
Frustum-PointPillars: A Multi-Stage Approach for 3D Object Detection
using RGB Camera and LiDAR

Anshul Paigwar, David Sierra-Gonzalez, Özgür Erkent, Christian Laugier

Abstract— Accurate 3D object detection is a key part of the
perception module for autonomous vehicles. A better under-
standing of the objects in 3D facilitates better decision-making
and path planning. RGB Cameras and LiDAR are the most
commonly used sensors in autonomous vehicles for environment
perception. Many approaches have shown promising results for
2D detection with RGB Images, but efficiently localizing small
objects like pedestrians in the 3D point cloud of large scenes has
remained a challenging area of research. We propose a novel
method, Frustum-PointPillars, for 3D object detection using
LiDAR data. Instead of solely relying on point cloud features,
we leverage the mature field of 2D object detection to reduce the
search space in the 3D space. Then, we use the Pillar Feature
Encoding network for object localization in the reduced point
cloud. We also propose a novel approach for masking point
clouds to further improve the localization of objects. We train
our network on the KITTI dataset and perform experiments to
show the effectiveness of our network. On the KITTI test set
our method outperforms other multi-sensor SOTA approaches
for 3D pedestrian localization (Bird’s Eye View) while achieving
a significantly faster runtime of 14 Hz.

I. INTRODUCTION

Fully autonomous driving is an important but challenging
goal, for which a reliable perception of the local environment
is critical [1]. RGB cameras and 3D-LiDARs are widely used
sensors in robotics and autonomous vehicles, providing com-
plementary information about the environment. Images from
RGB cameras provide feature-rich and dense information of
the environment and thus facilitate many perception tasks
like 2D detection, semantic segmentation, and action recog-
nition. However, beyond 2D perception, 3D understanding
of the environment is vital for many applications such as
path planning and decision-making for autonomous driving.
LiDARs are commonly used to capture 3D data but, unlike
images, the point cloud generated from LiDARs is sparse
and unstructured. Designing network architectures for point
cloud processing is an ongoing challenge that differs from
the techniques used for 2D object detection in RGB images
[2].

Early approaches for 3D object detection converted point
clouds either into 2D images by view projection [2], or
structured volumes of voxel grids through quantization [3].
Then, established techniques for 2D object detection could be
directly applied to the converted images/volumes. A common
drawback of these methods is that they suffer from the loss of
crucial 3D information in the view projection or quantization
process.

1 Univ. Grenoble Alpes, Inria, 38000, Grenoble, France; e-mail:
firstname.lastname@inria.fr

Fig. 1: Overview of Frustum-PointPillars architecture: 2D
detections of objects are extruded to 3D bounding frustum.
Points inside the frustum are masked based on the likelihood
of belonging to the object. The 3D frustum area is then
divided into a 2D grid, and PointNet is used within each cell
of the grid to extract pillar features. Finally, a 3D bounding
box is predicted for the object from the points in the 3D
frustum.

Significant progress has been made in learning features
directly from raw point clouds without converting them into
any other forms of representation [4], [5]. The recently
proposed PointNet directly works with 3D points and has
shown superior performance and efficiency in several 3D
understanding tasks such as object classification and seman-
tic segmentation. While PointNet is capable of extracting
features from a point cloud with a small number of points,
its scalability to larger point clouds is unclear. Researchers
have been exploring different pipelines to use PointNet in
their deep architecture for instance-level 3D object detection.

A plethora of LiDAR-only approaches subdivide the large
3D space into smaller subspaces or voxels and then use
PointNets to extract voxel-wise features. These voxel-wise
features are used with different settings and pipelines for 3D
object detection [6], [7], [8], [9], [10].

Although LiDAR-only approaches have shown good per-
formance in the detection of large objects like cars and vans,
they suffer at localizing smaller objects like pedestrians in 3D
point clouds. Unlike cars, pedestrians are not rigid bodies; the
point perturbations of a pedestrian do not have a distinctive
geometric structure and have fewer data points, making them
difficult to distinguish from other objects in the environment.

2926



To deal with these challenges, leveraging multi-sensor data
has emerged as a promising option. As RGB cameras are
commonly used in autonomous vehicles, many approaches
are exploring different ways to leverage the rich features
from RGB images to improve LiDAR-based 3D detection.

In this work, we also follow a multi-sensor approach that
uses RGB and LiDAR for 3D object detection. We present
Frustum-PointPillars (F-PointPillars), a deep architecture for
3D object detection in point clouds. F-PointPillars leverages
2D detections in RGB images, to reduce search space in
3D. 2D detections can be obtained from any of the available
state-of-the-art object detectors. The 2D detections of the
objects are extruded into 3D space creating a 3D bounding
frustum of the object as shown in Fig. 1. We discretize the
3D frustums into a bird-eye-view (BEV) 2D grid to extract
features at fine resolution. This enables us to accurately
localize smaller objects within the 3D frustum.

The key contributions of this paper can be summarized as
follows:

• We present a new method called Frustum-PointPillars
for real-time 3D object detection in point clouds. We
extend and improve PointPillars architecture by the
addition of a new sensor modality of RGB camera and
the use of a multi-stage approach. We also extend the
data augmentation for training to work with multi-stage
network architecture.

• We propose Gaussian-based masking of 3D points to
distinguish foreground from background clutter, thus
improving localization of objects in 3D. Experiments on
the KITTI dataset and quantitative evaluations validate
our design choices.

• F-PointPillars outperforms PointPillars and other multi-
stage SOTA approaches for localization of pedestri-
ans (BEV detection) on the KITTI benchmark. Our
approach significantly outperforms other multi-stage
SOTA approaches in terms of runtime.

II. RELATED WORK

In this section, we first categorize methods related to using
multiple sensors for 3D object detection into three categories:
1) Early fusion 2) Late fusion 3) Multi-stage methods. Next,
we discuss the pros and cons of each category of methods.
Finally, we focus in detail on the methods using a multi-
stage network architecture for 3D object detection in point
clouds.

A. Early fusion methods:

A single network takes input from two or more sensor
modalities. The data from different sensors is converted into
a common feature space or dimension. The features are fused
either using concatenation, projection, or by a small network.
The features are fused early in the network pipeline. Early
sensor fusion can lead to an increase in the accuracy of the
detections [11], [12]; however, they suffer from the fact that
a failure of one sensor can lead to the total failure of the
network.

Fig. 2: The figures illustrate simplified pipelines of Multi-
Stage approaches for 3D object detection. Left: F-PointNet
uses all points within 3D bounding frustum for feature ex-
traction. Right: F-ConvNet sub-divided 3D bounding frustum
into smaller frustum and extract multiple features.

B. Late fusion methods:

Independent networks, one for each sensor modality, work
in parallel to extract features and output detections in a
redundant manner. The detections from the independent
networks are then fused using statistical methods or a smaller
network. The merit of late fusion approaches is that in case
of the failure of one sensor, the detections from another
sensor can still be used, bearing a reduction in the accuracy
[13]. Nevertheless, sometimes it can be difficult to perform
a certain task efficiently in a redundant way due to the
limitations of the sensor modalities, for example, 3D object
detection using a monocular camera.

C. Multi-stage methods:

In multi-stage methods, two independent networks, one
for each modality, are stacked together. The output of the
first network (Stage-I) constitutes the input to the second
network (Stage-II). The key idea is to use different sensor
modalities according to their strength to perform a particular
task, such as RGB cameras for 2D detections and LiDAR for
3D localization. Methods using the Multi-Stage approach for
sensor fusion have shown high accuracy for pedestrian and
cyclist detection in 3D pointclouds [14], [15]. Following this,
we choose to use the multi-stage method of sensor fusion to
develop our 3D object detection system.

Frustum PointNet [14] and Frustum ConvNet [15] are two
methods that use the multi-stage design approach. Given 2D
region proposals in RGB images, these methods first find
local points corresponding to pixels inside the 2D regions. F-
PointNet then uses the PointNet architecture to segment these
local points into foreground and background. An amodal 3D
box is then estimated using the foreground points as shown in
Fig. 2. F-PointNet not an end-to-end learning method and the
estimation of 3D bounding boxes relies on fewer foreground
points which could possibly be segmented inaccurately.

Different from F-PointNet, F-ConvNet subdivides each
region proposal into a sequence of smaller frustums as shown

2927



Fig. 3: Frustum-PointPillars architecture: Given the 2D detections of the objects in a scene, we extrude 2D detections
into 3D bounding frustums and the points outside the frustums are removed. For each 2D detection, a mask is created using
a Gaussian function representing the likelihood that the pixels belong to the object. Likelihood values are projected on the
point cloud and the entire 3D space is discretized in a 2D grid, forming a set of pillars. A PointNet is used within each
non-empty pillar to extract pillar-wise features that are scattered back to a 2D pseudo image. A set of convolution and
deconvolutions are used to extract spatial features at multiple resolutions. Finally, an SSD style detection head is used for
the regression of the 3D bounding box parameters.

in Fig. 2. These smaller frustums define groups of local
points and PointNet is used on the frustums to generate 2D
feature maps. Then, a fully convolutional network (FCN)
is used to down-sample and up-sample the feature maps so
that their features are fully fused across the frustum axis at
a higher frustum resolution. F-ConvNet supports an end-to-
end and continuous estimation of oriented 3D boxes. Both
of these approaches processes each 2D detection in a scene
individually which significantly increases computation time.

Motivated to address the limitations in [14], [15], we
propose a novel method for 3D object detection termed
Frustum PointPillars (F-PointPillars).

III. FRUSTUM POINTPILLARS ARCHITECTURE

Given the 2D detections of the objects in the scene and
their corresponding frustum volume, F-PointPillars subdi-
vides the 3D space within the frustum volume into a top-
view, finer 2D grid as shown in Fig. 1. Unlike F-ConvNet,
which subdivides the 3D bounding frustum into a sequence
of smaller frustums (Fig. 2), we have a much higher resolu-
tion for feature extraction. We use PointNet on each cell of
the grid to extract pillar features and use 2D convolutions to
extract spatial features. We then use a single-stage, anchor-
based method to predict the 3D bounding box for all the
objects in the scene simultaneously [16]. Provided the 2D
detections, F-PointPillars is end-to-end trainable.

F-PointPillars consists of 4 main stages as shown in Fig. 3:
(1) Frustum proposal; (2) PointCloud masking; (3) Pillar
feature encoding network that converts a point cloud to
a sparse pseudo image; and (4) Backbone to process the
pseudo-image and produce a high-level representation, and

a detection head to regress position, orientation and size of
3D bounding boxes.

A. Frustum Proposal

With a known camera projection matrix, a 2D bounding
box can be extruded to a frustum (with near and far planes
specified by depth sensor range) that defines a 3D search
space for the object. Another way of viewing this is that,
given the camera and LiDAR calibration parameters, 3D
LiDAR points can be projected onto the image plane. We
then filter out all the points outside of the 2D bounding
boxes, significantly reducing the number of points to be
processed within a scene. Let P ∈ R3, a point in the point
cloud, transformation matrix T : R3 → R2 transforms P to
its projection P̄ ∈ R2 on the image plane.

B. Point Cloud Masking

The 2D bounding boxes predicted by the 2D detector
are designed to enclose the object. The points inside 2D
boxes can belong to the object itself with some foreground
and background clutter. Pedestrians are generally on the
sidewalks, in groups, and close to other buildings and objects.
In the case of pedestrians, foreground and background clutter
are not well Isolated as shown in Fig. 4. One alternative
would be to use the object mask such as the one generated
by mask-RCNN instead of 2D bounding boxes to reduce
the clutter, however, it can worsen the overall performance
of 3D object detection due to the accumulated error from
inaccurate object mask predictions as discussed in [14].
Moreover, SOTA object masking approaches like Mask-
RCNN are significantly slower than SOTA 2D detection
approaches [17].

2928



Considering real-time constraints, and issues with 2D
mask [14], we propose a simpler and faster approach to
use a probability mask. The region near the center of a 2d
bounding box is more likely to be occupied by the object, the
projected 3d points near the center region are also more likely
to belong to the object instead of the background clutter. We
define the likelihood of the points belonging to the object as
a Gaussian function:

L(x̄, ȳ) = exp

(
− (x̄− x̄0)

2

2w2
− (ȳ − ȳ0)

2

2h2

)
(1)

where x̄, ȳ are point cloud projection on image plane, x̄0, ȳ0
are the center coordinates and w, h are the width and height
of the 2D bounding box. α = w2, β = h2 define the curva-
ture of the likelihood function. We add the likelihood value to
the point P as an additional feature vector. Input point feature
Cin is now D = 5 dimensional (x, y, z, intensity,L). If a
point is shared by multiple 2D bounding boxes, then the
highest likelihood value is chosen.

C. Pillar Feature Encoding and Pseudo Image

After filtering out the points outside of frustum areas
and masking the remaining points, we divide the 3D space
into 2D grid of shape (H, W) and the cell resolution of r.
The points in the non-empty cells are re-sampled to a fixed
number N . The points in each pillar are further augmented
by adding extra features: xc, yc, zc, xp and yp where the
c subscript denotes distance to the arithmetic mean of all
points in the pillar and the p subscript denotes the offset
from the pillar center. Input point feature Cin is now D = 10
dimensional. A simplified version of PointNet with (N,Cin)
as input and (1, Cout) as output is used to extract features per
non-empty cell of the grid. These cell wise features or pillar
features are tensors of size Cout creating a pseudo-image of
size (H,W,Cout). It can be noted that the 3D space can
also be divided into voxels instead of a 2D grid as in [6] but
it exponentially increases computational overhead without a
significant increase in the performance [8].

D. Backbone and Detection Head

To extract spatial features, we use a similar backbone
as [8]. The backbone consist of two sub-network: one top-
down network that uses sequence of 2D convolution blocks
to produce features at increasingly small spatial resolution.
The second network performs upsampling using transposed
2D convolutions and concatenation of the top-down features
as shown in Fig. 3.

For the detection head we use a framework similar to
the Single Shot Detector (SSD) setup [16]. We match the
prior anchor boxes to the ground truth using 2D Intersection
over Union (IoU). Given a positive 2D match, bounding box
parameters are regressed, the height and elevation become
additional regression targets.

IV. TRAINING AND EXPERIMENTS

Given the 2D detections, F-PointPillars is trained end-to-
end. We initialized all the weights randomly using a uniform

Fig. 4: Left: Illustration of the Gaussian Mask representing
likelihood of the pixels belonging to the detected object.
Right: Corresponding 3D frustum and masked point cloud.

distribution. Similar to SECOND [7], we used fixed-size
anchors with rotations of 0 and 90 degrees. The anchor sizes
are determined based on the means of the sizes and center co-
ordinates of all ground truths in the KITTI dataset. Ground
truth boxes and anchors are defined by (x, y, z, w, l, h, θ).
Each anchor is assigned a class either to ground-truth ob-
jects (positive) or to the background (negative), based on
IoU matching. Anchors are also assigned a 7-vector whose
elements consist of regression targets:

∆x =
xgt − xa

da
∆y =

ygt − ya
da

∆z =
zgt − za

ha

∆w = log
wgt

wa
∆l = log

lgt
la

∆h = log
hgt

ha
(2)

∆θ = sin(θgt − θa)

where subscript gt denote ground truth and subscript a
denote anchor boxes and da =

√
(wa)2 + (la)2.

A. Loss Function

Similar to [8] we use combination of losses for the training
of Frustum-PointPillars. 1) Lloc: SmoothL1 loss is used for
regression of residuals between ground truth and anchors, 2)
Ldir: a Softmax classification loss is used on the discretized
directions to distinguished between flipped boxes and 3)Lcls:
a Focal loss for object classification. The total loss is:

Ltotal = (βlocLloc + βclsLcls + βdirLdir) (3)

where, βloc, βcls and βdir are the hyper parameters to give
weightage for different losses.

B. Dataset

We use the KITTI 3D object detection dataset for all our
experiments and evaluation [18]. The KITTI dataset consists
of samples with 3D point clouds, images and corresponding
camera-LiDAR calibration data. The dataset is divided into
7481 training and 7518 testing samples. Cars, pedestrians
and cyclists are the dominant object categories in KITTI

2929



dataset and only these categories are considered for the
benchmark. Following the work of MV3D, we split the
official training dataset into 3712 training samples and 3769
validation samples [2]. We perform all our experiments on
this train/val split. We also provide our results on KITTI test
set obtained after submission on the KITTI server. We use
the images to get the 2D region proposals, beyond which we
only use the LiDAR point clouds to train the network.

C. Dataset Augmentation

The KITTI dataset contains fewer 3D objects (positive
classes) per sample compared to the background (negative
classes). Data augmentation becomes essential for high per-
formance on the KITTI benchmark [6], [7]. The SECOND
detector introduced a data augmentation process for 3D point
clouds, where the authors first create a database of ground-
truth 3D boxes and their associated point clouds. Then,
during training, 3D boxes for cars, pedestrians, and cyclists
are randomly selected from this database and placed in the
current pointcloud to increase the number of positive classes.
All 3D boxes are further augmented individually by applying
rotations and translations.

When using RGB features with point cloud for sensor
fusion such complex data augmentations are not possible
[11]. F-PointPillar uses RGB images but only to generate
2D detections for creating frustums and masking the point
cloud. We extend the data augmentation of SECOND to
work with our multi-stage network architecture. We project
all ground truth 3D boxes in the augmented point cloud
on the image plane to find corresponding 2D bounding
boxes. To simulate inconsistencies in 2D detection by a 2D
object detector we apply random shift and add noise to the
dimensions (uniformly drawn from [-0.1, 0.1]). Augmented
2D detections are then used to create frustums and mask
point clouds. It is to be noted that in the case of using an
object mask instead of the proposed Gaussian mask such data
augmentations would not be feasible resulting in the poorer
performance of the network. Also for evaluation, the KITTI
benchmark only provides ground truth 2D boxes and object
masks are not yet available.

D. Implementation Details

For the training of F-PointPillars, we use ground truth 2D
detections provided by the KITTI dataset. We show in the
result section how the accuracy of 2D detections affects the
performance of our network. We train two networks one for
car detection and another for pedestrian and cyclist detection.
For car detection, we discretize the environment into a 2D
grid of size (70, 80) meters, and for pedestrian detection,
we use a grid size of (40, 50) meters. We remove all the
points outside the field of view of the camera. The maximum
number of points per pillar (N) is kept at 100. We keep the
cell resolution r as 0.16m x 0.16m for both the networks.
The hyper-parameters βcls, βloc and βdir were set to 1.0, 2.0
and 0.2 respectively. We use Adam optimizer with an initial
learning rate of 2·10−4 and decay the learning rate by a factor
of 0.8 every 15 epochs. We use a batch size of 2 to train

the model. In our ablation study, we observed the network
converges differently for different settings on average it takes
roughly 120 epochs. Training using an Nvidia GTX 1080
GPU takes around 18 to 20 hours. We use the PyTorch
machine learning framework for the development of our
model [20].

V. RESULTS

A. Quantitative Evaluation

We evaluate F-PointPillars on KITTI 3D detection
benchmarks [18]. In this work, we primarily focus on
pedestrian detection. Table I compares the performance of
F-PointPillars with state-of-the-art methods on the KITTI
test. At the time of submission, F-PointPillars ranked
among the top 20 approaches for 3D detection in the
pedestrian category. For the final submission on the KITTI
server, we used 2D region proposals obtained by Faster
R-CNN trained on EuroCityPersons dataset [21]. We use
off-the-shelf code from the Pedestron repository which
is based on the MMdetection toolbox. We compare our
results with approaches using different modalities: STD [19]
and PointPillars [8] uses only LiDAR data; AVOD-FPN
[11] uses RGB and LiDAR with early fusion method;
F-PointNet [14] and F-ConvNet [15] similar to our method
use RGB and LiDAR with multi-stage design architecture.
Our method outperforms the mentioned approaches for 3D
detection at the hard difficulty level. For Bird-Eye-View
(BEV) detection our method outperforms other approaches
at all difficulty levels indicating the strength of our network
for localizing objects in 3D space. This is in part due to the
masking of the point cloud as it provides the network more
information about the location of objects in 3D space.

Ablation Study: To understand the effectiveness of masking
the point cloud we perform ablation experiments using our
KITTI val set and provide results for Car, pedestrian, and
Cyclist object categories. Table II and Table III shows
a comparison of F-PointPillars with and without masking
point cloud. To quantify the improvement in performance
by using a multi-stage design approach we also compare
with PointPillars [8]. Table II and Table III shows masking
the point cloud improves 3D detection and BEV detection
accuracy across all the object categories and difficulty levels.
In another set of experiments, we slightly alter the values of
α and β to test different Gaussian functions for the masking
of the point cloud but it does not result in a significant
difference in the performance of the network.

Table II and Table III also compares our results with
F-PointNet and F-ConvNet on val set. For the comparison,
we use ground truth 2D region proposals with the validation
dataset. It can be seen that F-PointPillars outperforms these
two approaches in nearly all object categories and difficulty
levels.

Effect of 2D region proposals: Our method relies on
2D region proposals to reduce our search space in 3D. To
investigate how much the accuracy of 2D region proposals

2930



Fig. 5: 3D bounding box prediction by F-PointPillars: Illustrations show diverse scenes from KITTI dataset. Images
show 2D region proposals from an off-the-shelf 2D detector and respective Gaussian mask. Corresponding point cloud after
filtering and the masking is shown on top of each image.

Method 3D detection BEV detection Runtime
Easy Mod. Hard Easy Mod. Hard

STD [19] 53.29 42.47 38.35 60.02 48.72 44.55 0.08 s
PointPillars [8] 51.45 41.92 38.89 57.60 48.64 45.78 0.07 s
AVOD-FPN [11] 50.46 42.27 39.04 58.49 50.32 46.98 0.1 s
F-PointNet [14] 50.53 42.15 38.08 57.13 49.57 45.48 0.17 s
F-ConvNet [15] 52.16 43.38 38.80 57.04 48.96 44.33 0.47 s

F-PointPillars (Ours) 51.22 42.89 39.28 60.98 52.23 48.30 0.07 s

TABLE I: AP (%) on KITTI test set for pedestrian detection.

Method Car Pedestrian Cyclist
Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

F-PointNet [14] 83.76 70.92 63.65 70.00 61.32 53.59 77.15 56.49 53.37
F-ConvNet [15] 89.31 79.08 77.17 - - - - - -

PointPillars 84.06 75.13 69.43 62.57 57.52 51.17 81.96 62.11 57.39
F-PointPillars (no mask) 88.02 77.87 76.15 67.24 60.69 54.71 82.12 63.06 60.54
F-PointPillars 88.90 79.28 78.07 66.11 61.89 56.91 87.54 72.78 66.07

TABLE II: AP (%) on KITTI val set for 3D object detection.

Method Car Pedestrian Cyclist
Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

F-PointNet [14] 88.16 84.02 76.44 72.38 66.39 59.57 81.82 60.03 56.32
F-ConvNet [15] 90.42 88.99 86.88 - - - - - -

PointPillars 89.99 87.13 85.15 70.54 65.70 60.18 85.07 65.06 61.72
F-PointPillars (no mask) 89.95 88.38 87.19 71.69 66.20 60.95 83.17 65.76 63.03
F-PointPillars 90.20 89.43 88.77 72.17 67.89 63.46 88.58 76.79 74.80

TABLE III: AP (%) on KITTI val set for BEV detection.

2931



2D detections (Mod.) 3D detections (Mod.)
Car Ped. Cyclist Car Ped. Cyclist

89.47 62.47 72.70 76.79 58.76 64.75
90.30 76.39 81.35 77.39 59.27 65.36
100 100 100 79.28 61.89 72.78

TABLE IV: Influence of 2D region proposal on F-
Pointpillars. Left: Each row represent results from a different
2D detector on KITTI val set (Mod. difficulty). Right:
Corresponding output of F-Pointpillar 3D detection AP (%).

influence the performance, we perform experiments with 2D
object detectors of different practical performance namely
F-PointNet [14], PV-RCNN [22] and ground-truth 2D boxes
in the KITTI dataset. Table IV confirm that the accuracy of
2D region proposals positively affects our method. While
from Table IV and Table II together it can be inferred
that even after using predicted 2D bounding boxes our
approach still performs better than PointPillars for all object
categories .

Inference time: Real-time 3D detection is critical for au-
tonomous navigation. F-PointPillars uses the backbone from
PointPillars and predicts 3D bounding boxes for all the
objects in the scene in a single forward pass. In contrast,
F-PointNet and F-ConvNet process each 2D detection in
the scene individually and require multiple forward passes.
Table V shows detailed analysis of the computation time for
F-PointPillars. Our method achieves a runtime performance
of 14 Hz, which is significantly better compared to other
SOTA multi-stage approaches like F-PointNet (5 Hz) and
F-ConvNet (2 Hz) as shown in Table I. Note that the pre-
processing, frustum generation, filtering, and masking of the
point cloud is performed on a CPU that could be further
accelerated using GPU. In comparison to PointPillars, our
network has to process a significantly less number of points,
though the gain in computation time for model forward pass
is negated by an extra pre-processing task to be performed
by our network.

Task Time Device
pre-processing 10.09 ms CPU
Frustum + Masking 18.29 ms CPU
Model forward pass 12.57 ms GPU
Post Processing 28.88 ms GPU
Total 69.83 ms (14.61 Hz)

TABLE V: Analysis of computation time required by F-
Pointpillars

B. Qualitative Evaluation

The illustrations in Fig. 5 show the output of our F-
PointPillars architecture on the KITTI dataset. We see that
our model outputs accurate 3D bounding boxes even in
diverse and challenging scenarios. We also observe that even
in cases of multiple 2D region proposals overlapping (e.g.
parallel parked cars) and with few 3D points, our model still

can predict the pose of 3D boxes correctly. We also see some
failure cases especially for detecting far away pedestrians.

We also observe that the projection of the Gaussian
mask on the point cloud, in general accurately indicates the
likelihood of the points belonging to the object of interest.
In certain cases, as in Fig. 4, where a pedestrian is seen
extending its arm, the center of the 2D bounding box is
slightly shifted and some of the background points are
wrongly masked as more likely of belonging to the object.

VI. CONCLUSIONS

In this paper, we tackled the challenging problem of 3D
object detection in point clouds. We proposed Frustum-
PointPillars, a multi-stage design approach that uses both
RBG and LiDAR data for 3D detection. Given 2D region
proposals, we extrude 2D detections into 3D bounding
frustums. Points outside the frustums are removed and the
entire 3D space is discretized into a 2D grid. We use Pillar
Feature encoding networks to extract features and predict
3D bounding boxes. We also proposed a novel approach for
masking 3D point clouds with likelihood values of the points
belonging to the object. We provide a qualitative and quan-
titative evaluation of our approach on the KITTI dataset. We
compare our results with other state-of-the-art approaches
for pedestrian detection. F-PointPillars outperforms other
multi-stage approaches for 3D pedestrian detection in hard
difficulty level and BEV detection in all difficulty levels. Our
method achieves a run-time of 14 Hz and is significantly
faster than other multi-stage approaches.

Filtering of point cloud with the help of 2D region pro-
posals significantly reduces the number of non-empty cells
in the pseudo-image. We plan to further improve the runtime
of our method by using sparse convolutions in the backbone
of our network. Currently, we train two different networks:
one for car and another for pedestrian/cyclist detection as
multi-class 3D detection performance is poor. In the future,
we plan to leverage the object class information provided by
2D detectors to improve multi-class 3D detection. Another
line of future work could be improving 2D detection in low
light conditions using data from RGB and Lidar.

ACKNOWLEDGMENT

This work was conducted at Inria, team Chroma. The
authors would like to thank all the team members for their
constant support on this research work. This work has been
conducted within the scope of ES3CAP (Embedded Smart
Safe Secure Computing Autonomous Platform) project.

REFERENCES

[1] J. Leonard, J. How, S. Teller, M. Berger, S. Campbell, G. Fiore,
L. Fletcher, E. Frazzoli, A. Huang, S. Karaman, et al., “A perception-
driven autonomous urban vehicle,” Journal of Field Robotics, vol. 25,
no. 10, pp. 727–774, 2008.

[2] X. Chen, H. Ma, J. Wan, B. Li, and T. Xia, “Multi-view 3d object
detection network for autonomous driving,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2017,
pp. 1907–1915.

2932



[3] C. R. Qi, H. Su, M. Nießner, A. Dai, M. Yan, and L. J. Guibas,
“Volumetric and multi-view cnns for object classification on 3d data,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2016, pp. 5648–5656.

[4] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet: Deep learning
on point sets for 3d classification and segmentation,” Proc. Computer
Vision and Pattern Recognition (CVPR), IEEE, vol. 1, no. 2, p. 4,
2017.

[5] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “Pointnet++: Deep hierar-
chical feature learning on point sets in a metric space,” in Advances
in Neural Information Processing Systems, 2017, pp. 5099–5108.

[6] Y. Zhou and O. Tuzel, “Voxelnet: End-to-end learning for point cloud
based 3d object detection,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2018, pp. 4490–4499.

[7] Y. Yan, Y. Mao, and B. Li, “Second: Sparsely embedded convolutional
detection,” Sensors, vol. 18, no. 10, p. 3337, 2018.

[8] A. H. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang, and O. Beijbom,
“Pointpillars: Fast encoders for object detection from point clouds,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2019, pp. 12 697–12 705.

[9] A. Paigwar, Ö. Erkent, C. Wolf, and C. Laugier, “Attentional PointNet
for 3D-Object Detection in Point Clouds,” in CVPR 2019 - Workshop
on Autonomous driving, Long Beach, California, United States, June
2019, pp. 1–10. [Online]. Available: https://hal.inria.fr/hal-02156555

[10] D. Sierra-González, A. Paigwar, O. Erkent, J. Dibangoye, and
C. Laugier, “Leveraging dynamic occupancy grids for 3d object
detection in point clouds,” in 2020 16th International Conference on
Control, Automation, Robotics and Vision (ICARCV), 2020, pp. 1188–
1193.

[11] J. Ku, M. Mozifian, J. Lee, A. Harakeh, and S. L. Waslander, “Joint
3d proposal generation and object detection from view aggregation,”
in 2018 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, 2018, pp. 1–8.

[12] M. Liang, B. Yang, Y. Chen, R. Hu, and R. Urtasun, “Multi-task
multi-sensor fusion for 3d object detection,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2019,
pp. 7345–7353.

[13] L. Guan, Y. Chen, G. Wang, and X. Lei, “Real-time vehicle detection
framework based on the fusion of lidar and camera,” Electronics,
vol. 9, no. 3, p. 451, 2020.

[14] C. R. Qi, L. Wei, W. Chenxia, et al., “Frustum pointnets for 3d object
detection from rgb-d data [c/ol],” Computer Vision Pattern Recog, pp.
11–22, 2017.

[15] Z. Wang and K. Jia, “Frustum convnet: Sliding frustums to aggregate
local point-wise features for amodal 3d object detection,” in 2019
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2019, pp. 1742–1749.

[16] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu,
and A. C. Berg, “Ssd: Single shot multibox detector,” in European
conference on computer vision. Springer, 2016, pp. 21–37.

[17] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” in
Proceedings of the IEEE international conference on computer vision,
2017, pp. 2961–2969.

[18] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for Autonomous
Driving? The KITTI Vision Benchmark Suite,” in Proc. of the IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR), 2012, pp.
3354–3361.

[19] Z. Yang, Y. Sun, S. Liu, X. Shen, and J. Jia, “Std: Sparse-to-dense
3d object detector for point cloud,” in Proceedings of the IEEE
International Conference on Computer Vision, 2019, pp. 1951–1960.

[20] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style, high-
performance deep learning library,” in Advances in Neural Information
Processing Systems 32, H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett, Eds. Curran Associates, Inc.,
2019, pp. 8024–8035.

[21] I. Hasan, S. Liao, J. Li, S. U. Akram, and L. Shao, “Pedestrian de-
tection: The elephant in the room,” arXiv preprint arXiv:2003.08799,
2020.

[22] S. Shi, C. Guo, L. Jiang, Z. Wang, J. Shi, X. Wang, and H. L. Pv-rcnn,
“Point-voxel feature set abstraction for 3d object detection,” arXiv
preprint arXiv:1912.13192, 2019.

2933


