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Abstract

The task of 2D human pose estimation has known a signif-
icant gain of performance with the advent of deep learning.
This task aims to estimate the body keypoints of people in
an image or a video. However, real-life applications of such
methods bring new challenges that are under-represented
in the general context datasets. For instance, driver sta-
tus monitoring on consumer road vehicles introduces new
difficulties, like self- and background body-part occlusions,
varying illumination conditions, cramped view angles, etc.
These monitoring conditions are currently absent in general
purposes datasets. This paper proposes two main contribu-
tions. Firstly, we introduce DriPE (Driver Pose Estimation),
a new dataset to foster the development and evaluation of
methods for human pose estimation of drivers in consumer
vehicles. This is the first publicly available dataset depicting
drivers in real scenes. It contains 10k images of 19 different
driver subjects, manually annotated with human body key-
points and an object bounding box. Secondly, we propose a
new keypoint-based metric for human pose estimation. This
metric highlights the limitations of current metrics for HPE
evaluation and of current deep neural networks on pose
estimation, both on general and driving-related datasets.

1. Introduction

Human Pose Estimation (HPE) is a well-known task in
computer vision. This problem aims to find the position
of keypoints in the 2D plane or the 3D space. Keypoints
are generally placed on the body joints (shoulders, elbows,
wrists, hips, knees, ankles), and the head. Additional points
can be placed on hands, feet, or face.

State-of-the-art methods have reached good performances
on HPE challenges on both single-person [, 19, 30] and
multiperson datasets [24], especially through deep learn-
ing. However, these general-purpose datasets do not depict
challenging scenes that might occur very often in real-life

applications, e.g., strong body occlusion or varying illumina-
tion.

Pose estimation inside of a vehicle brings new difficulties
that are under-represented in general datasets (Fig. 1). First,
the camera placement causes a strong side viewing angle,
producing both self- and background occlusion (e.g., by the
dashboard and the wheel). By consequence, the side of the
subject’s body opposite to the camera becomes more difficult
to detect (Fig. 1C). Luminance is also an important factor
in HPE. For instance, body parts can be fully visible in a
regular pose but be missed by the network due to strong
illumination (Fig. 1A). Also, the outside light may visually
split the upper body into two halves, and hence deceive the
network (Fig. 1B). Finally, the low contrast of the car interior
can make the detection of body parts difficult, like the right
forearm in the picture (Fig. 1D), depending on the color
of the subject’s clothes. To evaluate the open challenges
on human pose estimation in consumer cars, we propose
the first publicly-available dataset in real-world conditions
called DriPE (Driver Pose Estimation) !

Moreover, we study the limitations of existing metrics
[12, 24, 40] for the evaluation of the HPE task on keypoint
detection, on both general and driving contexts. Based on
our observations, we propose a new metric called mAPK to
characterize the observed limitations. This metric is essential
to highlight the challenges presented by DriPE, and up to
now ignored in general datasets, such as background and
self-occlusion.

This paper is organized as follows. Section 2 presents
related work on human pose estimation. In Section 3, we
present DriPE dataset. We describe in Section 4 the proposed
mAPK metric. Section 5 introduces the evaluated networks
and describes their architecture. We present and discuss
in Section 6 the experimental results. Finally, Section 7
presents our conclusions and future work.

IDriPE dataset is publicly available on: https://gitlab.liris.
cnrs.fr/aura_autobehave/dripe
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(A)

Figure 1: Samples of DriPE dataset. The top and bottom rows show, respectively, pose predictions by Simple Baseline network
[39] and ground truth data. Faces have been blurred on this figure to anonymize the participants’ identities.

2. Related Work

This section presents the work related to keypoint detec-
tion for human pose estimation. More precisely, we discuss
the datasets used for this task, the current methods for pose
estimation, and the metrics used to evaluate their accuracy.

2.1. Datasets

Datasets play an important role in the performance of
deep learning methods. Improvements in the human pose
estimation using deep learning networks have been partly jus-
tified by new datasets with more subjects’ pictures and more
variability in their poses, the angles of view, the background,
etc.

Leeds Sports Pose (LSP) [19] dataset is the first HPE
dataset released with more than 1k training images, which
was later extended to 11k. It contains pictures of full-body
subjects practicing different sports extracted from Flickr.
Frames Labeled In Cinema (FLIC) dataset [30] is formed
of around 5k pictures extracted from Hollywood movies.
The Max Planck Institute for Informatics (MPII) dataset [ 1]
contains around 25k images extracted from various YouTube
videos. Microsoft Common Objects in Context (COCO) [24]
is originally an object detection and segmentation dataset,
which was then expanded to a multiperson HPE dataset. It is
composed of more than 250k pictures extracted from Bing,
Flickr, and Google.

Even if these general datasets can be useful for training or
benchmarking, they might not present certain challenging sit-
uations that might occur in domain-specific datasets. There-
fore, several datasets have been published in the last years
focusing on monitoring people inside cars [3, 4, 13, 18, 25].
However, they are mostly focused on the action recogni-
tion task. Furthermore, most of the available datasets are
recorded in studios and do not represent natural foreground
nor illumination changes present in vehicle cockpit during a
daily routine ride, which are true challenges for HPE meth-
ods. For instance, authors in [25] propose Drive&Act dataset,

depicting multi-view and multi-modal (RGB, NIR, depth)
actions in a static driving simulator, with labeled actions
and predicted 3D human poses. DFKI [ 3] describes a new
test platform to record in-cabin scenes. However, no pub-
lic dataset for HPE in a vehicle using this setup has been
recorded or published up to now.

Besides, HPE datasets do not use exactly the same key-
points to represent the body. Most of the representations,
commonly called skeletons, include one joint marker per
major body limb articulation (shoulder, elbow, wrist, hip,
knee, ankle). However, while some datasets [1, 19] only
put markers on the top of the head and the base of the neck,
others adopt a finer representation (eyes, nose, ears) [24].
Some works also extend the human pose representation to
hands and feet [ 106, 6].

In the end, the most prominent general datasets in the
state of the art of HPE are MPII [1] and LSP [19] for single-
person and COCO [24] for multiperson pose estimation.
Regarding the pose estimation inside of a vehicle, there is
no publicly available dataset for HPE which presents real
driving conditions.

2.2. HPE Methods

The pose estimation methods may be divided into two
types: single-person and multiperson methods.

2.2.1 Single-person Pose Estimation

Single-person methods for HPE using convolutional neural
networks can be split into two categories: regression-based
and detection-based methods.

Regression-based CNN methods aim to directly predict
the keypoints coordinates from pictures. AlexNet [21] is the
first CNN baseline used for HPE. Toshev and Szegedy [36]
use AlexNet as a multi-stage coordinate estimator and refiner.
Carreira et al. [8] propose an Iterative Error Feedback net-
work based on the deep convolution network GoogleNet [33].
Finally, Sun et al. [32] propose a parametrized pose repre-
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sentation using bones instead of keypoints, paired up with
the ResNet-50 [ 14] for both 2D and 3D HPE.

However, regression-based networks usually lack robust-
ness due to the high non-linearity of the end-to-end structure
between the image and the coordinates of the keypoints.
To overcome this issue, many methods have proposed a
detection-based approach instead. The majority of these
methods aim to predict heatmaps, i.e., maps where each pixel
represents the probability for the keypoint to be located here.
Newell et al. [27] propose an architecture composed of new
modules called Hourglasses, which aim to extract features
from different scales using a network built based on Residual
Modules [15]. This architecture has inspired several other
works [11, 20, 34, 35]. In addition to Hourglass-based meth-
ods, other detection-based architectures have been developed.
Chen et al. [9] propose an adversarial learning architecture
that combines a heatmap pose generator with two discrimina-
tors. Xiao et al. [39] use the ResNet-50 [14] network but add
deconvolution layers in the last convolution stage to predict
the heatmaps. Unipose [2] combines a ResNet backbone for
feature extraction with a waterfall module to perform HPE.
Sun et al. [31] use a parallel multi-scale approach similar to
the Hourglass with exchange units.

The networks mentioned previously achieve state-of-the-
art performances on recent challenges. However, ResNet
Simple Baseline [39] presents a competitive performance
while preserving a light architecture compared to others.

2.2.2 Multiperson Pose Estimation

Multiperson HPE brings two difficulties to the problem: find
the locations of keypoints on the image and associate the
detected keypoints to the different subjects. Multiperson
approaches can be divided into two categories: top-down
and bottom-up methods.

Top-down approaches first detect the people in the im-
age and then find the keypoints of each person. Most of
the top-down methods use a single-person HPE architecture

preceded by a person detection step: Xiao et al. [39] and
Sun et al. [31] both use a faster R-CNN [29] while Chen et
al. [10] use a feature pyramid network [23]. Li et al. [22]

propose a multi-stage network with cross-stage feature ag-
gregation. Cai et al. [5] use a similar structure combined
with an original residual steps block.

Conversely, bottom-up methods first detect every key-
point in the image and then infer people instances from them.
Newell et al. [26] reuse their stacked hourglass network for
single-person HPE and adapt it to multiperson by predict-
ing an additional association map for each keypoint. Cao
et al. [7] propose an iterative architecture with part affinity
fields used to associate the keypoints to people.

Among the described architectures, top-down methods
currently present the highest performance on HPE. For in-

stance, MSPN [22] and RSN [5] have won the COCO Key-
point Challenge in 2018 and 2019, respectively.

2.3. Evaluation Metrics

The performances of the general 2D HPE methods can
be difficult to evaluate since it depends on many criteria
(number of visible keypoints, number of visible people, size
of the subjects, etc.).

One of the first commonly used metrics is Percentage
of Correct Parts (PCP) [12]. Each keypoint prediction is
considered correct if its distance to the ground truth is in-
ferior to a fraction of the limb length (e.g., 0.5). Thereby,
this metric punishes more severely smaller limbs, which are
already hard to predict due to their size. To mitigate this
issue, Percentage of Correct Keypoints (PCK) [40] sets the
threshold for every keypoint of a subject on a fraction of a
specific limb’s length. Two thresholds are commonly chosen
to evaluate the performance in the literature. These metrics
are mostly employed to evaluate algorithms on single-person
datasets, like MPII and LSP.

Another common metric is Average Precision (AP),
paired up with Average Recall (AR). For single-person net-
works, APK [40] is computed on keypoint detections. A
detection is considered as a true positive if it falls under a
set range of the ground truth, similarly to that PCP and PCK
metrics, and a false positive otherwise.

In a multiperson context, most metrics compute the per-
formance of a method at a person detection level instead of
a keypoint level. For instance, the mAP metric [1] first pairs
up each person detection with the ground truth using PCK
metric. Then, the matched and unmatched people are used
to compute the average precision and recall. COCO dataset
proposes a second metric for the evaluation of the HPE task
that we will refer to as AP OKS. This metric uses the Object
Keypoint Similarity (OKS) score [24], which is similar to
the Intersection over Union (IoU), to calculate the distance
between the people detections and ground truth based on
keypoints. The final scores are still computed over people.

One of the main limitations of both PCK and AP OKS
evaluation metrics is that they both put aside false-positive
keypoints. Moreover, because the COCO dataset is mostly
used in a multiperson context, its metric measures precision
and recall based on people detection, instead of keypoints.
To address the limitations of previous evaluation procedures,
we define a new general metric based on keypoints detection
called mAPK.

3. DriPE Dataset

We propose DriPE, a dataset to evaluate HPE methods
on real-world driving conditions, containing illumination
changes, occluding shadows, moving foreground, etc. The
dataset is composed of 10k pictures of drivers in real-world
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Figure 2: Image samples from DriPE dataset. Faces on the figure have only been blurred for the purpose of this paper.

conditions, split into 7.4k images for training, and 2.6k im-
ages equally divided into validation and testing sets. Table |
presents a detailed description of the dataset and compares it
to prior work.

3.1. Data Collection

To build DriPE, we extracted pictures from videos
recorded during several driving experiments. In each ex-
periment, we installed an RGB camera inside the car on top
of the passenger’s door, directed towards the driver. The
subjects drive either in a real-size replica of a city (closed
track) or on actual roads. In total, we recorded 19 drivers,
allowing us to collect over 100 hours of video clips. We
based the image selection process using two metrics: struc-
tural similarity index measure (SSIM) [37] and brightness
differential. We chose these two metrics with the objec-
tive of extracting pictures with both distinct luminance and
structure. Therefore, we computed the SSIM and the light
differential between two successive frames, with a step of
three frames per second. Then, we selected 10k pictures,
half with the highest absolute light differential, and half with
the lowest SSIM. We defined a minimum time gap between
two selected frames to increase variability.

3.2. Annotations

We have chosen to follow the COCO dataset’s annota-
tion style for DriPE since face keypoints are particularly
interesting to describe driver attention. For each image, we
annotated the person bounding box and 17 keypoints: arms

Drive&Act [25]  DriPE
N° subjects 15 19
Female / Male 4/11 7/12
Annotations HPE network Manual
RGB v v
Depth v -
NIR v -
N° images 9.6M (videos) 10k
Driving context|  Simulator ~ Real world

Table 1: Comparison of driving-related datasets for HPE.

and legs with three keypoints each, and 5 additional markers
for the eyes, ears, and nose. We split the annotated keypoints
into two categories: visible and non-visible. The non-visible
category corresponds to the occluded points, either by an
object or by the subject body, but which position can still be
deducted from the visible body parts. Note that in this study,
both categories are treated equally by the evaluation methods.
Following the COCO dataset policy, the face keypoints were
annotated only if visible.

The ground truth heatmaps were generated using centered
2D Gaussian with a standard deviation of 1px, centered
around the keypoint location.

4. Evaluation Metric

Following the state of the art, we only evaluate in this
study detection-based networks, which predict heatmaps.
Each heatmap is a matrix where the elements represent the
probability of a particular keypoint to be located at a pixel.
Therefore, the output of the evaluated network models con-
tains one heatmap per skeleton keypoint. Following the
common practice in 2D single-person HPE [27, 35, 38, 39],
the position of a given keypoint corresponds to the maximum
value of its heatmap. To separate predictions from noise, a
minimum confidence threshold is applied to this maximum.
From these coordinates, several metrics can be calculated to
evaluate the network performances.

4.1. Background

First, we describe and discuss in detail two evaluation
metrics from the literature: AP OKS and APK.

4.1.1 AP OKS

To evaluate the performance of each network on the COCO
dataset, the official multiperson metric is based on average
precision (AP) and recall (AR). This evaluation is carried
out following three steps: 1) compute the distance between
each detected person and each ground-truth subject, 2) pair
up the best person detection with its ground-truth, and 3)
compute the precision and recall.
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The metric used to compute the distance between a per-
son’s prediction and its ground truth is the OKS (Equation 1).

> KS; x0(v; > 0)

OKS = 1
>, 000 > 0) @
where KS; is defined as follows:
2
KS; = exp — ()

2.52.k?

where 1 iterates over each detected keypoint, d; is the Eu-
clidean distance between the predicted and the ground-truth
keypoints, s is the image scale computed from the bounding
box size, k; a per-keypoint constant that tries to homoge-
nize the standard deviations between each body part. Non-
annotated keypoints have visibility v; equal to 0, therefore
their associated false positives are ignored by OKS computa-
tion.

Secondly, the OKS scores are used to select the best
paired-up people, starting from the highest score. All un-
matched detected people or paired-up couples with an OKS
score lesser than a selected threshold (ranging from 0.5 to
0.95) are discarded. Finally, considering matched and dis-
carded people as true and false positives, respectively, the
metric computes the mean average precision and recall at a
person-level detection.

Regarding our problem, this metric has two main limita-
tions. Firstly, the OKS metric only considers the annotated
body points. This decision prevents the metric to properly
measure the keypoint detection’s precision of the evaluated
methods. This bias can be problematic in contexts where
many keypoints cannot be annotated, e.g., in a car context
with the strong occlusion (mostly the legs and the bodyside
opposite to the camera). Therefore, we want to integrate
false-positive keypoints into the performance evaluation of
HPE methods. Secondly, the true and false positives are com-
puted at the level of person detections instead of keypoints.
In summary, this procedure does not properly characterize
the performance of the evaluated methods on the task of
keypoint detection.

412 APK

Average Precision over Keypoints (APK) [40] is a metric
that aims to compute precision and recall scores based on
keypoints. For each keypoint, a prediction is considered as a
true positive if it is located within a defined radial distance
from the ground truth. The original work sets this threshold
to half the size of the hand. A similar threshold is used to
compute Percentage of Correct Keypoints (PCK) [40], and
it is defined as a fifth of the torso size (PCK@0.2[19]) or
half the head size (PCKh@0.5[19]). Then, non-detected
keypoints are counted as false negatives, while points that
are detected but not annotated in the ground truth count

as false positives. Finally, average precision and recall are
computed.

This metric is interesting since it handles the two prob-
lems of the COCO OKS metric: it is keypoint-based, and it
considers false positives of non-annotated keypoints. This
metric has not been used in recent HPE work [2, 20, 34, 39].
One of its main limitations is the use of a distance threshold
based on body part size. In fact, the COCO annotation style
does not provide hand or head size. The use of the torso
is also not an appropriate option in the car cockpit context
since, depending on the viewing angle, the torso’s full length
is not always fully visible on the image.

4.2. mAPK

To address the problems mentioned previously, we pro-
pose to compute an evaluation metric based on keypoints
instead of people. The mAPK metric reuses the concept from
APK of computing average precision and recall based on
keypoints but changes the acceptance method. Algorithm [
summarizes the computation process. The algorithm takes as
input a list of matched person (gt, dt) from the ground truth
and the detection, respectively, as well as two lists represent-
ing unmatched ground truth and detected people. A person
(in gt or dt) is defined as a list of keypoint coordinates (if
a keypoint is not annotated or detected, the corresponding
element in the list is empty). The output of the algorithm is
the average precision AP and recall AR.

For single-person settings, the list of matched people
consists of the ground-truth annotations and the predicted
keypoints. For multiperson settings, a person detector is
generally used to compute the people candidates in the scene.
In this case, we first carry out a pairing phase to match
ground truth and people predictions. We use for this step the
pairing algorithm from COCO based on OKS. We set the
OKS threshold which controls the pair acceptance to 0 to
avoid discarding any person (see [24] for more details).

The calculation of mAPK is carried out as follows. Firstly,
we compute a keypoint score KS (Equation 2) for each key-
point which is both annotated and detected. A keypoint is
considered as correctly detected, i.e., true positive (TP), if
its KS score exceeds a threshold selected between O and 1.
Otherwise, we consider the ground truth and the prediction
keypoint unmatched. Then, we count all unmatched keypoint
predictions as false positives and unmatched ground-truth
keypoints as false negatives. Finally, we compute precision
and recall for each type of keypoint. This process is repeated
with different acceptance-threshold values (e.g., from 0.5 to
0.95, with a step of 0.05) and then averaged to obtain the
final performance of the evaluated method.

5. Evaluated Architectures

This section describes the HPE methods in evaluated this
study. From the state of the art, we selected three recent net-

2869



Input

CNN

Single person image / person
detection patch

Propagation

Back T— L2 Loss

Predictions

Max [ Keypoints

\ Coordinates ‘

Ground Truth

Figure 3: Generic pipeline of HPE methods based on heatmap generation.

Algorithm 1: mAPK computation

Input

matched_person: pairs of (gt, dt) of matched ground truth
and detected people

unmatched_dts: unmatched detected people

unmatched_gts: unmatched ground-truth people

acceptance_score: acceptance-score threshold

Output : AP, AR

true_positives=0, false_positives=0, false_negatives = 0
for each (gt, dt) in matched_person do
for keypoint kp in the skeleton_representation do
if not empry(dt|kp]) and empty(gt[kp]) then
false_positives += 1
else if empty(dt[kp]) and not empty(gt[kp]) then
false_negatives += 1
else
if K.S(gt[kp], dtlgp]) > acceptance_score
then
true_positives += 1
else
false_positives += 1
false_negatives += 1

for each keypoint in all unmatched_gts do
false_negatives += 1

for each keypoint in all unmatched_dts do
false_positives += 1

AP = compute_AP(true_positives, false_positives)

AR = compute_AR(true_positives, false_negatives)

works [5, 22, 39] with competitive performances on single
and multiperson settings, as discussed in Section 2.2. Using
these two categories of methods will allow us to evaluate the
relevance of the mAPK metric for both single-person and
multiperson settings. These networks are detection-based
architectures (Fig. 3). At last, we describe the procedure fol-
lowed for training and evaluation of the selected networks.

5.1. Simple Baseline ResNet

Simple Baseline (SBI) architecture [39] bases its feature
extraction process on the ResNet architecture [14]. ResNet
model has been proved well efficient for image-feature ex-
traction [32, 2] and is often used in other image processing

tasks. This backbone is based on several convolution lay-
ers gathered as blocks, with skip connections between each
module adding the input of the module to the output.

Xiao et al. [39] propose to implement ResNet 50 with a
different output module for human pose estimation. First,
the ResNet 50 backbone learns to extract the features while
reducing the shape of the feature maps. Then, the last stage is
composed of three upsampling convolutions combined with
BatchNorm [17] and ReLu layers, instead of the original
ResNet C5 stage. This deconvolution stage brings back the
feature maps to their input size and generates the heatmaps
for each keypoint.

5.2. MSPN and RSN

MSPN [22] is a top-down multiperson HPE network. It
is built around two steps. First, MegDet [28] object detector
identifies the bounding boxes of each person in the images.
Then, the picture is cropped around the boxes, and each part
serves as input for the multi-stage pose estimator. A stage of
the MSPN has a U-shape architecture that processes features
at 4 different scales. A bottleneck residual module processes
the features at each scale, and skip connections are used
between the downsizing stage and its symmetric counterpart
in the upsizing stage. Intermediate supervision is applied to
each scale of the upsizing stage. Indeed, the loss is applied on
heatmaps generated at each scale and which are previously
upsampled to the network’s output shape. Stages are then
stacked several times (four times in this implementation).
To reduce information loss between stages, the architecture
uses cross-stage aggregation.

RSN [5] follows the same global architecture as MSPN.
However, a novel residual steps block module (RSB) re-
places the regular residual block in the downsizing stages.
The RSB module aims to learn delicate local representations,
by splitting the features into four channels. At the end of the
multi-stage network before the final loss, a pose refine ma-
chine (PRM) is used as an attention mechanism to generate
the final heatmaps.

5.3. Model Training and Inference

The training of the models has been done using the code
provided by the respective authors in public repositories,
following their recommendations for hyperparameters. All
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training stages were done on the COCO 2017 train set, with
mini-batches of 32 images and data augmentation operations
(horizontal flipping, rotation, etc.). The training set is com-
posed of 118k pictures, while the validation set contains 5k
images. We used ResNet-50 based Simple Baseline archi-
tecture, trained for 140 epochs on the COCO dataset with a
learning rate of le-3. RSN and MSPN are trained for 384k
iterations, with a 5e-4 base learning rate divided by 10 at
epochs 90 and 120. The networks were trained on two 24GB
Nvidia Titan RTX with 64GB of RAM and an Intel 19900k
processor.

Also, since DriPE is a single-person dataset, all network
models took as input the full image. However, for COCO
which is a multiperson dataset, the models took as input
a patch cropped around the output of a person detection
algorithm.

6. Results and Discussion

We first present the performance of the three described
networks trained on COCO 2017 and tested on both the
COCO validation set and the DriPE test set. Then, we present
the results of these models after finetuning them on the
training set of DriPE dataset. We first use AP metric based
on OKS, then compare the results with mAPK metric results.

6.1. Performance of Networks trained on COCO
Dataset

This evaluation studies the performance of the trained
networks on the COCO validation set (Table 2) using the
official dataset evaluation procedure. We validate that the
trained models achieves a performance close to the original
work (around 2% less on average).

AP OKS (%)| AP AP AP™ APL'[AR AR AR™ ART
SBI[39] [72 92 80 77 |76 93 82 80
MSPN[22] |77 94 85 82 |8 95 87 85
RSN[5] [76 94 84 81 |79 94 85 84

Table 2: HPE on the COCO 2017 validation set.

Then, we evaluate the performance of these methods
on DriPE test set (Table 3) using the models trained on
COCO 2017. Due to the camera placement in the car, DriPE
contains only “Large” subjects (subjects with a bounding
box containing more than 962 pixels [24]). Therefore, it is
more suitable to compare COCO and DriPE datasets using
AP% and AR* column values.

AP OKS (%) AP AP?® AP™> AP'[AR AR®® AR™ AR”
SBI[39] |75 99 91 75 |81 99 94 8l
MSPN[22] |81 99 97 81 |8 99 97 85
RSN[5] [75 99 93 75|79 99 95 79

Table 3: HPE on the DriPE test set.

The state-of-the-art networks show slightly lower perfor-
mances on DriPE dataset than on the COCO dataset (Tables 2
and 3). On one hand, we note that on average, APL and
AR are lower on DriPE than on COCO. On another hand,
we observe higher precision and recall scores on the three
networks when using an OKS threshold of 50% (AP%°) or
75% threshold (AP7®). The results suggest that most of the
improvements to be made in the car context concern the pre-
cision of the localization of keypoint predictions (AR / AP
threshold superior to 75 %).

6.2. Finetuning on DriPE Dataset

We finetune the three networks on DriPE training set.
Finetuning has been done for 10 epochs with a learning rate
10 times lower than the original learning rate used for the
COCO base training (Table 4).

AP OKS (%) |[AP AP AP APF[AR AR AR™ ART
SBI[39] [97 100 80 971[97 100 99 99
MSPN [22] |97 100 99 9741|98 100 99 98
RSN[5] |91 99 98 91+|94 100 99 94

Table 4: HPE of finetuned networks on the DriPE test set.

Results indicate a gain from 20 to 25% in AP and 10 to
15% in AR after finetuning the networks. This increase can
be partially explained by the relatively small variance of the
dataset. Therefore, the networks could have overfitted the
training set without experiencing an important performance
loss on the test set. Despite that, the improvement of perfor-
mance suggests that the networks learned specific features
on DriPE that they did not learn on a general dataset, which
highlights the relevance of DriPE dataset to the field. Even-
tually, AP OKS results may suggest that HPE inside of a
car cockpit would be a nearly solved problem, at least when
evaluating the performance of keypoint detections methods
at a people level.

6.3. Comparison with mAPK Metric

This evaluation assesses the performance of the same
models but at the level of keypoint predictions. We recom-
puted the performance of the evaluated models (Tables 2 and
3) using mAPK metric (Table 5 and Table 6).

mAPK (%) |Head Sho. Elb. Wri. Hip Knee Ank. Mean
SBI[29] | 44 69 59 55 65 62 60 59
AP |MSPN [22]| 49 76 60 53 62 47 40 55
RSNI[5] | 49 76 59 52 61 46 39 55
SB1[39] 82 8 83 79 8 81 80 82
AR|MSPN [22]| 87 88 87 84 82 85 85 86
RSN [5] 8 88 86 83 82 84 84 85

Table 5: HPE on the COCO 2017 validation set.

We observe that even if AP OKS and mAPK metrics
values are not directly comparable, the recall scores are close
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mAPK (%) |Head Sho. Elb. Wri. Hip Knee Ank. Mean
SBI[39] | 29 8 78 92 91 75 14 66
AP|MSPN [22]| 25 80 77 90 91 77 13 65
RSN [5] 25 78 76 89 88 68 11 62
SBI [39] 89 92 93 96 8 61 09 75
AR|MSPN [22]] 96 87 96 97 92 77 45 85
RSN [5] 94 8 95 96 89 68 33 81

Table 6: HPE on the DriPE test set.

between the two metrics (around 75%) (Tables 2, 3, 5, and 6).
However, we note that the average precision scores are lower
with mAPK. This decay in precision is explained by the high
number of false positives that are considered by mAPK but
ignored by OKS (Table 7). After analysis, we determined
that most of the false positives come from the non-annotated
points, particularly for the MSPN and RSN architectures.
These results show that the networks are overconfident in
their prediction and cannot properly detect the absence of
a keypoint on the image. Note that this information cannot
be found with AP OKS since the score is not computed at a
keypoint level.

Head Should. Elbow Wrist Hip Knee Ankle Total
GT| 17k 25k 21k 26k 26k 26k 11k 152k
TP| 16k 21k 20k 23k 23k 18k 2.8k 124k
FP| 50k 5.7k 6.4k 3.1k 3.1k 8.4k 24k 100k
FN| 0.7k 3.8k 1.1k 2.9k 3.0k 83k 8.2k 28k

Table 7: Performance of RSN model on DriPE test set with
mAPK metric.

It is worth noticing that even if the head keypoints are
considered as some of the easiest keypoints to detect in HPE,
trained models have attained a very low average precision
on their detection. The overall number of false positives
is almost twice higher than the number of true positives
(Table 7). In fact, the COCO annotation policy does not
annotate occluded keypoints on the head. Therefore, these
results highlight that the current models have difficulties
not detecting keypoints, i.e., to identify when a keypoint
is not visible. Also, the models on DriPE have very low
performance on ankles detection, both in precision and recall.
The ankles are usually difficult to predict, particularly inside
of a car, where the lower limbs are almost totally occluded by
the dashboard. This occlusion difficulty paired up with the
low contrast and luminosity makes the detection of ankles
very challenging.

Finally, we compare the evaluation of the finetuned net-
work using mAPK (Table 8). First, we may observe that
this metric confirms the increase of prediction performances
indicated by AP OKS (Table 4). Then, we notice that the
precision did not increase as much as the recall. These
results highlight the importance of DriPE to improve the
performance of current models on monitoring people in the

mAPK (%) |Head Sho. Elb. Wri. Hip Knee Ank. Mean
SBI[39] | 24 90 79 94 98 98 40 751
AP |MSPN [22]| 25 89 79 91 97 94 38 73]
RSN [5] 25 88 78 91 95 8 30 70
SBI[39] | 93 97 98 98 98 98 94 971
AR|MSPN [22]] 97 97 98 99 98 94 87 9671
RSN [5] 91 95 98 98 95 8 73 917

Table 8: HPE on the DriPE test set of finetuned networks.

consumer car context. But they also bring attention to open
challenges on keypoint prediction that cannot be solved by
simply finetuning the current models on a dataset-specific
task. Astonishingly, Simple Baseline ranks higher than more
recent methods according to mAPK. This can be observed
on both datasets and it is especially true for precision val-
ues. It reveals that Simple Baseline has a lower number of
false positives, which shows a better ability to not predict
non-annotated keypoints.

7. Conclusion and Perspectives

This paper has presented two contributions: firstly, a
new keypoint-based metric, named mAPK, to measure the
performance of HPE methods. Secondly, a novel dataset,
named DriPE, to benchmark methods for monitoring the
pose of drivers in consumer vehicles. The mAPK metric is
an extension of APK and OKS evaluation metrics. Results
indicate it characterizes more precisely the performance of
HPE methods in terms of keypoint detection, both on general
and driving datasets.

The DriPE dataset is the first publicly available dataset
depicting images of drivers in real-world conditions. We
have shown that it may contribute to further improve the per-
formance of deep neural networks on the driver monitoring
task. Moreover, the mAPK metric indicates that simply fine-
tuning current methods on the DriPE dataset is insufficient to
fully address the driver monitoring task. These results imply
that more precise methods must be developed to tackle the
existing challenges.

Future work will investigate how to include other evalua-
tion aspects in the proposed metric. For instance, the impact
of the confidence threshold on the performance measured.
Also, the proposed metric ignores the varying difficulty of
predicting keypoints of different limbs and treats equally
keypoints of different levels of visibility. Predicting the visi-
bility of keypoints could provide interesting information for
a spatial understanding of the interactions of the person with
the scene.
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