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Abstract

Despite its advantages as an inexpensive, weather-robust
and long-range sensor which additionally provides velocity
information, radar sensors still lead a shadowy existence
compared to lidar and camera when it comes to fulfilling
the requirements of fully autonomous driving. In this work,
we focus on fully leveraging raw radar tensor data instead
of building up on human-biased point clouds which are the
typical result of traditional radar signal processing tech-
niques. Utilizing a graph neural network on the raw radar
tensor we gain a significant improvement of +10% in av-
erage precision over a grid-based convolutional baseline
network. The performance of both networks is evaluated
on a real world dataset with dense city traffic scenarios,
diverse object orientations and distances as well as occlu-
sions up to visually fully occluded objects. Our proposed
network increases the maximum range for state-of-the-art
full-3D object detection on radar data from previously 20m
to 100m.

1. Introduction
One of the main tasks that autonomous vehicles need to

perform is the perception of their surroundings. Cameras,
lidars, and radars are common sensors used to perform a
variety of different sub tasks, including free space detec-
tion [33], scene classification [27], and detection of other
vehicles [20] and pedestrians [22].

The perception needs to be reliable and robust under all
weather conditions in order to guarantee safety for passen-
gers and other road users. One way to improve perception
reliability is to perform the same task with various different
sensors.

Since the publication of the KITTI dataset [13] a lot of
research has focused on cameras and lidars, but more re-
cently there have been also an increasing number of pub-
lications about perception algorithms for radar data. Com-
pared to camera and lidar, radar data is more invariant to
weather changes making it an important sensor for enabling
autonomous driving under severe weather conditions, such

Figure 1: Detections of one test frame overlayed on the
radar tensor data. Here the detections are only visualized
in 2D but they are actually 3D boxes. Blue rectangles are
ground truth and predictions are visualized in a shade of
yellow to red depending on the score, yellow being highest.
Note that the maximum range corresponds to 102 m.

as heavy rain or snow. Additionally, radar sensors are able
to capture velocity information instantly and they have a far
measurement range [39]. Therefore, using radar data for
object detection additionally, can improve both redundancy
and robustness in the overall autonomous driving stack.

In this work we investigate if graph neural networks (see
Subsection 3.1) are beneficial for 3D object detection on
radar data. The two main hypotheses that are investigated
in this paper are the following:

1. Using the information of the Cartesian distances be-
tween points of data in the radar signal can be used in
graph neural networks to improve the performance of
object detection tasks on radar data.
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2. Isotropic graph convolutional networks (see Subsec-
tion 3.1) are beneficial for radar data, because the radar
signal often is not located in one cell/pixel, but it usu-
ally fades into neighboring cells.

Our main contributions are as follows:

• We present a network for 3D object detection on
radar data only, which reaches state-of-the-art perfor-
mance, while being evaluated on a much more com-
plex dataset.

• We are the first to ever evaluate 3D object detection on
radar data with a distance above 50m and up to 100m.

• Using graph neural networks on radar data, we were
able to boost the object detection performance by 10%
showing that it is a suitable method for aggregating in-
formation in low-level radar data.

The remainder of this paper is organized as follows: Sec-
tion 2 gives an overview of related work. Section 3 briefly
introduces graph neural networks and FMCW radar pro-
cessing. Afterwards, in Section 4 the dataset, networks and
evaluation metrics used in this work are described. Sec-
tion 5 presents the results of the object detection experi-
ments, which are discussed in Section 6. Finally, 7 summa-
rizes this article and gives an outlook on future work.

2. Related Work
Due to the seminal publication of the KITTI dataset [13]

3D object detection in automotive context got a huge boost,
leading to thorough investigation on state-of-the-art meth-
ods for lidar-based object detection, resulting in mature ap-
proaches such as [20, 36, 47] which were especially en-
abled by the breakthrough of voxel-based as well as point
cloud based feature extraction backbones in deep neural
networks [30, 31].

Camera-only approaches for 3D object detection have
gained attraction recently [8, 37, 46], but are falling short
to lidar based approaches in terms of distance accuracy.

The obvious fusion of lidar and camera data combines
the geometrical precision of lidar together with dense visual
cues rich of context and is heavily investigated as well [19,
29, 38, 41].

When it comes to adverse weather conditions, long-
range detection and measuring velocities, camera and lidar
sensors are at a disadvantage and it is up to radar sensors
to fill this perception gap. Early work on applying deep
learning techniques to radar data for better generalizing per-
ception algorithms was done in the area of object detection
based on occupancy grid maps [24], radar point cloud seg-
mentation [34], radar point cloud based object detection in
conjunction with camera data [26] or without [2].

Radar point cloud data however is very challenging as
even with the latest high-resolution radar sensors the density
is by a factor of 10 to 100 lower / sparser than current lidar
systems.

To that end, this work among others is investigating the
underlying raw data instead of the point cloud, which itself
is a result of classical radar signal processing on the raw
data. This raw radar data (radar tensors or radar spectra)
usually form a 2D (range, velocity) or 3D (range, azimuth,
velocity) regular grid of complex-valued or real-valued en-
ergy reflection responses.

2.1. Radar Object Detection

State-of-the-art work in the area of regressing 2D or 3D
objects (including the object orientation and dimension) on
radar tensors is rather scarce so far:

The authors of [4] are using a Faster R-CNN [32] style
network to estimate the 3D location (distance and az-
imuth/elevation angle) of a real-world single point target
(corner reflector) per scene (naturally excluding dimension
and orientation).

The work of [25] collapsed the 3D radar tensor (range,
azimuth, velocity) in each dimension separately and runs
CNN-based feature extraction on each of the three result-
ing 2D inputs, concatenating the resulting feature maps and
ingesting them in a 2D object detection head.

In [9] the authors employ a ResNet-style backbone
([15]), upsampling layers and anchor-based proposals per
spatial grid cell. This is closely related to our baseline net-
work architecture (see Section 4.1).
In terms of combining radar tensor data with camera data
at an early stage and feeding it into one object detection
network research was done as well by [21], [14] and [17]
investigating different ways to fuse the rather different data
representations.

2.2. Graph Neural Networks for Object Detection

Even though graph neural networks (GNNs) are a rel-
atively new direction in research, they have been rapidly
adopted for object detection. In [11] spatial relationships
between 3D proposals are used in a graph in order to con-
sider the whole scene structure for the final box predictions.
Similarly, the authors of [7] use relative positions of the pro-
posals embedded in a graph to form an attention map. Fur-
thermore, they use a U-Net based on graph convolutions to
aggregate features.

In [45] lidar point clouds are discretized into pillars and
then graphs are constructed from k-nearest neighbor pillars.
Even though graph neural networks have been surpassing
state-of-the-art results in many areas, they have never been
applied to radar data yet.
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2.3. Datasets

There are a few publicly available radar datasets [44, 3,
28, 6], but none containing raw radar data with accurately
labeled ground truth objects. Thus, we had to create such a
dataset as described in Section 4.2.

3. Theory
3.1. Graph Neural Networks

Graph Neural Networks generalize the concept of stan-
dard convolutional neural networks to non-Euclidean do-
mains [5]. The input for GNNs are graphs consisting of
nodes and edges, where edges represent the relationship
between nodes. In standard CNNs this relationship can
only be used as features of nodes, whereas in GNNs it
can be used to propagate information through the graph
guided by the edge information. Essentially, a GNN lever-
ages the graph connectivity to learn relationships between
nodes. Through an iterative process that depends on the
graph structure, the GNN transforms the input node features
and edge features into output feature vectors. These output
features are invariant to the input order of nodes [1].

There are many possible ways to define convolution lay-
ers on graphs [43]. In this paper the Graph Convolu-
tional Networks (GCN) operator of Kipf and Welling will
be used [18]. The C dimensional node features of N
nodes in the graph can be summarized in a feature matrix
X ∈ RN×C which is propagated through a GCN layer with
a layer-specific trainable weight matrix Θ ∈ RC×C′

by the
following rule:

X′ = D̂−1/2ÂD̂−1/2XΘ (1)

where Â = A + I ∈ RN×N denotes the adjacency matrix
A with inserted self-connections and

D̂ii =
∑
j

Âij (2)

is its diagonal degree matrix. The node-wise formulation
for the above calculation is given by:

x′i =

∑
j

ej,i√
d̂j d̂i

xj

Θ (3)

d̂i =
∑
j

ej,i (4)

where ej,i denotes the edge weight from source node i to
target node j and xi is the i-th row vector in X.

Originally, the GCN convolution was used for node clas-
sification and its authors argued that it is especially useful
when the adjacency matrix contains information not present
in the data [18]. That this data can be used as edge weights

(a) Illustration how radar data
is represented in polar tensor
form.

(b) Polar representation of
range/azimuth angle trans-
formed to Cartesian space.

Figure 2: Illustration of radar data. Each black circle
represents a specific range-azimuth pair and has a 256-
dimensional feature vector representing various radial ve-
locities.

is the one of the main differences between the GCN opera-
tor and standard 2D convolutions.

Another major difference can be understood by analyz-
ing Equation 1. The first part of the equation

D̂−1/2ÂD̂−1/2X (5)

corresponds to a weighted sum of feature vectors of the pre-
vious layer and the result is a N × C matrix, which is then
multiplied with the trainable C ×C ′ weight matrix Θ. The
weighting of the feature vectors is done through the edges
and edge weights. For one/each output feature channel there
is exactly one weight for each input feature channel. This
isotropic property is a substantial difference to 2D convo-
lutions, where there is one trainable weight per pixel (or
in this case connected node) per input feature channel. In
other words, isotropic GCNs treat every ”edge direction”
equally [10], whereas standard 2D convolutions differenti-
ate between left/right/up/down pixel.

3.2. FMCW Radar

In this work a frequency modulated continuous wave
(FMCW) radar is used. FMCW radars emit a signal with
a linear modulated frequency and record the signal that is
reflected from objects in the scene. The received signal is
mixed with the transmitted signal to obtain the frequency
difference between the two. This beat frequency is a func-
tion of the range of the objects. Multiple receiver chan-
nels are used to infer azimuth angles (beams) of objects
through digital beamforming. The signal pulse is repeated
multiple times and from the phase shift between adjacent
pulses, caused by radial motion occurring between pulses
within a range resolution cell, can be used to compute the
Doppler radial velocity in that cell. So, many radar sensors
use a data tensor with dimensions range gates, beams, and
Doppler channels to detect interesting objects. In classical
radar processing, a constant false alarm rate (CFAR) algo-
rithm is often used to extract a point cloud from this tensor.
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Figure 3: Overview of our network architecture

For a more thorough introduction to radar fundamentals and
classical signal processing we refer to [39, 40].

Due to the digital beamforming radar sensors (like lidar
sensors) measure the data in polar coordinates with a spe-
cific resolution in range and azimuth (see Figure 2b). There-
fore, the signal of objects covering multiple bins in azimuth
varies with range, because an object covers more and more
azimuth bins the closer it is to the sensor. Recent publica-
tions performing object detection on range-beam-Doppler
tensors use bilinear interpolation to transform the polar data
into Cartesian space within the network [25, 9].

4. Methods and Experiments

In this work, we train three variants of a network per-
forming 3D object detection on radar data. The baseline
variant does not contain any graph convolutions whereas the
other two variants contain graph convolution layers. The 3D
box predictions of these networks (x, y, z, l, w, h, yaw) are
evaluated both in 3D and in projected birds-eye-view (2D).

4.1. Network architecture

Almost all neural networks performing object detection
on radar data act on the data in a birds-eye-view representa-
tion, which means that ideally the data should be invariant
to shifts in range and azimuth. This is clearly not the case
for polar radar data. One approach is to train the network
with more data, so it learns to use different filters for differ-
ent ranges. Even if this works, it has the shortcoming that
the network needs to first implicitly infer the range and then
use the correct filter to detect objects, making the task for
the neural network much harder. This approach could be
compared to detecting objects in camera images at differ-
ent scales, without a specific mechanism. In most cases, it
seems favorable to align variations in the data, rather than
training the network to learn it implicitly. Feature pyramid
networks [23] for example, introduce a mechanism to de-
tect objects at different scales and spatial transformers [16]
tackle the problem of aligning variations of data caused by
rotations.
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Transforming the polar data to the Cartesian space
(through e.g. bilinear interpolation) would make objects in
the data more or less invariant to shifts in range and beam
dimension. However, potentially a lot of information is lost
in this transformation and it has been shown that transform-
ing the range-beam-Doppler tensor into Cartesian space at
the beginning of the network leads to a significant decrease
in object detection performance [25].

If, in contrast, the first layers in the network act on the
polar radar data, the information about the various different
Cartesian distances between the cells for different ranges is
not available to the network (see Figure 2). To feed this
information into the network without using bilinear infor-
mation, graph convolutions are utilized. In this work, the
performance of three different networks is evaluated.

As a baseline for the experiments, we use a network
based on a pyramid ResNet [15], which uses the polar
range-beam-Doppler tensor as input and after two convo-
lutional layers converts the feature maps to Cartesian space
through bilinear interpolation. This baseline network is re-
ferred to as Radar Tensor Network (RT-Net).

The RT-Net is compared to a network where the layers
before the polar-Cartesian transformation are replaced with
graph convolutions (see Fig. 3). The graph is constructed
from the radar tensor in the following manner: each range-
beam cell forms a node with a C-dimensional node feature,
where C corresponds to the number of Doppler channels.
Each node has edges to other nodes which are either

• in the same beam and in neighboring range cells, or

• in the same range gate and in neighboring beams.

For each edge the Euclidean distance r is determined be-
tween connected nodes i, j in Cartesian space and serves as
parameter for the edge weight ej,i :

ej,i =
1

1 + r
(6)

This graph is used as input to two consecutive GCN con-
volution layers (implemented in [12]) before the output is
transformed back into a three-dimensional tensor and pro-
cessed further with the pyramid ResNet. This whole net-
work is called Graph Tensor Radar Network (GTR-Net) and
the comparison between GTR-Net and RT-Net is used to
evaluate how suitable graph convolutions are in aggregating
information and encoding features from radar tensor data.

The influence of the edge weights is evaluated by train-
ing and evaluating the GTR-Net twice - once with all edge
weights set to 1, and once with edge weights calculated
from the Euclidean distance in Cartesian space.

Each of the three networks is trained until the validation
loss was increasing and the average precision on the valida-
tion dataset was degrading.

Figure 4: Exemplary street scene (camera image) corre-
sponding to a frame of a range-beam-Doppler tensor which
was used for training. Note that camera data was not used
for object detection and that data annotations also contain
(visually) fully occluded objects.

Number of scenes 25
Number of frames 2010
Number of objects 16169

Median number of objs/frame 7.0 (min/max = 1..41)
Occlusion level 34.8% / 58.2% / 7.0%

(none, partial, fully)
Median distance of objects 33.7m (max = 102m)

Table 1: Dataset properties

4.2. Dataset

Due to a large domain gap in terms of different sen-
sor characteristics between radar sensors and different radar
data levels, we could not build upon existing radar datasets
like [3, 6, 28, 44], because either the raw radar data or ac-
curately labeled ground truth data was missing. To create
a dataset we equipped a test vehicle with a radar (Astyx
HiRes), lidar (Ouster OS-1) and camera (Point Grey Black-
fly), placing them in front-looking direction and maximiz-
ing the overlap of the commonly observed area. Extrinsic
calibration and timestamp synchronization was taken care
of to have accurately calibrated 6DoF poses (error ≤ 0.2
deg) and temporally synchronized multi-sensor data (error
≤ 5ms).

Camera and lidar data were used for manual annotation
of 3D ground truth objects (cars). In case of fully occluded
objects (not visible by lidar nor camera) but visible in radar
data via multi-path propagation, the objects properties de-
termined in previous frames were associated with the lo-
cation determined by the radar measurements. We down-
sampled the synchronized multi-sensor data to 0.25 Hz to
reduce temporal correlation between adjacent frames.

The data was captured in inner city complex traffic and
junction scenarios, trying to balance the orientation distri-
bution of the objects to not have a highway-style biased
dataset.

For training and evaluating our networks we use a fix
0.7/0.15/0.15 train/val/test split.
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Difficulty level Object properties
Easy 0..40m and occ ≤ none

Moderate 0..70m and occ ≤ partial
Hard 0..102m and occ ≤ full

Table 2: Evaluation categories used

Further statistics of our dataset are listed in Table 1 and
an exemplary street scene is depicted in Figure 4.

4.3. Evaluation Metrics

To measure the detection performance we provide the av-
erage precision (AP) for each experiment, denoting the in-
tegral of the precision-recall (PR) curve for varying thresh-
olds of the networks score values.
To have some further high-level insights we further define
three different difficulty categories of objects according to
Table 2.

Related work in radar-based object detection [2, 9, 25]
typically use an IoU threshold of either 0.3 or 0.5 evaluated
on either 2D groundplane projection or in 3D.
In this work for the 3D evaluation an IoU threshold of 0.3 is
used. Assuming that each dimension is contributing equally
to the IoU, this threshold nearly corresponds to a thresh-
old of 0.5 in 2D, because 0.32/3 ≈ 0.5. Nevertheless, the
IoU threshold has a great influence on the AP and differ-
ent down-stream tasks might have different requirements on
how accurate the detections need to overlap with objects.
Hence, the AP is also evaluated for a range of different IoU
thresholds.

5. Results
The average precision values for the test dataset are dis-

played in Table 3 and show a significant performance im-
provement of the graph convolution network over the base-
line network. However, there is only a marginal differ-
ence in performance between using edge weights based on
Cartesian distances or using identical edge weights for all
edges. The best performing network is GTR-Net with iden-
tical edge weights for all edges. Compared to the baseline,
the performance of this network improved by (+12.3%,
+10.7%, +9.8%) for the difficulties Easy, Moderate, Hard,
respectively. The GTR-Net with edge weights computed
from Cartesian distances between the nodes showed an im-
provement of (+11.5%, +9.8%, +8.9)% compared to the
RT-Net.

The best performing network - GTR-Net with identical
edge weights - is evaluated both in 2D and 3D. Precision-
recall curves for the 3D and 2D evaluation are given in Fig-
ure 5a and Figure 5b and we further evaluate the AP over
varying IoU thresholds in Figure 6a and Figure 6b.

Method Easy Moderate Hard
RT-Net (baseline) 59.3% 30.0% 25.6%
GTR-Net with all

identical edge weights 71.6% 40.7% 35.4%

GTR-Net with Cartesian
edge weights 70.8% 39.8% 34.5%

Table 3: Average precision values of our baseline method
using regular spatially gridded convolutions and graph neu-
ral network (for 3D evaluation and IoU threshold of 0.3).

(a) 3D evaluation

(b) 2D evaluation

Figure 5: PR curve for the GTR-Net with identical edge
weights and IoU threshold of 0.3.

5.1. Comparison with State-of-the-Art

Considering how many researchers work in the area of
autonomous driving, surprisingly little research has focused
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Publication Data 2D/3D Scenarios Max. Range [m] IoU AP [%]
RAD [25] radar tensor 2D Highway 46.8 0.5 86.8 ± 0.3
Dong et al. [9] radar tensor 2D Highway 30 0.3 77.3
Pointillism [2] radar pointcloud 3D All 20 0.5 67

GTR-Net (Ours) radar tensor 2D All
40
70

102
0.5

69.3
41.4
37.1

GTR-Net (Ours) radar tensor 3D All
40
70

102
0.3

71.6
40.7
35.4

Table 4: Comparison with state-of-the-art radar-based object detection methods. Please note the varying evaluation parame-
ters and the underlying different datasets.

(a) 3D evaluation

(b) 2D evaluation

Figure 6: AP over IoU threshold

on 3D object detection on radar data. There have been a
few publications about 2D birds-eye-view object detection
on radar tensor data (see Table 4), especially noteworthy in
this context is the work of Major et al. [25].

The average precision values of these publications are
not directly comparable with the results of this work, be-
cause the datasets differ and the datasets are not publicly
available, so it was impossible to evaluate our network on
their data. Re-implementation of these non open source
methods from scratch and evaluating them on our dataset
was considered, but dismissed, because different code ma-
turity levels would also prevent a fair comparison.

Nevertheless, each of these publications had one or mul-
tiple shortcomings. Particularly, all publications only eval-
uated their performance with a maximum range below 50m.
Some other deficiencies are:

• RAD [25] was trained (and evaluated) only on high-
way data in 2D. Object detection on highway data is
much easier, because objects do not have a high vari-
ance in position and orientation.

• Dong et al. [9] only evaluated their 2D detection per-
formance on highway data up to 30m.

• Pointillism [2] was trained with ground truth, which
was labeled with 16-layer lidar data only and evaluate
only up to a maximum distance of 20m.

Other publications in the field of radar-only object detec-
tion often use non-standardized evaluation metrics. Wang
et al. [42], for example, only use cameras for generating
ground truth and, therefore, cannot use the standard IoU
based AP metric and define their own metric.

This paper is the first to perform 3D object detection on
a range above 20 meters. At the same time, the GTR-Net
is trained and evaluated on difficult traffic scenes instead of
highway-only data. All in all, it is the first work demon-
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strating that radar can potentially become (one of) the main
sensor(s) for perception in autonomous vehicles.

6. Discussion
6.1. 3D Object Detection on Radar Data

Undeniably, the performance of 3D object detection
on lidar data is still superior to radar in close range and
good weather conditions. For example, in [35] the au-
thors achieve a performance of (90.3%, 81.4%, 76.8%)
with lidar-only for the KITTI benchmark dataset, categories
(Easy, Moderate, Hard). Nevertheless, recent advances in
using deep neural networks on radar data show that there is
great potential to mature radar sensors as an L4/L5 automo-
tive sensor, complementing lidar and camera sensors.

Prior works showed that object detection in 2D can be
successfully performed on radar data [25]. The evaluation
of object detection in 3D presented in this work (GTR-Net)
with an IoU threshold of 0.3 yields similar AP values to
the evaluation in 2D with an IoU threshold of 0.5 (see Tab.
4). This is an indicator that the network did indeed learn
to detect objects in the z-dimension (at least with similar
detection capabilities as in the other two dimensions). This
shows that radar sensors are in fact capable of 3D object
detection - important for non-planar road surface environ-
ments (hilly streets and highway ramps).

6.2. Graph Neural Networks

The experiment of the GTR-Net with edge weightings
based on Cartesian distances does not perform better than
the one with identical edge weights for all nodes. This im-
plies that increasing the weights of spatially close nodes,
which are primarily nodes from neighboring range gates,
does not help to improve the performance. This would
be expected if nodes with equal distances in neighboring
beams are more important than nodes in neighboring range
gates. Arguably the performance could be improved further
by using two dimensional edge attributes and differentiating
between a Cartesian distance in range- and beam- direction.
Thereby the nodes in neighboring beams could be weighted
differently than nodes in neighboring ranges. Investigating
if this leads to an improvement could answer the question
if one direction is more important for information aggrega-
tion. Further work is needed into this direction.

The question remains why graph convolutional neural
networks perform so much better than regular CNNs when
the distance information of the data is not even included.
This question could be answered by the difference of a stan-
dard 2D convolution layer and a graph convolution. The
isotropic graph convolution used in this work aggregates
information in one node by weighting the features of con-
nected nodes via edge weights but only using one trainable
weight per feature channel for all connected nodes.

This difference could explain why the GTR-Net was
much better at aggregating relevant information leading to
a much better performance. Due to the nature of radar sig-
nals and the resulting non-ideal point spread function, the
signal is not localized exactly in one range-beam pixel, but
it might be affecting neighboring pixels, too. The isotropic
GCN seems to be better at aggregating information under
these circumstances.

7. Conclusion

Object detection is one of the most crucial tasks in au-
tonomous driving to further predict trajectories of non-static
objects. Based on lidar data it, already gives good results
but to design fail-safe systems it is desirable to be able to
perform this task on other sensor modalities also, e.g. radar
data. Therefore, in this work we have presented a network
for 3D object detection purely on radar data. Compare to
current state-of-the-art, the presented object detection on
radar data goes beyond distances of 50m range. Through
utilizing graph neural networks for information aggrega-
tion and extraction of features from the radar tensor, we
improved the object detection performance by +10% and
achieved state-of-the-art performance. We demonstrated
that, due to their properties, graph neural networks are very
compatible with radar data.

In future work, we will investigate if the performance
can be further improved by using graph convolutions with
separate edge attributes in range and in beam direction. Ad-
ditionally, we will evaluate the performance on pedestrians
and study how well the network is able to predict the veloc-
ity of objects.
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based 3d object detection and tracking. arXiv preprint
arXiv:2006.11275, 2020. 2

[47] Yin Zhou and Oncel Tuzel. Voxelnet: End-to-end learning
for point cloud based 3d object detection. In IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
June 2018. 2

3069


