Closet Points (ICP) based
head pose tracking method for appearance-based gaze es-
timation. The labelling is performed initially using a head
motion sensor and later clustering is used on this head pose
technique. The labels in this case, do not consider the sce-
nario, where there is a difference between the eye gaze and
the head pose of a subject. In another interesting work, Jha
et al. [13] map 6D head pose (three head position and three
head rotation angles) to an output map of quantized gaze
zone. The users in their study wear headbands, which are
used to label the data using the head pose information only.
Few of the selected methods are also described in Table 1.
Please note that most of the datasets are not available pub-
licly, with the exception of Lee et al. [18], though it contains
12 subjects only. It is easily observable that our proposed
dataset DGW has a large number of subjects and more di-
verse illumination settings. Further, the methods discussed
above require either manual labelling of the driver dataset
or it is based on a wearable sensor. We argue that the la-
belling of gaze can be noisy and erroneous task for labellers
due to the task being monotonous. Further, with wearable
sensors such a headband, it may be uncomfortable for some
subjects. Therefore, in this work, we propose an alternate
method of using speech as part of the data recording. This
removes the need for manual labelling and the user having
to wear any headgear as well. Similarly, we are interested
in predicting the zone, where the driver is looking at? This
considers the both eye gaze, head pose (Fig. 2) and the in-
terplay of gaze and head pose. Nowadays, self-supervised
and unsupervised learning is getting attention as it has the
potential to overcome the limitation of supervised learning
based algorithms, which requires large amount of labelled
data. A few recent works [19, 22, 21, 10, 47, 46] explored
this domain. The labelling technique used by us in this work
also exploits the domain knowledge (speech) and helps in
labelling a fairly large dataset quickly.

3. DGW Dataset
We curate a new driver gaze zone estimation dataset

as the datasets in this domain are small in size and are
mostly not available for academic purpose. Fig. 1 shows
the frames from the proposed DGW dataset. Please note
that the dataset and the baseline scripts will be made pub-
licly available.
Data Recording Paradigm. Before data collection, con-
sent was taken from participants regarding the scope of data
usage. This included agreement to share data with univer-
sity and industrial labs and if a face of a participant could
be used in any publication in the future. We pasted number
stickers on different gaze zones of the car (Fig. 3). The nine
car zones are chosen from back mirror, side mirrors, radio,
speedometer and windshield. The recording sensor used is

a Microsoft Lifecam RGB. For recording the following pro-
tocol is followed: We asked the subjects to look at the zones
marked with numbers in different orders. For each zone, the
subject has to fixate on a particular zone number and speak
the zone’s number and then move to the next zone. For
recording realistic behaviour, no constraint is mentioned to
the subjects about looking by eye movements and/or head
movements. The subjects choose the way in which they
are comfortable. This leads to more naturalistic data (see
Fig. 2). For the subjects who wear spectacles, if it is com-
fortable for the participant, they are requested to record
twice i.e. with and without the spectacles. The RA was also
present in the car and observed the subject and checked the
recorded video. If there was a mismatch between the zone
and the gaze, the subject repeated the recording. This in-
sures correct driver gaze to car zone mapping.

The data is collected during different times of the day
for recording different illumination settings (as evident in
Fig. 1). Recording sessions are also conducted during the
evening after sunset at different locations in the university.
This enables different sources of illumination from street
lights (light emitting diodes, compact fluorescent lamp and
sodium vapour lamps) and also from inside the car. There
are a few sessions during which the weather was cloudy.
This brings healthy amount of variation in the data.

4. Automatic Data Annotation
As manual data labelling can be an erroneous and

monotonous task, our method is based on automatic data
labelling. Following are the details of the labelling process.
Speech To Text. Post extraction of the audio from the
recorded samples, the IBM Watson’s STT API [43] is used
to convert the audio signal into text. We searched for the
keywords ‘one’, ‘two’, ‘three’, ‘four’, ‘five’, ‘six’, ‘seven’,
‘eight’ and ‘nine’ in the extracted speech in ascending or-
der. As we recorded the data in ‘one’ to ‘nine’ in sequence,
therefore, sequentially ordered texts having high probabil-
ity is considered. Further, we extracted the frames corre-
sponding to the detected time stamps by adding an offset
(10 frames chosen empirically) before and after the detec-
tion of the zone number. We used the US English model
(16 kHz and 8 kHz). In a few cases, this model was unable
to detect correctly, this may be due to different pronuncia-
tion of English words across different cultures. In order to
overcome this limitation, we applied STT rectification.

Figure 2. Challenging samples from our DGW dataset in which
the head pose and eye gaze differ for subjects. The labels should
not just be based on the head pose as in prior works [13, 41].
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Figure 3. Overview of the automatic data annotation technique.
On the top are the representative frames from each zone. Please
note the numbers written in alphabets below the curve. The red
colored ‘to’ shows the incorrect detection by the STT library. This
is correct by frequency analysis approach in Sec. 4. On the bottom
right are reference car zones.

STT Rectification. Generally, human voice frequency lies
in the range of 300-3000 Hz [37]. We use the frequency
and energy domain analysis of the audio signal to detect
time duration of the audio signal from the data. The as-
sumption based on the recording paradigm of DGW dataset
is that the numbers are spoken in a sequence. If during scan
of the numbers generated from the STT process, there is a
mismatch for a particular number, the following steps are
executed to find the particular zone’s data: Step 1: Convert
stereo input signal to mono audio signal and start scanning
with a fixed window size T . Calculate frequency over the
time domain of the audio for a window size T . Step 2: If
the frequency lies in the human voice range 300-3000 Hz,
then this window is a probable candidate. Step 3: Compute
ratio between energy of speech band and total energy for
this window. If ratio is above a threshold, then this window
is a probable candidate. Step 4: If there is an overlap be-
tween the timestamps generated from steps 3 and 4 above,
the zone label is assigned to the frames between the times-
tamps. This process extracted an extra 4000 frames, which
were earlier missed due to the noise generated from STT.
We checked manually for some recordings randomly, most
of the useful data has been extracted following the steps
above. Refer supplementary document for dataset statistics
and validation of automatic data annotation process. Please
note that the label generated after STT is treated as ground
truth label.

4.1. Label Refining

Our proposed automatic data annotation may generate
noisy labels during the gaze transition between two zones
in the car. For example, a subject utters the word ‘one’ and
looks at region ‘one’. After that the subject shifts gaze from
region ‘one’ to region ‘two’ and utters ‘two’. During the
transition between these two utterances, some frames may

have been incorrectly annotated. Similarly, in a few cases,
the zone utterance and the shifting of gaze may not have oc-
curred simultaneously. To handle such situations, we per-
form label rectification based on an auto-encoder network
followed by latent features based clustering.
Encoder-Decoder. The encoder part of the network is
based on the backbone network (Inception-V1, refer Fig. 4).
The decoder network consists of series of alternate convo-
lution and up-sampling layers. The details of decoder net-
work is as follows: the convolution layers have 1024, 128,
128, 64 and 3 kernels having 3 × 3 dimension. The first
up-sampling layer has 2 × 2 kernel. The second and third
up-sampling layers have 4 × 4 kernel. It is to be noted that
the facial embedding representation learnt in this network
encodes the eye gaze with the head pose information.
Clustering. After learning the auto-encoder, we perform k-
means clustering on the facial embeddings. Here the value
of k=9 is same as the number of zones. After k-mean clus-
tering of all the samples, previous labels of the transition
frames are updated on the basis of its Euclidean distance
from the cluster center. More specifically, we measure the
distance between a transition frame’s facial embedding with
the 9 cluster centers and assign the frame the label of the
nearest neighbor cluster. Please note that it is a static pro-
cess. The refined labels are then considered as the ground
truth label for the dataset.

5. Method
Baseline. For the baseline methods, we experiment with
several standard networks like Alexnet [17], Resnet [8] and
Inception Network [34]. The input to the network is the
cropped face computed using the Dlib face detection library.
The proposed network is shown in Fig. 4. The baseline net-
work takes 224 × 224 × 3 facial image as input. From
the results using the standard networks mentioned above,
one of the limitations observed is that as the DGW dataset
has been recorded in diverse illumination conditions, some
samples, which contained illumination change across the
face are mis-classified. Sample images can be seen in Fig. 6
top. To the backbone network, we add the illumination layer
presented below.
Illumination Robust Layer. For illumination robust facial
image generation, we follow a common assumption pro-
posed by Lambert and Phong [26]. The authors adopted
the concept of ideal matte surface, which obey Lambert’s
cosine law. The law states that the incoming incident light
at any point of an object surface is diffused uniformly in
all possible directions. Later, Phong has added a specular
highlight modelization term with Lambertian model. This
term is independent of the object’s geometric shape. More-
over, it is also independent of the lighting direction of each
surface point. For illumination robust learning, we follow
the computationally efficient Chromaticity property (Zhang
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et al. [50]). c = {r, g, b} is from the following skin color
formation equation:

ci =
fiλi

−5S(λi)

(
∏3

j=1 fjλj
−5S(λj))

1

3

× e
−
k2
λiT

e

1

3
∑3

j=1 −
k2
λjT

(1)

Here, i = {1, 2, 3}, correspond to the R, G & B chan-
nels, respectively. fi is from Dirac delta function; λi’s
are tri-chromatic wavelengths (the wavelengths of R, G, B
lights wherein {λ1 ∈ [620, 750], λ2 ∈ [495, 570], λ3 ∈
[450, 495], unit : nm}); S(λ) is spectral reflectance func-

tion of skin surface; k2 =
hc

kB
( h: Plank’s constant

h = 6.626 × 10−34J.s, kB : Boltzmann’s constant kB =
1.381 × 10−23J.k−1 and c = 3 × 108ms−1) refer to first
and second radiation constants in Wien’s approximation and
T represents the lighting color temperature. If we write the
Equation (1) in ci = A × B format, then the left part of
Equation 3 is the illumination robust (A) and right part (B)
is illumination dependent due to the colour temperature fac-
tor T , which varies throughout the dataset. Thus, for illu-
mination robust feature extraction, we initialize a constant
kernel having the T independent value of part (B). T is ini-
tialized with a Gaussian distribution. Further, the product
of constant and Gaussian kernel is considered for learning.
Attention based Gaze Prediction. The eye region of a per-
son’s face is important in estimating driver’s gaze zone as
it gives vital information about the eye gaze. We already
show that there are images in DGW dataset (Fig. 2), where
the head pose is frontal even though the driver may be look-
ing at a particular zone, which is not in the front using the
change in the eye gaze. Motivated by this hypothesis, we
add attention augmented convolution module [1] to the net-
work. Let’s consider a convolution layer having Fin input
filters, Fout output filters and k kernels. H and W repre-
sent the height and width of an activation map. dv and dk
denote the depth of values and the depth of queries/keys in

MultiHead-Attention (MHA). v =
dv
Fout

is the ratio of at-

tention channels to number of output filters and ka =
dk
Fout

is the ratio of key depth to number of output filters.
The Attention Augmented Convolution (AAConv) [1]

can be written as follows: AAConv(X) =
Concat[Conv(X),MHA(X)] Where, X is the input.
MHA consists of a 1 × 1 convolution with Fin input filters
and (2dk + dv) = Fout(2ka + v) output filters to compute
queries/keys and values. An additional 1 × 1 convolution

with dv =
Fout

v
input and output filters is also added to mix

the contribution of different key heads. AAConv is robust
to translation and different input resolution dimensions.
Network Architecture. The proposed network architecture
is shown in the left box of Fig. 4. In this part of the network,

Table 2. Comparison of backbone networks on the proposed DGW
dataset (validation set) with original labels (9 classes).

Networks Accuracy (%)

Network Network +
Illumination Robust Layer

Alexnet 56.25 57.98
Resnet-18 59.14 60.87
Resnet-50 58.52 60.05
Inception-V1 60.10 61.46

we basically perform the gaze zone classification task with
Inception-V1 as backbone network. The input of this net-
work is facial image. The illumination robust layer and at-
tention layer are introduced in the beginning and end of the
backbone network to enhance the performance. After atten-
tion layer, the resultant embedding is passed through two
dense layers (1024, 512) before predicting the gaze zone.

6. Experiments
Data partition. The dataset is divided into train, validation
and test sets. The partition is performed randomly. 203
subjects are used in training partition, 83 subjects are used
in validation partition and rest of the 52 subjects are used in
test partition. Having unique identities in the data partitions
helps in learning more generic representations.
Experimental Setup. The following experiments were
evaluated and compared to understand the complexities
of the data and create baselines: 1) Baseline: based on
Inception-V1 as the backbone network; 2) Baseline + Illu-
mination Layer: On top of Inception-V1, an illumination ro-
bust layer is added; 3) Baseline + Attention: Attention aug-
mented convolution layer is introduced in Inception-V1; 4)
Baseline + Illumination Layer + Attention: This is the com-
bination of illumination robust layer and attention; 5) Per-
formance with standard backbone networks: Comparison of
several state-of-the-art networks is performed; 6) Ablation
study for illumination robust layer’s configuration; 7) Eye-
gaze representation learning: Transfer learning experiments
to check the effectiveness of the representation learnt from
DGW; 8) Evaluation on Nvidia Jetson Nano platform.
Evaluation Matrix and Training Details. Overall ac-
curacy in % is used as evaluation matrix for gaze zone
prediction. For gaze representation learning, the angu-
lar error (in °) is used as evaluation matrix for the CAVE
dataset [30] and mean error (in cm) is used for the
TabletGaze dataset [9]. For CAVE the angular error is cal-
culated as mean error ± std. deviation (in °).
For the backbone network, Inception-V1 network architec-
ture is used. For training the following parameters are used:
1) SGD optimizer with 0.01 learning rate with 1× e6 decay
per epoch. 2) Kernels are initialized with Gaussian distribu-
tion with initial bias value 0.2. 3) In each case, the models
are trained for 200 epochs with batch size 32.
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Figure 4. LEFT: Overview of the proposed network. RIGHT: Label refinement architecture.

For gaze representation learning, we fine tuned the proposed
network with the following changes. Two FC layers (256,
256 node dense layers for the TabletGaze and 1024, 512
node dense layers for the CAVE dataset) are added with
ReLU activation to fine tune the network. The learning
rate was set to 0.001 with SGD optimizer. For both these
datasets, we froze the first 50 layers of the network and fine
tuned the rest part.

7. Results
7.1. Network Performance

Experiment with state-of-the-art backbone networks.
We experimented with several network architectures to get
an overview of the trade-off between the number of pa-
rameters and accuracy. Specifically, we choose lightweight
networks like AlexNet [17], ResNet-18 [8], ResNet-50 and
Inception [34]. Among these networks due to robust han-
dling of different scales, the inception network performs
better. The further results are based on the Inception-V1
as the backbone network. Based on this empirical analy-
sis, the baseline network is the Inception-V1 network plus
global average pooling and Fully Connected (FC) layers.
The quantitative analysis of these networks are shown in
Table 2. It also reflects that the addition of illumination ro-
bust layer increases the performance. It is effective in real-
world scenarios in which different sources of illumination
play vital role and many existing techniques may not per-
form properly. The classification performance increases as
illumination robust layer is added to the baseline network as
compared to the baseline network only.
9 zones vs 7 zones. Additionally, we experimented with a

Table 3. Comparison of the proposed network architecture with
and without illumination robust layer and attention. Here, Base:
Baseline, Illu: Illumination Layer and Attn:Attention.

Inception-V1
(Trained with original labels) Accuracy (%)

Validation Test
Baseline (7 classes) 66.56 67.39

(9 classes)

Base 60.10 60.98
Base + Attn 60.75 60.08
Base + Illu 61.46 60.42
Base + Attn + Illu 64.46 62.90

simpler task i.e. seven gaze zone classification. Although
the data is collected with nine zones, zones 1 and 2 can be
merged to represent the right half of the windscreen and
zones 5 and zone 6 can be merged to represent the left half
of the windscreen. We call this experiment setting as ‘7-
zone’. Please refer to Fig. 3 (on Page 4) for car zone label
reference. From Table 3, it is observed that the classifica-
tion accuracy is higher in the case of 7 classes. The val-
idation and test accuracies increase by 6.46% and 6.41%,
respectively. This also means that for small sized cars fine-
grained zone classification is non-trivial. Please note that
all the following experiments in the paper are performed for
9 car zones only.
Improvement over baseline.
Quantitative Analysis. Table 3 shows the gradual improve-
ment over the baseline due to the addition of attention and
illumination layers. By adding the attention layer, we intro-
duce guided learning. In the next step, we added an illumi-
nation robust layer to encode illumination robust features,
which also increase the performance of the model. Our final
model has both illumination and attention layer followed by
FC layers.
Significance Test. One way ANOVA test is performed on the
models is to calculate the statistical significance of the mod-
els. The p-values of the ‘Baseline + Illumination’, ‘Base-
line + Attention’ and ‘Baseline + Illumination + Attention’
models are 0.03, 0.04 and 0.01, respectively. The p-values
of the models are < 0.05, which indicates that the results
are statistically significant.
Qualitative Analysis. Fig. 6a shows few examples, where
previously mis-classified images are classified correctly af-
ter the addition of the illumination layer. We noted that for

Table 4. Variation in network performance (in %) w.r.t the illumi-
nation layer size and position.

Illumination
Layer Layer Details Accuracy (%)

Validation Test

Dense Layer 1024 56.16 57.93
4096 58.51 61.18

Convolution
Layer

32 53.48 52.16
64 60.47 58.38

128 61.46 60.42
256 57.71 57.35
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few subjects with spectacle glare, performance increased.
Label Rectification Performance. To avoid error in auto-
matic labelling process, clustering based label modification
(Sec. 7.1) was also performed.
Qualitative Analysis. After clustering, the labels of approxi-
mately 400 frames changed. Zone 9 class set changed most
with frames in this zone increasing by 5.2%. Frames in
Zone 8 and 5 increased by 3.5% and 2.3%. Other zones
have less than 1% increment. This suggests that whenever
there is a significant distance change in among consecutive
zones, the error increases.
Quantitative Analysis. After label modification, the valida-
tion accuracy changes from 64.46% to 66.44% as shown in
Table 5. This supports the hypothesis that the classification
accuracy increases for frames in between transition from
one zone to another and specially for the zones, with large
physical distance (eg: zone 7 and 8).
Test Set Results. For all of the methods, test set perfor-
mances was calculated. Both the ‘Baseline + Illumina-
tion’ and ‘baseline+attention’ perform slightly lower than
the baseline (Table 3). The combined effect of illumina-
tion and attention improves the test set performance from
60.98% to 62.90%. Error in automatic labelling could be
the cause for this performance. Further, training is per-
formed on ‘train+validation’ set and performance is eval-
uated on test set. The test performance increased to 64.31%
over the baseline (60.98%) and ‘Baseline + Illumination +
Attention’ network (62.90%).
Results with State-of-the-art Methods. We evaluate our
method (Sec. 5) on the LISA Gaze Dataset v1 [40], which
contains 7 zones. Our method achieves 93.45% classifi-
cation accuracy. [40]’s method gives 91.66% on their own
data. This validates the discriminative ability of our pro-
posed network. Further, we evaluate the method proposed
by Vora et al. [40] on our data as well. The method achieves
67.31% and 68.12% classification accuracy on the vali-
dation and test sets, respectively. We evaluate standard
networks [7, 33, 29, 11] and other state-of-the-art meth-
ods [39, 40, 38, 35, 4, 45] on DGW dataset in Table 6. It is
observed that Resnet 152 [7] and Inception V3 [33] perform
better than the others, however, the performance is not high
as observed for other dataset such as [40]. This can be at-

Table 5. Results of the proposed methods. The ‘Inception-V1 +
Illumination + Attention’ model is used for the experiments.

Methods Accuracy (in %) F1 Score
Validation Test Validation Test

Proposed
Network 64.46 62.90 0.52 0.52

Train on
(Train + Val) - 64.31 - 0.59

Label
Modified 65.97 61.98 0.63 0.59

Figure 5. Gaze label assignment during an eye blink. The assigned
labels (last three frames) are mentioned below each frame.
tributed to the large number of subjects (338) and different
illumination conditions under which DGW was recorded.

7.2. Ablation Study

Effect of Illumination layer. We also conducted experi-
ments (Table 4)for observing the variation in network per-
formance w.r.t the illumination layer variation.
1) Position Vs Performance. First, we experiment to check
the ideal position of the illumination robust layer. For this
analysis, the layer is implemented in the beginning and end
conv-layers. For the beginning conv-layer, the performance
increased. On the other hand, for the end conv-layer (before
the flatten layer) performance did not increase. The reason
could be that after several convolutions and max-pooling
operation, the information is changed enough to be useful
with the illumination robust layer.
2) Filter size Vs Performance. This analysis is conducted in
two settings: 1) The robustness is implemented in convolu-
tional layer and 2) The layer is implemented in dense layer
(fully connected layer). From the Table 4, we can observe
that as the illumination layer filter size increases, the perfor-
mance also increases. We used the baseline + illumination
+ attention framework to compute these results.

Table 6. Performance comparison with existing CNN-based driver
gaze estimation models.

Method Val Acc (%) Test Acc (%)
VGG 16 [29] 58.67 58.90
Inception V3 [33] 67.93 68.04
Squeezenet [11] 59.53 59.18
Resnet 152 [7] 68.94 69.01
Vora et al. [40] 67.31 68.12
Vora et al.
(Alexnet face) [39] 56.25 57.98

Vora et al.
(VGG face) [39] 58.67 58.90

Vasli et al. [38] 52.60 50.41
Tawari et al. [35] 51.30 50.90
Fridman et al. [4] 53.10 52.87
Yoon et al.
(Face + Eyes) [45] 70.94 71.20

Lyu et al. [23] 85.40 81.51
Stappen et al. [32] 71.03 71.28
Yu et al. [48] 80.29 82.52
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Qualitative Analysis of Failure Cases. Fig. 6 shows few
mis-classified examples. The reason for this could be in-
complete information of the eyes in these samples. All the
cases (except bottom left in Fig. 6) eyes are not visible prop-
erly and illumination layer even unable to recover informa-
tion. In these cases head pose and neighbour frame’s gaze
information could be vital clue to predict gaze zone. Addi-
tionally, there could be an interplay between pose and gaze.
Discussion on Effect of Eye Blink. Eye blinks are involun-
tary and a periodic event. During an eye blink event, a ma-
jor cue for gaze estimation (i.e. pupil region) is missing. In
the absence of the eye information (partially or fully closed
eyes), the head pose may still provide useful cues required
for gaze estimation. The same is also observed in some gaze
datasets (example: Gaze360) i.e. the head pose information
is considered as the gaze information in case of partial or
complete occlusion scenarios. In our work, we too assume
that head pose and eye information provide complementary
information. In case of an eye blink, head pose information
can be useful. To analyse this in the driver gaze context,
we conduct following experiments. If we remove eye blink
frames (detected using eye aspect ratio [27]) the validation
accuracy improved by 6.27%, which means that partial eye
close or fully closed samples are challenging. However, if
we consider practical deployment scenario during which the
driver gaze detection system will be used in a car, tempo-
ral information in the form of previous frames will also be
available. So, there is a possibility of borrowing informa-
tion from earlier frames, when the current frame has incom-
plete information due to an eye blink. A simple method is
using labels of the neighbour previous frames (where eyes
are open) for assigning them to frames containing eye blink.
With this assignment, we note that the validation accuracy
improves by 4.7%. This small experiment is an indication
that in the presence of an eye blink, we can still consider the
information from the previous frames, which leads to cor-
rect prediction of current gaze zone. An example is shown
in the Fig. 5, here, the neighbour frame is the first frame in
which the eyes are open. We assign the same labels for the
subsequent frames (i.e. eye blink frames).
Other. Please refer the supplementary material for the abla-
tion study regarding gaze representation, effect of lip move-
ment and deployment on Jetson Nano environment.

8. Conclusion, Limitations and Future Work
In this paper, we show that automatic labelling can be

performed by adding domain knowledge during the data
recording process. We propose a large scale gaze zone esti-
mation dataset, which is labelled fully automatically using
the STT conversion. It is observed that the missed informa-
tion from STT can be recovered by analyzing the frequency
and energy of the audio signal. The dataset recordings
are performed in different illumination conditions, which

Figure 6. TOP: Correctly classified samples with illumination ro-
bust layer, which were earlier mis-classified by the baseline net-
work. Bottom: Incorrectly classified samples by our network.

makes the dataset closer to the realistic scenarios. To take
care of the varying illumination across the face, we pro-
pose an illumination robust layer in our network. The re-
sults show that the illumination robust layer is able to cor-
rectly classify some samples, which have different or low
illumination. Further, the experiments on eye gaze pre-
diction using the features learnt from our network on the
DGW dataset show that the features learnt are effective for
gaze estimation task. In order to record even more realistic
data, car driving also needs to be added in the data record-
ing paradigm. The trickier part is about how to use speech
effectively in this case as the drivers will be concentrating
on the driving activity. Perhaps, a smaller subset of driving
dataset can be labelled using a network trained on the ex-
isting stationary recorded dataset and it can be validated by
human labellers. Further, the DGW dataset will be extended
with more female subjects to balance the current gender dis-
tribution. At this point, our method does not consider the
temporal information. It will be interesting to understand
the effect of temporal information on the gaze estimation as
a continuous regression-based problem. Few prior works
used IR cameras [14, 41] for their superior performance
in dealing with illumination effects such as on the driver
glasses. Our use of a webcam-based RGB camera validated
the process of STT labelling and illumination invariance. It
will be of interest to try distillation based knowledge trans-
fer from our DGW dataset into the smaller sized network
later fine-tuned on smaller gaze estimation datasets.

Currently, on Nvidia Jetson Nano, we achieve 10 FPS. It
should further improve if network optimization techniques
such as quantization and separable kernels are experimented
with. Our proposed method is implicitly learning the dis-
criminativeness, due to the head pose. In future, we plan
to integrate the head pose information explicitly to evalu-
ate its usefulness. We will also evaluate the performance of
the network and the usefulness of the learnt features for the
task of distracted driver detection. One future direction can
be joint gaze zone and distraction detection as a multi-task
learning problem.
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