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Abstract

The detection of polylines is usually either bound to

branchless polylines or formulated in a recurrent way, pro-

hibiting their use in real-time systems.

We propose an approach that builds upon the idea of sin-

gle shot object detection. Reformulating the problem of po-

lyline detection as a bottom-up composition of small line

segments allows to detect bounded, dashed and continuous

polylines with a single head. This has several major ad-

vantages over previous methods. Not only is the method

at 187 fps more than suited for real-time applications with

virtually any restriction on the shapes of the detected po-

lylines. By predicting multiple line segments for each cell,

even branching or crossing polylines can be detected.

We evaluate our approach on three different applicati-

ons for road marking, lane border and center line detection.

Hereby, we demonstrate the ability to generalize to diffe-

rent domains as well as both implicit and explicit polyline

detection tasks.

1. Introduction

Polylines are ubiquitous in many applications. They ena-

ble a generic representation of real world objects like lane

markings, curbs etc. However, the recognition of polylines

in images is usually bound to branchless polylines or for-

mulated in a recurrent way. Moreover, many approaches

can only detect a single polyline, while the majority of ap-

plications would need a multitude (e.g. lane markings in Fi-

gure 1).

Learning the detection of polylines so far required recur-

rent architectures, because the number of polylines is often

unknown and every polyline contains an indefinite number

of vertices (e.g. [17]). At the same time, recurrent architec-

tures are difficult to train and are comparably slow. Feed-

forward neural networks, however, need a well-defined ri-

gid output format that seems incompatible with the variable

nature of polylines at first sight.

*equally contributed

Figure 1. YOLinO detects generic polylines as a bottom-up composition.

The image is split into spatial cells each predicting multiple line segments.

As one advantage, dashed and solid road markings can be detected using

the same head. Aerial image: © City of Karlsruhe | Liegenschaftsamt

We propose an approach that is inspired by single-shot

object detection [31, 32] and is able to detect bounded, das-

hed and continuous polylines in real time without a recur-

rent architecture. Instead of recurrent node proposals, we

reformulate the problem of polyline detection as bottom-up

composition of small line segments. First, the image is fed

into a neural network that predicts multiple line segment

proposals for independent spatial cells (cf. Figure 1). Later,

the line segments can be combined into polylines of virtu-

ally any shape or topology.

The explicit encoding of start and endpoints allows pre-

dicted lines to carry directional information. Furthermore,

they can be enhanced with class labels to differentiate bet-

ween different line types where such a classification is use-

ful (e.g. lane marking types in Figure 1). Lastly, we can

represent overlapping polylines in the image. In fact, our

parametrized system is able to even estimate polylines that

head in opposite directions while occupying the exact same

pixel space. Facilitating polylines for robotic tasks is intui-

tive as most ground truth data is provided as polylines in

modern datasets [7, 29].
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Contributions and outline We propose a bottom-up po-

lyline detection approach that is inspired by single shot ob-

ject detection but serves the same needs as recurrent appro-

aches. For the first time, this allows to obtain a polyline

detector that is not only easy and stable to train. With an

inference speed of 187 fps, it also allows to use polyline de-

tections in real-time applications such as automated driving.

Thereby, we close a gap that is left in previous works which

are reviewed in the next section.

In Section 3 and Section 4, we describe our approach

and the corresponding non-maximum suppression, respecti-

vely. Using three datasets around autonomous driving, in

Section 5 and Section 6, we demonstrate the generality of

our approach for implicitly and explicitly visible polylines

that range from short dashes to continuous and even cros-

sing or branching polyline structures. Still, for the TuSim-

ple benchmark as an exemplary application, we show that

our approach can reach the performance of networks that

are tailored just to that very task.

2. Related Work

Related approaches can be separated into three previ-

ously unrelated groups. First, we review single shot object

detection approaches that our idea is based on. The second

group is line segment detection (LSD) which detects line

segments assuming they are straight, clearly delimited and

independent of each other. Finally, we present recurrent ap-

proaches.

An approach that fits neither category, but has concep-

tual similarity to our 1D border points representation is [24].

Based on points as input, object surfaces are estimated. A

transfer to the image domain is generally conceivable, but

a suitable encoder is probably as complex as our whole ap-

proach.

Single shot detection Object detection can mainly be di-

vided into one- and two-stage approaches. However, alter-

natives like multi-stage approaches [5] exist.

Two-stage approaches have a region proposal step that

predicts sparse regions of interest. They are usually more

accurate, but also more complex and less efficient. Repre-

sentatives of this group are the anchor-based R-CNN fa-

mily [14,15,34] and R-FCN [10], but there are also anchor-

free two-stage approaches [44].

Motivated by real-time capable inference times and sim-

plicity, single shot object detection approaches have been

proposed. They skip the region proposal step and den-

sely predict objects directly on the image. Most famously,

SSD [27] and the recently extended YOLO family [4, 31–

33], but also RetinaNet [25] and EfficientDet [38] are ba-

sed on static anchors. However, as for two-stage approa-

ches, anchor-free, but slower alternatives have been propo-

sed [12, 20, 39].

While both, one- and two-stage approaches are continu-

ously being improved, we wanted to build upon a foun-

dation that is both real-time capable and well-known to

be applicable to other tasks than object detection. Thus,

we evaluated both YOLO9000 [32] and YOLOv3 [33]

with YOLOv3 showing no measureable improvement over

YOLO9000 for our task. For highest performance, we sug-

gest to transfer our idea to recent architectures like YO-

LOv4 or EfficientDet, but claim that YOLO9000 is suffi-

cient to show the overall idea and give an estimate of its

performance.

Line segment detection The problem of detecting (parts

of) straight lines has been widely covered under the term

line segment detection (LSD). For most approaches that

do not employ deep learning, we refer to the work by

von Gioi [16, 40] that is still often used as baseline. In

[40], they also provide a well-written and comprehensive

review of multiple classical approaches and key ideas. [2]

and [8] not only proposed the probably most significant im-

provements compared to [40], they also provided two of the

main datasets for evaluating LSD quantitatively, both ba-

sed on the YorkUrban images [11]. However, by concept,

all those approaches are limited to lines along edges in the

image and cannot detect implicit lines, such as conceptually

connected dashes or lane center lines.

Given the aforementioned and the Wireframes [18] da-

taset, deep learning approaches could tackle the problem of

LSD. [18] proposed to detect both junction points and lines

connecting them. [41, 42] proposed to use attraction fields

for LSD, significantly improving the state of the art. While

those three approaches used heuristics to finally extract line

segments, [45] proposed the first end-to-end-trainable ap-

proach for LSD. Recently, [43] reformulated the idea of

attraction fields in an end-to-end trainable fashion.

Still, these approaches focus on more or less explicit li-

nes. Also, in contrast to polyline detection, LSD methods

generally target wireframes or similar edges that are den-

sely distributed in the image, without any semantic meaning

and usually straight. This makes them considerably diffe-

rent from the polylines that we tackle, but a domain transfer

could be tried.

Polyline detection This brings us to approaches that aim

for the very same generic polylines or polygons that we are

trying to detect. They can be found in two fields: instance

segmentation and road network/road boundary extraction

from bird’s eye view imagery.

For highly accurate, but automated instance segmenta-

tion, a series of recurrent neural networks (RNNs) has been

proposed [1, 6]. They each expect a bounding box/crop

around an object and then predict the polyline vertices node

by node with optional refinement using gated graph neural
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networks [1]. Not only are these RNNs usually slow and

difficult to train, they also need special care to predict the

initial vertex. [23, 26] rely on a more generic initialization

that fits well for the instance segmentation case, but not at

all to our exemplary applications. While being faster than

the recurrent approaches, with around 30ms [26] is still far

away from the speed of single shot detectors. Also, extra

steps would need to be added to care about branches and

merges in the graph.

For the extraction of road network information, multiple

approaches predict a graph vertex by vertex. [3] proposed

to predict either a direction or a STOP token using a convo-

lutional neural network (CNN). This enables the automa-

tic tracing of the road network given an initial vertex and

allows cycles in the network using a distance-based loop

closure. In [17], two RNNs are predicting both direction

and position of the next vertex that leads along the road

boundary. In addition, the RNN estimates the branching

degree for each node, allowing to extract directed acyclic

road boundary graphs. In contrast, [22] directly predicts the

position of the next vertex using a RNN, proposing to con-

vert a graph into multiple bidirectional branchless polygons.

Finally, [9] predicts all neighboring nodes with a recurrent

decoder and checks for overlap with the existing graph to

close loops.

To the best of our knowledge, all polyline detection ap-

proaches have in common that they are either recurrent and,

thus, hard to train and slow, or very limited in their topology.

This motivated our search for a generic, yet fast method to

detect polylines of virtually any shape.

3. Generic polyline detection

YOLinO is inspired by the YOLO object detector fa-

mily [31–33, 35], but refined for the purpose of polyline

detection. The overall idea is to split the image into se-

veral spatial cells and predict multiple line proposals for

each cell. Thus, we enable real-time capability with a shal-

low and simple network, while being flexible to generalize

to any kind of polyline without any restriction on the shape.

Architecture While any backbone with sufficient

downsampling capabilities may be used, we chose

YOLO9000 [32]. We also ran experiments with YO-

LOv3 [33], but found it to be outperformed by the smaller

version when applied to polyline detection.

DarkNet-19 is a backbone consisting of 19 repeated con-

volutions and five maxpooling layers to produce a fixed size

feature map which represents the cell grid. It is then expan-

ded with an additional convolution to predict the parameters

for a given number of line segments within each cell. The

full architecture can be found in the supplementary mate-

rial.

(a) Cartesian points (b) 1D points (c) Euler angles

Figure 2. Representations for line segments in a spatial cell. Unbound

Cartesian Points (Po) are the most flexible variant, whereas 1D border

points (1D) and Euler angles (Eu) converge faster, although the former

suffer from a discontinuity in the top left corner.

Predictors Each predictor is constructed as P = (g, l, c)
with geometric definition g, a class confidence l and the

confidence of the predictor as c. The number of predictors

per cell consequentially puts an upper limit on the number

of line segments that can be predicted per cell.

Grid resolution In its vanilla version, DarkNet-19 redu-

ces an input image by a factor of 32. An input image of

640 × 640 for example, translates to a grid size of 20 × 20
and a cell size of 32×32 pixels. As such, the grid resolution

is tightly bound to the network architecture.

As different applications may benefit from finer grid re-

solutions, we add a custom network layer for rescaling the

output of the feature extractor backbone. This new upsam-

pling block consists of a transposed convolution and three

regular convolutional layers. When upsampling, we also

employ skip connections in order to keep fine-grained fe-

atures in the process. We evaluate three different upsam-

pling configurations resulting in a grid cell of either 32×32
pixels, 16× 16 pixels or 8× 8 pixels.

Line representation A suitable set of geometric parame-

ters g must be defined to describe the position, dimension

and direction of a line segment. Furthermore, the repre-

sentation must enable an efficient and meaningful calcu-

lation of distances d(g, ĝ) between line segments for the

loss function. We evaluate several line representations and

run extensive evaluations with three variants: unbound Car-

tesian points (Po), 1D border points (1D) and Euler an-

gles (Eu). Note that for all line representations, the start

and endpoints are defined by their positions in the network

output and, thus, a directional information is encoded im-

plicitly.

The unbound Cartesian points (Po) define a line segment

intuitively with two Cartesian points that are not bound to

any restriction in length or position within a grid cell (see

Figure 2a): gPo = (gs, ge) with gs, ge ∈ [0, 1] × [0, 1]. We

later encountered this concept to be quite similar to the ob-

ject detection representation presented in [20].

A positional loss can be calculated as distance between
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two line segments g and ĝ with the sum of Euclidean dis-

tances between both start and endpoint of the two lines.

dPo(g, ĝ) = ∥gs − ĝs∥2 + ∥ge − ĝe∥2 (1)

As an alternative, we investigate two other line representa-

tions that restrict line segments to have their start and end-

points on the border of a cell. We expect both to converge

faster and limit the search space in order to predict con-

nected polylines.

The minimal parametric 1D border points (1D) regard

the cell border as a one-dimensional line, starting in the top

left corner and wrapping around the cell clockwise (see Fi-

gure 2b). In this setting, a line is described by any tuple

of two positions: g1D = (gs, ge) with gs, ge ∈ [0, 1] along

the border. We calculate the distance between two line seg-

ments g and ĝ as follows:

d1D(g, ĝ) =
∑

i∈{s,e}

min(|gi − ĝi|, |1− (|gi − ĝi|)|) (2)

The Euler angles (Eu) solve the discontinuity problem of

1D border points (1D) at points close to the top left cor-

ner [35]. We represent a line segment as cosine and sine

components of the start and endpoint angles, α and β:

gEu = (cos(α), sin(α), cos(β), sin(β))
⊺

.

Like for the 1D border points (1D), start and endpoints

both lie on the cell border. The angles α and β are then

measured between the y-axis of the image and the line be-

tween the cell center and the respective border point (see

Figure 2c).

Due to the given periodicity of the representation, the

distance is continuously defined between the individual

components. Similarly to [35], we make use of the mean

squared error (MSE) between all components.

dEu(g, ĝ) =
1
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Training objective One of the most crucial ideas to con-

ceptualize when dealing with single shot detection systems

is the notion of responsibility [31]. When calculating the er-

ror term for a given network output, each of the ground truth

lines is only matched with a single predictor. To find the

predictor, that is considered responsible for a given ground

truth line segment, we opt for an iterative greedy approach:

Within each cell, we match the closest pair of ground

truth line and predicted line until all ground truth lines are

assigned a responsible predictor. Ultimately, not all pre-

dictors will be matched to a ground truth line. However,

this is intended as each predictor should be responsible only

for a specific class/type of line segments that might not

be present in the current image. Our matching process is

order-invariant, computationally manageable and enables a

responsibility concept for different classes and geometric

types of line segments to be learned by different predictors.

We formulate a loss function for this purpose as weigh-

ted sum of four sub loss terms. These loss terms are defined

in Equations (4) to (7).

Lloc =

S
∑

i=0

L
∑

j=0

P
∑

k=0

✶
resp
ijk d(gij , ĝik) (4)

Lresp =

S
∑

i=0

P
∑

k=0

✶
resp
ik (cik − 1)2 (5)

Lnoresp =

S
∑

i=0

P
∑

k=0

(1− ✶
resp
ik )(cik − 0)2 (6)

Lclass =

S
∑

i=0

L
∑

j=0

P
∑

k=0

✶
resp
ijk

C
∑

c=0

(lik(c)− l̂j(c))
2 (7)

Here, S denotes the number of cells within the output

grid, L the number of ground truth lines, P the number of

predictors and C the number of classes.

Equation 4 defines the loss Lloc on the geometric dis-

tance d(g, ĝ) between two line segments and encapsulates

the localization error of all assignments. ✶
resp
ijk indicates if

in cell i, ground truth line j was assigned to predictor k by

the above-mentioned matching process.

Equation 5 and Equation 6 build the confidence error for

any predicted line segment. cik is the confidence score of

the kth predictor with the ith cell. ✶
resp
ik denotes if the kth

predictor in cell i, was assigned to any ground truth line.

Equation 7 calculates the classification error Lclass of

the classification lik(c) for the kth ground truth line in cell i

for class c.

4. Non-maximum suppression

Since our method outputs a collection of line segments,

we propose a simple, yet effective post-processing. Initi-

ally, it is important to set a suitable confidence threshold to

keep only relevant predictors. While the resulting output

may already be useful for some downstream applications,

the precision can drastically be improved by adding appro-

priate non-maximum suppression (NMS).

The objective of NMS is to reduce the number of pre-

dictions to the correct density and remove duplicates. While

this is rather straight-forward for object detections, the de-

tection of polylines bears some ambiguities. Especially

for implicit labels like centerlines, many close predictions

might be accounted as correct by a human and, thus, ma-

nually annotated ground truth labels are noisy by definition.
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Furthermore, the neighbor cells which construct a polyline

influence the correctness of a predictor and, thus, need to

be regarded in the process. Hence, for NMS, we propose to

compare the predictions with a confidence score cik > τc
across multiple spatial cells in the image domain.

Independent of the chosen line representation, redun-

dant predictions are clustered using DBSCAN [13] on

(mx,my, l, dx, dy)
⊺

where mx,my are the center point

image coordinates, l is the length and dx, dy are normalized

directions of each predicted line segment. We calculate the

mean representative of each cluster as result of the NMS.

Here, the confidences are used as weights for both cluste-

ring and averaging each cluster. This process drastically in-

creases the precision of the estimate while hardly impairing

recall and, at 230 fps, not impairing the inference speed. All

details on NMS can be found in the supplementary material.

5. Datasets

Our method for image based polyline estimation is de-

signed to be applicable to a wide range of applications. To

prove the method’s adaptability, we present results on three

different datasets covering two domains and three distinct

tasks from photogrammetry and robotics.

TuSimple: Lane boundary estimation The TuSimple

lane detection benchmark1 presents the task of estimating

lane boundaries on a highway setting. The popular dataset

features more than 3000 front view images for training, 358
for validation and 2782 for testing. The polylines are con-

tinuous, each describing the boundary between two lanes,

indifferent of the type of lane marking.

Karlsruhe Aerial Images (KAI): Lane marking de-

tection We use aerial images of a highway section near

Karlsruhe, Germany, for which the actual lane markings

have been annotated manually as polylines. This data-

set [29] contains more than 1400 bird’s eye view (BEV)

images for training and the task is to identify the explicit

white lane marking instead of the implicit lane boundaries

of TuSimple. It is important to note here that the dataset

provides both continuous as well as dashed markings, requi-

ring the detection to cope with both continuous and bounded

labels as well as a classification of these.

Argoverse: Lane centerline estimation As third dataset,

we work with Argoverse [7], using its underlying high defi-

nition map information to project lane centerlines into more

than 2600 front view images. This requires the model to es-

timate implicit polylines that do not have direct visual cues

1https://github.com/TuSimple/

tusimple-benchmark/tree/master/doc/lane_detection

within the image. Given that lane centerlines are often am-

biguous and prone to overlaps and occlusions, this problem

setting is considered the most difficult of the three. Unfor-

tunately, there is neither in Argoverse nor anywhere else a

benchmark regarding centerline estimations. That’s why we

state our results for future comparison.

Data augmentation To enlarge the datasets and reduce

the susceptibility for overfitting, we employ several data

augmentation techniques during training. For all datasets,

random color jitter on brightness (±50%), contrast (±50%),

saturation (±50%) and hue (±20%), random erasing (2%–

15%) and normalization of the colors within the datasets are

applied. A small random rotation of up to 36° and random

crop up to 18% of the image size is applied to the TuSim-

ple and Argoverse datasets, while full 360◦ rotation, but the

same cropping are used for the KAI dataset.

6. Experiments

We evaluate three major parameter choices on the

TuSimple dataset, but also show example results for the de-

tection on Argoverse and Karlsruhe Aerial Images later on.

At first, we examine the influence of the line representation.

Secondly, we investigate how different numbers of predic-

tors for each spatial cell affect the performance. And, lastly,

we train networks for the different available grid resolutions

(32 px, 16 px, 8 px) and compare the results.

For comparison, we trained all TuSimple networks for

80 epochs with a batch size of 32 on a Nvidia GTX 1080Ti

GPU. The initial learning rate is set to 10−3. For unbound

Cartesian points (Po) a learning rate of 10−4 was necessary

for convergence. Further details on the experiment can be

found in the supplementary material.

Pre-processing Both 1D border points and Euler angles

force all line segments to start and end on the border of a

single grid cell. Naturally, bounded polylines do not always

follow this restriction. Consequently, we need to convert

arbitrarily starting and ending polylines into line segments

that are restricted to start and end on cell borders (see Fi-

gure 3). First, we calculate the intersection points of the po-

lylines with the cell grid (see Figure 3a) and remove points

within the cells (see Figure 3b). Next, the start and end

points of the polylines are extrapolated (see Figure 3c) if

they cover more than half of the grid cell. Otherwise they

are dropped (see Figure 3d).

This introduces slight discretization errors which are

most noticeable in sharp turns and on the ends of a polyline.

Our evaluation accounts for these errors as we compare the

predictions to the raw ground truth lines. However, for cla-

rity, we provide the average ground truth deviation for the
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(a) slice (b) merge (c) extrapolate (d) drop

Figure 3. Converting original polylines to discretized cells on a 2 × 2

grid. Black lines visualize the ground truth lines, that are modified from

steps a to d. The modifications are highlighted in blue.

different datasets and grid resolutions in the supplementary

material.

Line segment evaluation metrics To enhance compara-

bility between the different problem settings, we also deve-

lop an evaluation metric that allows us to quantify the cor-

rectness of a collection of line segments with respect to a set

of ground truth polylines. We provide recall, precision and

F1 score for all experiments in order to provide an insight

into the quality of the actual predictions. Other works resort

to a pixel-based IoU metric, which is often more difficult to

interpret and neglects the direction of line segments [28].

For evaluation, we run our NMS and sample evaluation

points p̂ = (x, y) along the ground truth and the predicted

line segments (with a sample distance of 1 px). For all

points the orientation α of the line segment is calculated

in order to compare also the orientation.

Having this representation, we treat predicted points as

true positive whenever they are the closest prediction to a

ground truth point and lie within a certain radius τ of all

three dimensions (x, y, α).

TuSimple benchmark In order to compare our results to

related work, we also present the TuSimple benchmark me-

trics with average accuracy, false negative and false posi-

tive rates. The TuSimple benchmark provides evaluation

scripts and labeled test data for the TuSimple dataset. Here,

lane boundary instances are expected and thus further post-

processing is required. First, we propose to find connected

components in the generic NMS output. At each level we

calculate the average representative and then fit a cubic

spline into each line instance.

We assume two NMS predictions a and b to be connected

if the start point of a is within a certain distance from b’s

endpoint (here: 75% of the cell size). This is done using a

breadth-first search with a loop detection, resulting in a dis-

tinct tree-like structure for each component. Next, for each

tree, predictions are averaged across the same depth level.

Finally, to increase fidelity, each connected component is

interpolated with a cubic spline. Further details about the

TuSimple post-processing can be found in the supplemen-

tary material.

Line Acc FP FN F1 Rec. Prec.

1D .887 .157 .160 .616 .955 .455

Eu .877 .137 .168 .685 .956 .533

Po .914 .159 .112 .740 .950 .607

Table 1. Results for different line representations on the TuSimple vali-

dation set. We evaluate 1D border points, Euler angles and unbound Car-

tesian points. The architecture has eight predictors per 32px cell.

Line Pred Acc FP FN F1 Rec. Prec.

Eu 4 .878 .168 .180 .546 .971 .380

Eu 8 .877 .137 .168 .685 .956 .533

Eu 12 .885 .154 .159 .717 .940 .580

Po 4 .922 .157 .099 .713 .952 .571

Po 8 .914 .159 .112 .740 .948 .607

Po 12 .903 .135 .120 .777 .941 .662

Table 2. Results on different number of predictors for both unbound Car-

tesian points (Po) and Euler angles (Eu) on the TuSimple validation set

without any upsampling (32px).

Line representations One of the major modeling deci-

sions of our approach lies in the choice of a suitable line

representation. It is worth mentioning that the 1D border

points (1D) converge rather slowly compared to Euler an-

gles (Eu) due to the fact that the network has to overcome

the discontinuity between points before and after the top left

corner of the grid cell, where the mathematical distance is

huge, but the actual difference is tiny. Further, in order to

achieve convergence with unbound Cartesian points (Po),

it appears to be useful to initialize a smaller learning rate

compared to the other two experiments.

We present three experiments comparing the representa-

tions in Table 1. For each, we used eight predictors per cell,

a cell size of 32 px (i.e. no upsampling). Unbound Cartesian

Points (Po) have the highest false positive rate for TuSim-

ple, but are the most convincing regarding both generic F1

score and TuSimple accuracy. We assume this to be due

to the flexibility that comes with this representation. While

we liked the idea of the minimal representation of 1D bor-

der points, it proved to be unstable during training. Hence,

we will perform further experiments only on unbound Car-

tesian points and Euler angles.

Number of predictors Another important aspect in de-

signing single shot detection models is the allowed num-

ber of predictions per cell. Therefore, we trained networks

with 4, 8 and 12 predictors per cell at a default resolution

of 32 × 32 pixels. The results are presented in Table 2.

They suggest that fewer predictors work better for TuSim-

ple accuracy while more predictors work better for the more

generic F1 score. Hence, we recommend 12 predictors for

more complex applications while using four or eight predic-
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Line Grid Acc FP FN F1 Rec. Prec.

Eu 32 px .877 .137 .168 .685 .956 .533

Eu 16 px .899 .343 .201 .658 .959 .500

Eu 8 px .839 .481 .331 .712 .919 .581

Po 32 px .914 .159 .112 .740 .948 .607

Po 16 px .930 .258 .095 .739 .951 .604

Po 8 px .875 .405 .196 .776 .930 .665

Table 3. Results for different cell sizes on the TuSimple validation set.

We compare Euler angles and unbound Cartesian points with eight predic-

tors. 16px is best in TuSimple accuracy, 8px has the highest generic F1

score.

tors for the TuSimple lane boundary estimation task.

Grid resolution The third important choice is whether

to use the default resolution of 32 × 32 pixels or add one

(16 × 16 px) or two upsampling modules (8 × 8 px). We

evaluate all grid resolutions on both Euler angles (Eu) and

unbound Cartesian points (Po) with eight predictors per cell

(see Table 3). Using one upsampling module (16 px) seems

to be best for TuSimple accuracy while two upsampling mo-

dules (8 px) is the winner regarding generic F1 score.

Comparison with the state of the art As there are no

benchmarks for semantic polyline detection, we settled for

the TuSimple lane boundary estimation benchmark as sim-

ple example application. Thus, our generic framework com-

petes with approaches that are tailored, but also limited to

the very detection of a few mostly vertical line instances.

For evaluation on the test set, the previous experiments

suggested two candidate configurations: unbound Cartesian

points at a resolution of 16 px with either four or eight pre-

dictors. Since, on the validation set, four predictors only

scored 88% accuracy, we discarded this option.

We did not expect to win, but rather wanted to evalu-

ate performance w.r.t. far more specialized networks. With

94.2% accuracy on the test set (see Table 4), our most pro-

mising candidate gets within three percentage points of the

best specialized competitor, which is a lot better than we

expected. In Figure 4, we show sample results.

Hence, while not setting a new state of the art for

highway lane boundary detections, YOLinO is so far the

only choice for many, especially more complex applications

which do not have a multitude of existing, specialized solu-

tions. Still, we get close to the best possible performance

without requiring any network specialization.

Other applications To show the wide range of applicati-

ons for our approach, we present further results on Karls-

ruhe Aerial Images and Argoverse.

2reported by [36]

Method Acc FP FN fps

LineCNN [21] .969 .044 .020 17

PINet [19] .958 .059 .033 40

LaneATT [36] .967 .036 .018 250

ResNet-18 [30] .961 .0192 .0402 312

YOLinO (ours) .942 .188 .076 187

Table 4. Our best-performing configuration (Po, eight predictors, 16px)

compared to selected related work that are specifically tailored towards

lane boundary detection. While YOLinO is not tailored to this task, we

are able to reach comparable accuracy on the TuSimple test set. Note that

regarding inference speed, YOLinO is among the fastest approaches.

The Argoverse dataset is by far the most challenging task

in the evaluation. Lane centerlines are already difficult for

humans to determine and, thus, labels are also prone to va-

riations. The detected centerlines have a precision of 41%,

recall of 69% leading to an F1 score of 52%. Examples

can be found in Figure 5. Regarding the complexity of lane

structures, this is already a great result.

Karlsruhe Aerial Images contain mostly homogeneous

images, but only few examples of corner cases like on-

ramps or bridges. Still, we are able to cope with these chal-

lenges and predict markings with an F1 score of 89%, a

recall of 90% and a precision of 88%. Examples can be

found in Figure 6.

7. Conclusion

We presented YOLinO, a single shot polyline detector

enabling to build real-time applications using polylines.

While being a generic approach, YOLinO is comparable to

state-of-the-art TuSimple lane detection algorithms. Besi-

des being extremely fast, our approach can detect a wide

range of polylines, even if they are not explicitly visible,

branching or even crossing. Moreover, both dashed and

continuous lines can be detected with the same head. This

enables robotic applications such as road marking detection

or lane centerline estimation, but is also conceivable for

many others, e.g. blood vessel detection.

While we demonstrated the general idea using

YOLO9000, using a modern backend such as Effi-

cientNet [37] and incorporating ideas from YOLOv4 [4]

is expected to improve performance even more. This also

holds for adding a learned NMS module, e.g. exploiting

the grid structure with a Graph Neural Network.
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(a) Ground truth (b) Prediction (c) Prediction post-processed

Figure 4. Results for the TuSimple benchmark using unbound Cartesian points, eight predictors and a grid resolution of 16px. Colors in (a) and (c)

indicate instances, but do not need to be similar for prediction and ground truth. In (b) the colors visualize the orientation of the predicted line segments.

Figure 5. Results for the Argoverse lane centerline task. Colors encode the the driving direction of a lane. In the first two images, YOLinO is able to

correctly detect a one-way street with both lanes driving in the same direction. In all three images, detecting intersections does not pose a problem as well.
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Figure 6. Results for the KAI dataset. The network has eight predictors, 16px cells and unbound Cartesian points. Colors indicate the different classes:

dashed and solid road marking. Aerial images: © City of Karlsruhe | Liegenschaftsamt
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