
Synthetic Data Generation using Imitation Training

Aman Kishore
NVIDIA

amkishore@nvidia.com

Tae Eun Choe
NVIDIA

tchoe@nvidia.com

Junghyun Kwon
NVIDIA

junghyunk@nvidia.com

Minwoo Park
NVIDIA

minwoop@nvidia.com

Pengfei Hao
NVIDIA

phao@nvidia.com

Akshita Mittel
NVIDIA

amittel@nvidia.com

Abstract

We propose a strategic approach to generate synthetic
data in order to improve machine learning algorithms such
as Deep Neural Networks (DNN). Utilization of synthetic
data has shown promising results yet there are no specific
rules or recipes on how to generate and cook synthetic data.
We propose imitation training as a guideline of synthetic
data generation to add more underrepresented entities and
balance the data distribution for DNN to handle corner
cases and resolve long tail problems. The proposed imi-
tation training has a circular process with three main steps:
First, the existing system is evaluated and failure cases such
as false positive and false negative detections are sorted
out; Secondly, synthetic data imitating such failure cases is
created with domain randomization; Thirdly, we train a net-
work with the existing data and the newly added synthetic
data; We repeat these three steps until the evaluation metric
converges. We validated the approach by experimenting on
object detection in autonomous driving.

1. Introduction
Data is one of the most important parts for the devel-

opment of machine learning algorithms such as Deep Neu-
ral Networks (DNN). It is often observed that better perfor-
mances were achieved from data rather than DNN architec-
tures. Data is valuable if it is well-balanced and representa-
tive across various categories and conditions; however, col-
lection of such data is laborious and time consuming and
cannot guarantee to be representative of each case. Also,
the ground truth labels by human labelers are error prone
and inconsistent across different labelers.

With faster and more efficient Graphics Processing Units
(GPUs), simulators are able to create photo-realistic scenes
in real time. As data created by simulators gets more
difficult for a human to distinguish from real data, the

data becomes more valuable for training machine learn-
ing modules. Simulators can create scenarios with dif-
ferent locations, backgrounds, light sources, times of day,
and weather conditions. Therefore, the usage of synthetic
data emerged and several approaches showed promising
results[9][22][23]. However, there are, as far as we are
aware of, no clear approaches on how and what synthetic
data should be generated.

Figure 1: A cyclic flow of imitation training. After each
evaluation of the existing model, failure cases are imitated
by a simulator and then trained and aggregated in dataset.

We propose an efficient and effective synthetic data gen-
eration approach to improve performance of machine learn-
ing models using imitation training. First, we train a base-
line model with real data. After evaluating this baseline ma-
chine learning model, scenes with incorrect predictions are
collected. Then, those scenarios are recreated by a simu-
lator, using the object’s ground truth information, with cer-
tain perturbations. The machine learning models are trained
again with newly created synthetic data as well as existing
data. These three steps are repeated until the improvements
are saturated. The flow is illustrated in Figure 1. This re-
peated imitation training requires that the validation and test
data contains all representative objects, scenes and events.

In this paper, we mostly focus on the autonomous driving
domain for DNN training. However, the approach can be

3078

applied to other domains such as medical imagery, speech
recognition, and with any machine learning algorithms uti-
lizing simulation data.

2. Previous Works
In recent years, as simulated images have become more

realistic, the popularity of synthetic datasets is rising as a
reliable source of machine learning training and validation.
There are multiple attempts to use synthetic data to improve
their machine learning models such as Flying Chairs [5],
FlyingThings3D [19], MPI Sintel [2], UnrealStereo [21],
SceneNet [12], SceneNet RGB-D [20], SYNTHIA [23],
GTA V [22], Sim4CV [18], Apollo [11] and Virtual KITTI
[9].

Particularly, Alhaija et al. [1] discussed the use of sim-
ulated generated data to efficiently create datasets that can
be used to create larger datasets. They focused on making
realistic 3D Data for urban driving scenes. They augmented
the KITTI dataset with realistic rendering. They were able
to impose the synthetic data onto the real data in order to
improve their training. Their pipeline consists of manual
placement of objects in a scene and augmentation of the
synthetic objects on a real background image. Adding these
synthetic augmented objects increases the mAP by 3-4%
from training only with real data although this was tested
with a very small dataset of less than 4000 images.

Domain randomization is also relevant to our work as it
is a useful tool to make robust datasets. Tremblay et al. [31]
focused on using domain randomization with a simulator to
create more data that can be used to collect data and avoid
time consuming data collection and manual labeling. They
investigated if using synthetic domain randomized data im-
proves the results on real world data. In their domain ran-
domization they mainly focused on adding objects like ve-
hicles into the real world and randomizing the color and the
texture. They tried multiple different networks including
Faster R-CNN, R-FCN, SSD. They were able to get some
improvement of the AP with added synthetic data.

Saleh et al. [26] used a game-engine based simulator,
Grand Theft Auto to generate data. They generated syn-
thetic data for the accurate semantic segmentation of au-
tonomous driving scenes. After training their model with
the synthetically generated data, they applied trained model
to real world images and examined how adding these syn-
thetic data will affect the results. They experimented with
various networks and datasets and found out that adding
higher quality data improved their results.

A common method of adding synthetic data to improve a
deep neural network is by using transfer learning. Douarre
et al. [7] used transfer learning with synthetic images in
image segmentation in order to reduce the training time.
They used a pre-trained CNN which was trained on simi-
lar real data and were able to achieve a higher quality mea-

sure. Transfer learning with synthetic data is a widely used
technique [14][16][25] and we have more details in our ex-
periments section.

Another technique to combine synthetic and real data is
applying blur to the synthetic data. Vasiljevic et al. [32]
experimented with mixing blurred and sharp images to im-
prove the network. They found that adding blurred data im-
proved the accuracy on blurry data as well as sharp data.
Synthetic data is often much sharper than real data so blur-
ring synthetic data should prove to make the data more re-
alistic.

Imitation learning has become a popular method in the
domains of robotics and motion planning. Codevilla et
al. [4] used imitation learning, to learn control signals of
autonomous driving. Driving behavior was learned from
simulated environments and applied the learned lateral and
longitudinal control signals into another simulated world.
Schaal et al. [27] discussed model based imitation learn-
ing. Given knowledge of the task goal, the task-level pol-
icy of the movement primitive can be computed with rein-
forcement learning procedures based on the learned model.
They showed effectiveness of imitation learning to make
humanoid robots. Ho et al. [15] discussed a generative
adversarial imitation learning algorithm and found that it
worked better than Behavioral cloning, Feature expecta-
tion matching, and Game-theoretic apprenticeship learning.
Duan et al. [8] discusses using one shot imitation learning
to teach a robot how to perform a set of tasks by training
the model with a subset of the tasks that the robot will be
expected to complete.

Teacher-student learning is another effective domain
adaptation approach as described by Li et al. [17]. The
teacher-student network has two separate networks: The
teacher network is complex and is trained with the entire
dataset; The student network is less complex and tries to
replicate the teacher network’s outputs at each layer. Usu-
ally, the output from the teacher network (at different layers)
can be used with the student network to get a convergence
that works well for both networks. The main difference
of the proposed imitation training from the teacher-student
network is that unlike teacher-student network, imitation
training keeps only a single network and focuses on cre-
ating synthetic data and aggregates it with existing datasets.

Online hard example mining is a reinforcement learning
method that identifies difficult examples and augments the
dataset with more of those difficult examples. Shrivastava
et al [28] have found that by adding a few hard examples
to an object detection dataset they were able to improve the
overall mAP. This technique is similar to imitation learning
as the model is augmented with “hard” cases where it has
the lowest precision and accuracy.

3079

3. Imitation Training

As discussed earlier, imitation learning is commonly
used in robotics for an agent to learn policy from an expert.
Contrary to conventional imitation learning, which learns
the optimal policy for an agent, our goal is to train DNN to
achieve better performance by imitation learning, which we
call imitation training. Our imitation training approach can
be seen as a hard-example mining strategy that uses syn-
thetic imagery to generate difficult examples. However, in
this strategy, Shrivastava et al [28] uses real data which is
difficult to collect especially in dangerous situations (e.g.
pedestrian in front of the vehicle). We chose to use imita-
tion training as we found that many of the failure cases came
from hard examples (e.g. heavy occlusion, truncation, etc.).
Imitation training finds optimal policy π* of synthetic data
generation which has minimum expected loss inspired by
reduction of imitation learning [24] as follows:

π∗ = arg min
π∈

∏Edπ [l (s, π)] (1)

Where π is a policy to add new synthetic dataset, the state
s is the current DNN and dπ is the average distribution of
states over a cycle. l is a binary loss function with l ∈ [0, 1]
(0 if detection is true positive or true negatives, 1 if detection
is false positive or false negative). Figure 1 shows a circular
flow of imitation training with three steps, evaluate, simu-
late and train. Yue and Le [33] divided imitation learning
into three categories, behavior cloning, inverse reinforce-
ment learning and direct policy learning. Based on their
categorization, our approach is between behavior cloning
and direct policy learning.

3.1. Evaluation and Collection of Feedback

As a first step of the cycle, the existing network is eval-
uated, and the loss l is computed. The initial state would be
the state of the model trained on real data before applying
imitation training. The confidence threshold value for the
network output is automatically selected to maximize the
F1 score. With the threshold value we can collect all false
positive(FP) and false negative(FN) cases in the validation
dataset. The loss function l of current state is computed by
the sum of the collected FP and FN.

3.2. Simulation (Imitator)

When there are M number of FP and FN frames, M sets
of scenes will be created. Multiple FP and FN cases can
happen in a frame and those cases will be simulated in one
synthetic frame. We call an image frame as a scene in this
paper. To create a synthetic scene, the 3D ground truth in-
formation is used. Since the data was collected and labeled
using multiple lidars, radars, and cameras, it contains the
3D information of dynamic objects such as 3D location,

orientation, dimension, type, etc. In order to avoid the net-
work from overfitting the imitator creates a set of similar
scenes with minor perturbations to the location and orienta-
tion. It also uses various weather conditions (sunny, cloud,
fog, rain, snow), times of day, and backgrounds to further
diversify the data. As shown by Figure 2 we are able to
take scenes that have FN and/or FP and imitate that scene in
the simulator to improve the model’s accuracy. The back-
grounds are different from the real data as we focus on im-
itating the object positions and various backgrounds acts as
domain randomization to make the model more robust.

Real Image with FP, FN Imitated Sim Image

Figure 2: Imitation data generated with the simulator based
off of the real data’s 3D features. Adding perturbation to
these imitated scenes is necessary as it prevents any chances
that of overfitting our model to the test set.

3.3. Data Aggregation and Training

To let the DNN remember all previous mistakes, all of
the training data is aggregated as the cycle repeats similar

3080

Algorithm 1 Imitation Training
Input: False Positive (FP) and False Negative (FN) scenes

with 3D ground truth information for objects (O).
Number of times each scene is imitated (N). Current
dataset D. Number of imitation cycles (C).

for c = 1 to C do
D1 = {}
for scene in {FP, FN} do

for i = 1 to N do
Randomize weather
Randomize time of day
Randomize background
for o in O in scene do

Obtain 3D information of object o
Randomize object types within category
Perturb 3D location of o
Perturb 3D orientation of o
Spawn object o in the simulator

end
Record the imitated scene s
Accumulate scene s into dataset D1

end
end
Train the model with loss functions (3)(4) with D+D1

Evaluate the model using Equation (1)
if the number of false detection decreases then

D = D +D1 using Equation (2)
end

end
Output: Improved DNN Model

to [24]. At iteration time T , we aggregate newly created
data DT to the existing datasets D as shown below.

D = ((((D0 ∪D1) ∪D2) . . . DT−1) ∪DT) (2)

where D0 is the real data in our experiment. D1..T are syn-
thetically generated data.

Our object detection DNN model uses ResNet [13]
blocks as the main feature extractor and outputs detection
proposals from output grids that are finally clustered to form
final detection results. Each layer of the model will general-
ize features of each object and using imitation training our
goal is to improve the quality and accuracy of these general-
izations. The network architecture is shown in Figure 3. For
a loss function, binary cross entropy (BCE) in Equation(3)
are used for coverage, occlusion and classification layers
and L1 loss in Equation (4) was used for the bounding box
regression layer.

BCE = − 1

N

N∑
i=1

{yi ·log(p(yi))+(1−yi)·log(1−p(yi))}

(3)

Figure 3: Architecture of our deep network based on
ResNet

Where N is the output size, p(yi) is the i-th scalar value in
the model output and yi is the corresponding target value.

L1 Loss =
N∑
i=1

|ytrue − ypredicted| (4)

For more controlled imitation training, we could add
newly generated data per scene one at a time to judge its ef-
fectiveness. However, training would take tremendous pro-
cessing time to train each case sequentially. For efficient yet
effective training, we add all cases of new synthetic scenes
to one batch of data and inspect the performance for each
case after training. A batch of synthetic dataset which does
not improve the overall performance are rejected. The com-
plete imitation training algorithm is laid out in Algorithm
1.

We repeat three steps of evaluation, simulation, and
training until the improvement saturates or the portion of
synthetic data reaches an upper limit. The convergence
of data aggregation based imitation learning was proven at
[24]. Experimentally with enough capacity of the neural
network with deep layers and long epoch of training, addi-
tion of synthetic data did not deteriorate in performance of
other cases. However, in practice, we do have an upper limit
of synthetic data ratio (50%) with respect to real data since
when the ratio of synthetic data is dominant, the network
starts to overfit to synthetic data.

Nonetheless, the performance of the imitation training
will saturate at a certain point when the simulator does not
have the same or similar assets of the mis-detected objects
(e.g. unusual road debris) or it cannot simulate a similar
environment (e.g. snowy country roads).

4. Experiments

We conducted experiments of imitation training on an in-
house dataset and publicly available datasets: Waymo Open
Dataset [29] and KITTI dataset [10].

3081

4.1. Simulator

In a choice of a simulator, there are multiple game-
engine based simulators for autonomous driving scenario
[6][23]. To train driving, planning, and control, any driving
game would be fine. To train perception networks, the im-
age quality of a simulator should be photo-realistic. Most
widely used game engines are Unity 1, Unreal Engine2,
and GTA [22]. We used a simulator based on Unreal En-
gine. The simulator provides realistic rendering with dif-
fused shadow, reflection of lights, water droplet on lens or
windshield, diffused lights, the glaring sun. The simula-
tor can reproduce any scenario with various weather con-
ditions, locations and time for domain randomization [30].
The simulator can place obstacles (vehicles, pedestrians, bi-
cycles, etc.) at specific locations or randomly. This is useful
to recreate hard scenarios accurately.

4.2. In-House Dataset

Our in-house dataset consists of real-world highway, ur-
ban, and suburban data. This data is similar in nature to
other autonomous driving datasets like: Waymo, KITTI, or
Berkeley DeepDrive. The dataset is quite diverse as it has
about 1.1 million images with varied weather (rain, sunny,
cloudy, etc.), time of day (night, day, dawn, dusk), and
backgrounds. The dataset also includes various corner cases
and challenging scenes. Once the data was collected it was
manually labeled and the quality was refined by multiple it-
erations. Since the dataset and the network are mature, it is
extremely difficult to improve the performance.

4.2.1 Feature Comparison - Synthetic vs Real

Zagoruyko et al. [34] explains how a Convolutional
Neural Network can compare subsections of an image and
match different features. Imitation training is used to im-
prove the feature matching of the real data. Although syn-
thetic data is not 100% realistic, there are numerous com-
mon features between synthetic data and real data. For ex-
ample, we can inspect discrete layers of the model to see
how our model is trained and if it is able to detect the sim-
ilar general features from the synthetic data. The model
was trained on only real data and Figure 4 shows that even
though the synthetic image is not as realistic as the real im-
age the general features of the vehicles are quite similar
each other. As long as the feature maps of real and synthetic
data are close, the neural network will treat both images the
same way. These feature maps in Figure 4 also show that
synthetic data can be used for imitation training.

Through our tests we found that adding synthetic data
that resembled False Positives and False Negatives in our
real data improved the mean average precision of the model.

1https://unity.com
2https://www.unrealengine.com/en-US/

We added this synthetic data that resembled false detections
through imitation training.

Before applying imitation training, we experimented
with a few other methods to combine real and synthetic
data.

Real Synthetic

Down
sample

m64 layer

Confidence
Blob

(Coverage)

Predicted
Bounding

Box

Figure 4: Comparison of real (left column) vs synthetic
(right column) image feature maps of higher-level CNN lay-
ers. The feature maps are quite similar to each other and
hard to be distinguished if the image is synthetic or real.
The DNN model could not detect the truncated vehicle in
the left real image as shown in the bottom left when trained
on real data only. Therefore, the right synthetic image was
generated for the DNN model to learn such features.

4.2.2 Dataset Ratio

As we progressed with our experiments, we began to fo-
cus on how the ratio of real to synthetic data affects the
mean average precision and tried to determine the best ratio
of data. In our initial experiments we found that sometimes
adding more synthetic data would result in a reduction of
mAP, so we began experimenting with different ratios to
determine the best results. Some of the data we gathered
is outlined in Figure 9. We found that the performance de-
pended on a few factors. We found that increasing the ratio
of synthetic data would improve Key Performance Indica-
tor(KPI). However, as we further increased the amount of
synthetic data, we started to face some regression. Both of
these strategies were moderately successful and afterwards
we started developing imitation training which we will dis-
cuss in the next section.

3082

Figure 5: Experiments on different ratios of real and syn-
thetic data.

4.2.3 Transfer Learning

To take advantage of synthetic data to improve our mod-
els we tried using a pretrained model. The model was
trained solely on real data and using transfer learning we
froze layers in the model and retrained with synthetic and
real data. The goal was to extend the real model using sim-
ilar but different data. We tried freezing the model at differ-
ent points and found that the optimal layers to freeze was
from the first to 245-th layer. We found that freezing the
layers as a transfer learning technique performs better than
the baseline method but it was still not the best solution to
using synthetic data.

KPI: mAP(%) Test
Real Sim

Train

Real
(Baseline)

Car 92.39 Car 89.62
Bike 75.90 Bike 63.40

Person 78.11 Person 49.23

Freeze 243
layers

Car 92.21 Car 89.65
Bike 74.08 Bike 79.92

Person 77.99 Person 73.90
Real + Sim
Freeze 245

layers

Car 92.25 Car 89.56
Bike 74.35 Bike 78.31

Person 77.88 Person 73.00
Real + Sim
Freeze 249

layers

Car 92.24 Car 89.56
Bike 74.44 Bike 78.31

Person 77.87 Person 73.16

Table 1: Experiments on transfer learning by freezing lay-
ers.

4.2.4 Imitation Training Experiments

In the last row of Figure 4, there was a false negative de-
tection on a partially visible Tesla. Therefore, multiple sim-

ilar synthetic images were generated using a game-engine
based simulator. An example of synthetically generated im-
ages is shown at the bottom right of Figure 4. Such syn-
thetic data was added in our training dataset and the new
network was trained with other real and synthetic data. The
synthetic data has randomized features (e.g. background,
weather, time of day, etc.) may increase the overall effec-
tiveness of the model. The newly trained model was evalu-
ated on an evaluation dataset and the cases of false positive
and false negative detections were reported and the cycle
was repeated.

The other example is shown in Figure 6 & Figure 7.
The existing DNN trained on real data had an issue in
detecting partially visible trucks and occluded vehicles
as shown in Figure 6. Therefore, the imitator created
multiple scenes with partially visible trucks at various
places, times of day, and weather conditions for domain
randomization. The example of synthetically generated
images imitating Figure 6 are shown in Figure 7. Along
with other synthetic data, the network was retrained.
After adding the synthetic data, the new network could
detect partially visible trucks correctly as shown in Figure 6.

Figure 6: Left: Incorrect detection (yellow rectangle) on a
truck and occluded vehicle using a model trained on real
data. The gray rectangle indicates ground truth and blue
rectangle indicates predicted detection. Vehicles with gray
rectangle only indicate false negative detections. Right:
Correct detection after imitation training using the synthetic
data.

Train with synthetic data only: The second row of Ta-
ble 2 shows the performance of a network trained on syn-
thetic training data only. It performed the worst with real
test data but did fine with synthetic data. This was an ex-
pected result because the synthetic data alone could not rep-
resent highly complicated real world scenes.

Train with real and synthetic data without imitation
training: The third row of Table 2 shows the performance
of the network trained on real data and randomly generated
synthetic data. The datasets we generated were not based

3083

Figure 7: Examples of synthetically generated images imi-
tating the false truck detection in the upper images in Figure
6.

on the false detections from the baseline model. The results
were better than training on only synthetic data but there
was significant regression from the baseline model.

Train with real and synthetic data using imitation
training: The third to sixth rows of Table 2 indicate the imi-
tation training process. In the first cycle in the third row the
new network performed worse than the baseline network.
However, as we add more data and capture more corner
cases and long tail cases, the performance improved over
time and reached the best performance as compared with
the baseline (which was only trained with real data) at the
fourth cycle. The number of cycles needed to get an im-
provement is arbitrary and for this dataset it took four imi-
tation cycles.

KPI: mAP(%) Test
Real Sim

Train

Real
(Baseline)

Car 92.39 Car 89.62
Bike 75.30 Bike 63.40

Person 78.11 Person 49.23

Sim
Car 40.07 Car 93.34
Bike 3.43 Bike 89.21

Person 3.81 Person 93.17

Real + Sim
(No Imitation)

Car 89.63 Car 90.09
Bike 72.72 Bike 73.93

Person 76.68 Person 76.96

Real + Sim
(Cycle 1)

Car 92.38 Car 92.25
Bike 75.15 Bike 93.26

Person 78.17 Person 94.40

Real + Sim
(Cycle 2)

Car 92.56 Car 95.63
Bike 75.14 Bike 93.65

Person 78.77 Person 94.70

Real + Sim
(Cycle N)

Car 92.50 Car 95.62
Bike 75.63 Bike 93.01

Person 78.47 Person 94.80

Table 2: Cross-validation of training and evaluation for each
imitation training cycle.

4.3. Waymo Open Dataset

Table 3 shows the results of imitation training on
Waymo’s Open Dataset with synthetic data. We trained the
in-house object detection DNN model illustrated in Figure 3
with Waymo data. For training, we used Waymo’s training
dataset and synthetic imitation data. For test, we used both
Waymo’s test dataset and the synthetic test dataset. The
results clearly show that adding synthetic imitation data im-
proves the model even with different dataset.

Figure 8: Waymo dataset. The grey bounding boxes of a
cyclist and persons are quite large, which caused low mAP
for both classes.

4.3.1 Image Augmentation

In order to make synthetic data more realistic we focused
on utilizing different image augmentations. One image aug-
mentation we found particularly useful was a Gaussian Blur.
We trained the Waymo Open Data set with synthetic imita-
tion data and applied a 5 × 5 Gaussian Blur kernel on the
synthetic data in order to reduce the sharpness in synthetic
images. At Table 3 we can compare the results from the
second and third rows to the baseline and we see that the
results where the synthetic data was blurred improved mAP
with a significant margin. This improvement comes from
the Gaussian Blur that made the synthetic data image his-
tograms more similar to the real data image histograms.

KPI: mAP(%) Test
Waymo Sim

Train

Waymo
Car 73.79 Car 77.95
Bike 25.19 Bike 18.55

Person 46.04 Person 8.31

Waymo +
Synthetic

Car 74.12 Car 88.83
Bike 24.98 Bike 92.48

Person 47.45 Person 93.13
Waymo +
Synthetic

Blur

Car 74.58 Car 88.01
Bike 28.13 Bike 92.79

Person 47.06 Person 92.56

Table 3: Ablation test with cross-validation of training and
evaluation for Waymo Open Dataset and synthetic data. The
blur was applied only on synthetic images.

3084

4.4. KITTI Dataset

We also applied imitation training on the KITTI dataset
with a state-of-the-art vehicle detection model, SimpleDet
[3]. We trained a SimpleDet model with real KITTI data
and used imitation training to generate synthetic data. There
were 16,711 images of real KITTI data and we generated
15,366 images of imitation data. The synthetic data imitated
the frames of false detections mostly in distant, truncated,
or occluded objects in the KITTI data. SimpleDet using
faster-RCNN as a backbone had the best performance in
Waymo’s 2D Object Detection Challenge. We trained the
model from scratch with KITTI and imitated synthetic data
and tested on KITTI test data. Table 4 clearly shows that the
imitation training with KITTI + Sim outperformed the the
state-of-the-art model in both precision and recall. Figure 9
shows a comparison against other 2D detection methods on
the KITTI test set. SimpleDet with synthetic imitation data
giving the best performance in vehicle detection.

KPI: mAP(%) Test
KITTI

Train
KITTI Mean Average Precision 67.9

Mean Average Recall 72.5
KITTI +

Sim
Mean Average Precision 68.2

Mean Average Recall 72.8

Table 4: Ablation test with cross-validation of training and
evaluation for real KITTI dataset and synthetic data. We
used SimpleDet for training and evaluation. The mAP
(Mean Average Precision) is the average precision over ev-
ery IoU threshold. Likewise, the mAR (Mean Average Re-
call) is the average recall over every IoU threshold.

Figure 9: Performance comparison of recently published
works and using imitation training with SimpleDet. Each
metric is the average precision on the corresponding class.

5. Conclusion
Through this paper we discussed the benefits of using

synthetic data and introduced imitation training to guide the
synthetic data generation and improve the performance of
DNNs. We found that adding synthetic imitation data to
a DNN by imitating false detections resulted in a signifi-
cant increase in the mAP on real and synthetic data. This
reduces the need for extensive data gathering and labeling
and shows that using synthetic data is a viable method of
improving a DNN. We validated our approach on our ob-
ject detection for autonomous vehicles. Imitation training
may be extended to segmentation, depth estimation, classi-
fication and other applications.

References
[1] Hassan Abu Alhaija, Siva Karthik Mustikovela, Lars

Mescheder, Andreas Geiger, and Carsten Rother. Aug-
mented reality meets computer vision: Efficient data gen-
eration for urban driving scenes. International Journal of
Computer Vision, 126(9):961–972, 2018. 2

[2] Daniel J Butler, Jonas Wulff, Garrett B Stanley, and
Michael J Black. A naturalistic open source movie for op-
tical flow evaluation. In European conference on computer
vision, pages 611–625. Springer, 2012. 2

[3] Yuntao Chen, Chenxia Han, Yanghao Li, Zehao Huang, Yi
Jiang, Naiyan Wang, and Zhaoxiang Zhang. Simpledet: A
simple and versatile distributed framework for object detec-
tion and instance recognition. Journal of Machine Learning
Research, 20(156):1–8, 2019. 8

[4] Felipe Codevilla, MüMatthias ller, LóAntonio pez, Vladlen
Koltun, and Alexey Dosovitskiy. End-to-end driving via con-
ditional imitation learning. In 2018 IEEE International Con-
ference on Robotics and Automation (ICRA), pages 4693–
4700. IEEE, 2018. 2

[5] Alexey Dosovitskiy, Philipp Fischer, Eddy Ilg, Philip
Hausser, Caner Hazirbas, Vladimir Golkov, Van Der Patrick
Smagt, Daniel Cremers, and Thomas Brox. Flownet: Learn-
ing optical flow with convolutional networks. In Proceed-
ings of the IEEE international conference on computer vi-
sion, pages 2758–2766, 2015. 2

[6] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Anto-
nio Lopez, and Vladlen Koltun. Carla: An open urban driv-
ing simulator. In Conference on robot learning, pages 1–16.
PMLR, 2017. 5

[7] Cl Douarreément, Richard Schielein, Carole Frindel, Stefan
Gerth, and David Rousseau. Transfer learning from synthetic
data applied to soil–root segmentation in x-ray tomography
images. Journal of Imaging, 4(5):65, 2018. 2

[8] Yan Duan, Marcin Andrychowicz, Bradly C Stadie, Jonathan
Ho, Jonas Schneider, Ilya Sutskever, Pieter Abbeel, and Wo-
jciech Zaremba. One-shot imitation learning. arXiv preprint
arXiv:1703.07326, 2017. 2

[9] Adrien Gaidon, Qiao Wang, Yohann Cabon, and Eleonora
Vig. Virtual worlds as proxy for multi-object tracking anal-
ysis. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 4340–4349, 2016. 1, 2

3085

[10] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel
Urtasun. Vision meets robotics: The KITTI dataset. Inter-
national Journal of Robotics Research, 32(11):1231 – 1237,
Sept. 2013. 4

[11] Yuliang Guo, Guang Chen, Peitao Zhao, Weide Zhang, Jing-
hao Miao, Jingao Wang, and Tae Eun Choe. Gen-lanenet: A
generalized and scalable approach for 3d lane detection. In
Computer Vision - ECCV 2020 - 16th European Conference,
Glasgow, UK, August 23-28, 2020, Proceedings, Part XXI,
volume 12366 of Lecture Notes in Computer Science, pages
666–681. Springer, 2020. 2

[12] Ankur Handa, Viorica Patraucean, Vijay Badrinarayanan, Si-
mon Stent, and Roberto Cipolla. Understanding real world
indoor scenes with synthetic data. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 4077–4085, 2016. 2

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 4

[14] Tobias Heimann, Peter Mountney, Matthias John, and Raz-
van Ionasec. Real-time ultrasound transducer localization in
fluoroscopy images by transfer learning from synthetic train-
ing data. Medical image analysis, 18(8):1320–1328, 2014.
2

[15] Jonathan Ho and Stefano Ermon. Generative adversarial im-
itation learning. arXiv preprint arXiv:1606.03476, 2016. 2

[16] Seokwon Jung, Jungbae Park, and Sangwan Lee. Polyphonic
sound event detection using convolutional bidirectional lstm
and synthetic data-based transfer learning. In ICASSP 2019-
2019 IEEE International Conference on Speech Acoustics
and Signal Processing (ICASSP), pages 885–889. IEEE,
2019. 2

[17] Jinyu Li, Michael L Seltzer, Xi Wang, Rui Zhao, and Yi-
fan Gong. Large-scale domain adaptation via teacher-student
learning. arXiv preprint arXiv:1708.05466, 2017. 2

[18] MüMatthias ller, Vincent Casser, Jean Lahoud, Neil Smith,
and Bernard Ghanem. Sim4cv: A photo-realistic simulator
for computer vision applications. International Journal of
Computer Vision, 126(9):902–919, 2018. 2

[19] Nikolaus Mayer, Eddy Ilg, Philip Hausser, Philipp Fischer,
Daniel Cremers, Alexey Dosovitskiy, and Thomas Brox. A
large dataset to train convolutional networks for optical flow
and disparity scene flow estimation. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 4040–4048, 2016. 2

[20] John McCormac, Ankur Handa, Stefan Leutenegger, and
Andrew J Davison. Scenenet rgb-d: 5m photorealistic im-
ages of synthetic indoor trajectories with ground truth. arXiv
preprint arXiv:1612.05079, 2016. 2

[21] Weichao Qiu and Alan Yuille. Unrealcv: Connecting com-
puter vision to unreal engine. In European Conference on
Computer Vision, pages 909–916. Springer, 2016. 2

[22] Stephan R Richter, Vibhav Vineet, Stefan Roth, and Vladlen
Koltun. Playing for data: Ground truth from computer
games. In European conference on computer vision, pages
102–118. Springer, 2016. 1, 2, 5

[23] German Ros, Laura Sellart, Joanna Materzynska, David
Vazquez, and Antonio M Lopez. The synthia dataset: A large
collection of synthetic images for semantic segmentation of
urban scenes. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 3234–3243,
2016. 1, 2, 5

[24] St Rosséphane, Geoffrey Gordon, and Drew Bagnell. A re-
duction of imitation learning and structured prediction to no-
regret online learning. In Proceedings of the fourteenth inter-
national conference on artificial intelligence and statistics,
pages 627–635. JMLR Workshop and Conference Proceed-
ings, 2011. 3, 4

[25] Christos Sakaridis, Dengxin Dai, and Van Luc Gool. Seman-
tic foggy scene understanding with synthetic data. Interna-
tional Journal of Computer Vision, 126(9):973–992, 2018.
2

[26] Fatemeh Sadat Saleh, Mohammad Sadegh Aliakbarian,
Mathieu Salzmann, Lars Petersson, and Jose M Alvarez. Ef-
fective use of synthetic data for urban scene semantic seg-
mentation. In Proceedings of the European Conference on
Computer Vision (ECCV), pages 84–100, 2018. 2

[27] Stefan Schaal. Is imitation learning the route to humanoid
robots? Trends in cognitive sciences, 3(6):233–242, 1999. 2

[28] Abhinav Shrivastava, Abhinav Gupta, and Ross Girshick.
Training region-based object detectors with online hard ex-
ample mining. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 761–769,
2016. 2, 3

[29] Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aurelien
Chouard, Vijaysai Patnaik, Paul Tsui, James Guo, Yin Zhou,
Yuning Chai, Benjamin Caine, et al. Scalability in perception
for autonomous driving: Waymo open dataset. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 2446–2454, 2020. 4

[30] Jonathan Tremblay, Aayush Prakash, David Acuna, Mark
Brophy, Varun Jampani, Cem Anil, Thang To, Eric Camer-
acci, Shaad Boochoon, and Stan Birchfield. Training deep
networks with synthetic data: Bridging the reality gap by
domain randomization. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition Work-
shops, pages 969–977, 2018. 5

[31] Jonathan Tremblay, Thang To, Balakumar Sundaralingam,
Yu Xiang, Dieter Fox, and Stan Birchfield. Deep object pose
estimation for semantic robotic grasping of household ob-
jects. arXiv preprint arXiv:1809.10790, 2018. 2

[32] Igor Vasiljevic, Ayan Chakrabarti, and Gregory
Shakhnarovich. Examining the impact of blur on
recognition by convolutional networks. arXiv preprint
arXiv:1611.05760, 2016. 2

[33] Yisong Yue and Hoang Le. Imitation learning tutorial. Tuto-
rial at ICML, 2018, 2018. 3

[34] Sergey Zagoruyko and Nikos Komodakis. Learning to com-
pare image patches via convolutional neural networks. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 4353–4361, 2015. 5

3086

