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Abstract

Modern perception systems in the field of autonomous
driving rely on 3D data analysis. LiDAR sensors are fre-
quently used to acquire such data due to their increased
resilience to different lighting conditions. Although rotat-
ing LiDAR scanners produce ring-shaped patterns in space,
most networks analyze their data using an orthogonal voxel
sampling strategy. This work presents a novel approach
for analyzing 3D data produced by 360-degree depth scan-
ners, utilizing a more suitable coordinate system, which is
aligned with the scanning pattern. Furthermore, we intro-
duce a novel notion of range-guided convolutions, adapting
the receptive field by distance from the ego vehicle and the
object’s scale. Our network demonstrates powerful results
on the competitive nuScenes 3D object detection challenge,
comparable to current state-of-the-art architectures.

1. Introduction

Robustness is a crucial requirement for visual percep-
tion solutions in autonomous driving systems. Such systems
must be resilient to various lighting scenarios and withstand
harsh weather conditions without compromising their per-
formance. Therefore, extending the traditional RGB cam-
eras with additional sensors, such as LiDAR, is a vital step
towards achieving this goal.

The inclusion of depth information, which allows captur-
ing the three-dimensional structure of the vehicle’s environ-
ment, is a key feature for ensuring robustness while main-
taining high accuracy. Modern LiDAR acquisition sensors
provide meaningful information not only for avoiding im-
minent collisions, but also to perceive the environment as
good as image-based data and even surpass it under poor
lighting conditions.

In the field of autonomous driving, there is a variety of
methods to handle point clouds. The most common and
efficient approach is to transform the point cloud into a reg-
ular representation, such as 2D bird-eye-view (BEV) vox-

Figure 1. Top-View of a nuScenes dataset sample with Ground
Truth detections. First, it can be easily observed that the LiDAR
sensor has a ring-shaped pattern output. Second, the Cylindrical
Coordinate system maintains 9 neighbors and 27 neighbors per
voxel (including itself), in 2D and 3D respectively, the same as the
classical Cartesian system. This enables us to employ the classical
convolution layers without almost any alteration.

els [13, 7, 27, 14] or 3D voxels [24, 31, 8, 26]. Following
the architecture of PointNet and PointNet++ [4, 21], some
works have proposed replacing the voxel-based method
with a point-based one. This approach, however, was found
to be computationally intensive. Recent papers have sug-
gested combining both point-based and voxel-based meth-
ods into a single network [23, 16]. However, whether com-
bining point-based methods or not, in 2D or 3D, these meth-
ods use the Cartesian coordinate system as their grid.

In this paper, we argue that projecting the points onto
a Cartesian space disregards the circular nature of the raw
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data provided by a rotating emitter as can be easily seen in
Figure 1. We show that in order to perceive and preserve
the additional information gained from a LiDAR sensor,
one may leverage a more appropriate coordinate system,
namely the Cylindrical coordinates system. Furthermore,
the Cylindrical coordinate system allows us to align the en-
tire network towards the sensor’s point of view. Moreover,
the closer an object is to the ego vehicle, the more points
correspond to it in the point cloud. Therefore, we suggest
adjusting the size of the voxels to the distance from the sen-
sor, as is done naturally by the Cylindrical space. As shown
in Figure 2, using the cylindrical system, we get a better dis-
tribution of average points per voxel over distance, leading
to a better resolution after the voxelization step. In addi-
tion, we propose a novel guiding unit, which orchestrates
convolutions by their range from the ego vehicle. We fur-
ther explore the challenges for a ”self-oriented” network to
learn angle and velocity information and present the neces-
sary solutions to overcome them successfully.

Our main contributions are as follows:

• We present the first end-to-end cylindrical coordinates
perception architecture for autonomous systems that
includes orientation and velocity estimation.

• We present a novel range-guided convolution block to
adjust the network’s receptive field according to an ob-
ject’s range and scale, and adapting its learned features
by its distance from the ego-vehicle.

• We provide new insights, challenges and solutions for
training deep networks in cylindrical coordinates.

• Our network achieves comparable results to current
state-of-the-art networks on the competitive nuScenes
3D object detection benchmark.

2. Related works

Cartesian Based 3D Object Detection Methods: Most
state-of-the-art methods for 3D object detection project
the point clouds onto a Cartesian coordinate grid. Ear-
lier approaches employed the BEV projection to utilize ef-
ficient 2D convolution layers to process the point cloud
data [13, 7]. In a later work, VoxelNet [31] was first to in-
troduce 3D voxels in the field of object detection, whereas
SECOND [26] improved this method by applying sparse
3D convolutions to accelerate running time. The majority
of cutting edge methods [24, 23], including nuScenes’ for-
mer state-of-the-art, CBGS [32], have adopted the practice
of processing point cloud using sparse three-dimensional
convolutions after projecting it into the traditional Cartesian
voxel space.
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Figure 2. Mean number of points per voxel (logarithmic) as a
function of range. There is a high inverse correlation between the
number of points and their range from the sensor. Since the Carte-
sian voxels are of the same size in all ranges, we lose precision in
the nearby distance. On the other hand, with Cylindrical coordi-
nate we receive a better spatial distribution which leads to a better
resolution after the voxelization step.

Non-Cartesian Based Methods: PolarNet [30] was the
first paper to suggest quantizing LiDAR data in a non-
Cartesian coordinate system. Their Polar-BEV network, de-
signed for semantic segmentation on the SemanticKITTI [1]
challenge, have shown improvement with respect to tradi-
tional Cartesian methods. Unlike semantic segmentation
tasks, 3D detection challenges, such as nuScenes, require
the processing of additional object orientation and velocity
features. As direction information plays a significant role
in such tasks, they are directly affected by the change in the
coordinate system and therefore need to be treated with spe-
cial care. A recently published paper, CVCNet [22], also
quantizes the input LiDAR point cloud utilizing the polar
grid, and then divide it into two separate views - BEV vox-
els (r, θ) and range-view voxels (θ, ϕ). Although the Polar
coordinate system pr, θ, ϕq, is different than the cylindrical
one pρ, θ, zq, it shares some of the challenges, when com-
paring both to the Cartesian system. Nevertheless, unlike
our paper, the authors overlooked issues regarding the ori-
entation and velocity predictions, and the change in the re-
ceptive field caused by the change in voxel size.

3D Object Detection Methods with Focus on Range:
LaserNet [19] has introduced the concept of range-image
input to the field of 3D detection, naturally emphasizing an
object’s distance from the ego vehicle as one of its key fea-
tures. Despite its computational efficiency, it was gener-
ally outperformed by voxel-based methods. A later pub-
lication [2] suggested a method to address range-image’s
problem of scale variance, the fact that near distance objects
appear larger in the image view. They applied dilated con-
volution [5, 25] directly to the range-image input, adjusting
each pixel’s dilation rate as a function of its range.
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Cylinder Map to Input Array for Objects with same θdir

Figure 3. Illustration of the Cylindrical map translated into the network’s 2D array. Shown here are two identical cars placed at
the same distance from the ego vehicle but with different θcenter . Since we are working from the sensor’s point of view, we can see
that it translates differently to the 2D array. The network observes the yellow car from the side as the purple car from behind, just as the
sensor/driver does. Thus, in order for the network to learn the object’s orientation appropriately, a modification is required.

In recent paper RangeRCNN [16] tried to benefit from
both range view and BEV. RangeRCNN [16] argued that
although range-image is insufficient by itself, incorporat-
ing it as a source of initial feature extraction, before trans-
forming the data into BEV architectures can be effective.
This method of enhancing BEV with range-image features
achieves state-of-the-art results on the KITTI dataset [10].

In our work, we use range information (i.e ρ, the 2D dis-
tance in the XY-plane) to guide the 3D convolution layers.
In this manner, we gain additional benefit from its data as
an initial feature, allowing the network to comprehend ob-
jects differently depending on their distance from the ego
vehicle. Furthermore, we use range information to manage
the receptive field of the voxels and consequently overcome
their scale variance in the Cylindrical-coordinate voxels.

3. Challenges in Cylindrical Coordinates
The Cylindrical-coordinate grid differs from the Carte-

sian in many aspects. First of all, it is a self-oriented system.
Consequently, identical objects placed at different positions
relative to the sensor location will be presented differently
along the network’s channels. For this reason, in order to
adapt the network to the sensor’s point of view, certain chal-
lenges have to be addressed.

In contrast to Cartesian coordinates BEV, the size of a
Cylindrical voxel varies depending on its range. Thus, two
identical objects can spread over a different number of vox-
els, depending on their center location relative to the ego
vehicle. Likewise, the orientation of an object toward the
ego vehicle might also affect the number of voxels it occu-
pies in the Cylindrical grid. In general, objects spread on a
larger amount of voxels, require a wider receptive field in
order to detect them.

The Cartesian and Cylindrical-coordinate systems differ
in the way they perceive the orientation of objects. The net-

work’s point of view can be equated with the perspective of
a passenger in the ego-vehicle, observing two identical cars,
one of which is in front of the vehicle while the other is on
its side. As illustrated in Figure 3, both yellow and pur-
ple cars, are of the same size, facing the same way, and at
the same range. However, the difference in their θ-centers
causes them to be mapped differently to the network’s in-
put arrays with an emphasis on the direction. As shown,
the purple and yellow cars are no longer facing the same
direction in the 2D input array of our network. In order for
the network to learn its orientation accordingly, it should be
modified in a proper manner.

The same principle applies to the velocity’s direction.
For example, an object moving along a certain axis will
seem to the Cartesian-based network to be moving along
that axis regardless of its location on the map. This behav-
ior manifests because the axes of Cartesian coordinates are
aligned to those of every other object on the map. How-
ever, for the Cylindrical coordinates, this is not the case,
and therefore additional adjustments are necessary.

Additionally, since the θ axis is inherently cyclical (´π
is also π), objects may spread simultaneously over voxels
at both the beginning and the end of the network’s input
arrays. This is a further deviation from the Cartesian system
that needs to be taken into account in order to accomplish
the transition between the two systems.

In conclusion, transferring from a Cartesian coordinate
system to a cylindrical one reveals our networks’ unique
challenges. To take full advantage of cylindrical coordi-
nates, we must modify the architecture and its learned out-
puts in order to overcome the aforementioned challenges.

4. Method
After our preprocess of the data our network consists of

three learning blocks: (1) Range-Guided Backbone, which
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Figure 4. Illustration of the Range-Guided Backbone: The guided backbone is shown in black, the range guiding backbone is shown in
a green dashed line and the guiding units are shown in blue.
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Figure 5. Illustration of the Guiding Unit: On the range input we use four separate 1D convolutions. The output of each one is multiplied
by the output of its parallel convolution layer on the full input and then concatenated together. In order to achieve the original number of
features, we apply 1D convolution with a residual [12] connection.

receives the 3D voxelized input and constructs an output
of a flattened 2D map by utilizing our novel guiding units,
(2) off-the-shelf Region Proposal Network and (3) a Multi-
Group Center Head that outputs a heat-map per class and
a variety of predicted parameters for each detected object.
Our code is based on the old open source version of Center-
Point [28].

Input: Although the raw output of a LiDAR sensor is
given in range and two angles, the nuScenes dataset pro-
vides the point cloud sweeps already transformed to Carte-
sian coordinates. Each point is assigned with two additional
features: intensity, which is taken directly from the sensor,
and ∆t, which relates to the lag-time between each sweep to
its key-frame sweep. We followed the rules of the nuScenes
detection benchmark by taking ten sequential sweeps (total-
ing 0.5 seconds). We then quantize it according to the cylin-
drical voxel resolution and average on each voxel across all
features.

Range-Guided Backbone: The range-guided backbone
is the first deep network block of our proposed solution. As
similar objects appear across a different number of voxels
dependent on the range, we propose to control the convolu-

tions in the main pipeline using range-guided mechanism.

The motivation for range guidance is two-fold; First, the
LiDAR transmitter releases rapid pulses of laser light across
a pre-defined spatial pattern. Using a synced sensor, it mea-
sures the time it takes for each pulse to reflect back from
the object it hits. Then, we receive multiple hits per object,
which depends on its distance. Meaning, nearby objects
will be over-represented in contrast to far away objects, as
can be seen in Figure 2 leading to significant deviation in
close and distant objects statistics. The second reason re-
lates to the voxel size. As noted earlier (see Section 3), in
Cylindrical coordinates the voxel size increases with range.
Which means nearby objects need a wider receptive field
than far away objects.

Our main guided backbone is built from four 3D con-
volution with stride 2 and three guiding units in between
as can be seen in Figure 4. The range guiding backbone is
made of a convolution pipeline fed by only range informa-
tion (meaning only the range feature of each voxel), control-
ling the weights multiplying each of the consecutive convo-
lutions output running on the main pipeline.

Specifically, the range backbone is parallel to the main
pipeline. In each guiding unit, the output of each 3D con-
volution running on the main pipeline is multiplied by the
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Cylinder Map to Input Array for Objects with Same Modified θ̄dir

Figure 6. Illustration of the Cylindrical map translated into the network’s 2D array. Here shown three identical cars of the same size,
but with different centers. They have different θdir as well, but share the same θ̄dir (defined in equation (3)), the orientation as viewed
from the sensor’s perspective. In addition, we see that the closer the vehicle is to the sensor, the more voxels it occupies in the θ axis. The
circular nature of the θ axis can also be observed here, where the magenta car is spread over both sides of the 2D input array.

output of a 1 x 1 convolution which directly operates on
the range feature. The product of four such multiplications
are concatenated and then reduced in dimensions by a 1 x 1
convolution operator. See Figure 5 for visual aid.

The design of the guiding unit allows the neural network
to learn different receptive fields, while the 3D convolu-
tion layers in between contribute to its learning capabili-
ties of the spatial information of neighboring voxels. In our
Cylindrical network, this backbone will serve mainly the far
range where the receptive field needs to be smaller.

Multi Group Center Head: For this block, we follow the
head architecture of CenterPoint [28]. However, in order to
overcome the rest of the aforementioned challenges when
using cylindrical coordinates, it is necessary to make further
modifications for this block.

The original head outputs a K-channel 2D heatmap to
indicate the centers of the K-class objects in the x-y plane.
In addition to the heatmap, the network outputs ten dif-
ferent scalars for each detection: pdx, dyq which is the
delta to the object’s center from the heatmap coordinates,
pw, l, hq which indicate the object width, length and height,
pzcenterq for the object’s center in the Z-axis, pvx, vyq for
the object’s velocity in X and Y axes respectively and
pcos θdir, sin θdirq where θdir is the heading angle of the
object.

The ground truth heatmaps for training are built by ren-
dering a Gaussian around each object’s center. Center-
Point [28] uses symmetric 2D Gaussian since the X and Y
axes share the same resolution, and calculate the radius us-
ing the following equation:

σ “ maxpfpwl, rq, τq (1)

Where f is the radius function defined in CornerNet [15],
τ is the smallest allowable Gaussian radius and w, l are the

width and length of the detected object in number of voxels,
meaning the result of w and l divided by the voxel’s size.

In our setup, we can not use symmetric Gaussian any-
more thus we split it into 2D Gaussian with different radii
for each axis which are calculated separately by eq.(1). We
then calculate the size of a voxel in the θ-axis by the follow-
ing formula:

Vθsize “ 2rcenter sin

ˆ

θcenter
2

˙

(2)

Where rcenter , and θcenter are the coordinates of the ob-
ject’s center in the r and θ dimensions respectively.

While the transformation of the heatmap coordinates and
the deltas from Cartesian to Cylindrical coordinates is quite
simple, the heading angle and velocity outputs are much
more complex and require a deep understanding of the net-
work’s view.

The θdir in which our Cylinder-network observes the ob-
ject depends not only on the θdir of the object but also on
the θcenter of the object. An object facing forward with
θcenter “ π{2 will be interpreted on the 2d map the same
way as an object whose center is right in front of the ego-
vehicle and facing θdir “ ´π{2 will, see Figure 6. There-
fore, the θdir we wish to learn is as follows:

θ̄dir “ θdir ´ θcenter (3)

Where θcenter is the θ coordinate of the object’s center.
Our use of θ̄dir instead of θdir gives us a significant ad-

vantage over the Cartesian coordinate system. As demon-
strated in Figure 7, points are distributed differently be-
tween similar cars with respect to their θcenter. Although
the two cars share identical θdir in the classic system, the
points are scattered on different parts of each vehicle. As
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Figure 7. A single frame of nuScenes scene, demonstrating the
Cartesian system’s drawback: Although the green and blue cars
share many characteristics, in particular that they both have a sim-
ilar orientation - the pattern in which they are covered with point
clouds is significantly different. By applying the modifications de-
scribed in equation 3, this difference no longer poses a challenge
to our Cylindrical network.

the blue bound car is mostly ”hit” on its front, the points
”hitting” the green marked car mainly concentrate on its
left side. In our modified system, for instance, when most
of the object’s cloud points cover its rear, the value of its
θ̄dir “ 0, when the majority of the points appear on its right
side, θ̄dir “ π{2, and so forth. We believe it allows our
system a more adequate comprehension of the scene.

Now we can separate the new θ̄dir into two orthogonal
components:

θθ “ sinpθ̄dirq

θr “ cospθ̄dirq
(4)

For each detection, one is also required to output the ob-
ject’s velocity. As opposed to θ, the required velocity for
this benchmark is already divided into the classical coordi-
nates, meaning the metrics of this benchmark evaluates vx
and vy and they are given as ground truth. Thus, an addi-
tional step is required:

Vabs “

b

v2x ` v2y

Vdir “ arctan

ˆ

vx
vy

˙ (5)

Where we use Vx as the numerator and Vy as the denom-
inator to be aligned with nuScenes coordinate system.
We then apply the same transformation we did in equa-
tion (3) for velocity:

θ̄velocity “ Vdir ´ θcenter (6)

Then, we divide that into two learnable outputs accord-
ing to our self-cylindrical coordinates as before:

Vθ “ Vabs sinpθ̄velocityq

Vr “ Vabs cospθ̄velocityq.
(7)

Losses: We use L1 regression loss for the local offset
pdr, dθ), orientation pθr, θθq as defined in equation (4) and
velocity pVr, Vθq as defined in equation (7). As for size
pw, l, hq and zcenter we use log-space L1 regression, and
for the heatmap supervision a focal loss [17] with α “ 2
and β “ 4 is used.

The overall loss of our network is as follows:

L “ Lheatmap ` λregLreg (8)

Where Lheatmap is the focal loss for the heatmap and Lreg

and λreg are the regression losses mentioned above and
their loss weight accordingly.

Circular Padding: We address the circularity of the θ
axis of the neural network by substituting zero-padding with
circular padding for the θ-axis in all of the convolution lay-
ers throughout the entire network, both 2D and 3D.

By applying all of the above, we have overcome the chal-
lenges posed by the cylindrical coordinate network and can
now capitalize on its advantages.

5. Experiments
Dataset: We evaluate our method on the nuScenes dataset
for 3D object detection [3]. The dataset contains 700 train-
ing scenes, 150 validation scenes, and 150 test scenes, each
20 seconds long with spinning 32 lanes LiDAR at 20 frames
per second. The latest nuScenes benchmark requires the de-
tection of 10 different classes with a long-tail distribution:
car, bus, construction vehicle, trailer, truck, pedestrian, mo-
torcycle, bicycle, traffic cone and barrier.

Evaluation Metrics: The nuScenes Detection Score
(NDS) is a weighted sum of mean Average Precision
(mAP) [9] and several True Positive (TP) metrics. The
mAP is calculated as an average of four mAP with distance
threshold of: (0.5m, 1m, 2m and 4m), and the TP met-
rics are calculated between the prediction and its matched
ground truth the under the 2m threshold:

1. Average Translation Error (ATE): The Euclidean dis-
tance in meters between the two centers.

2. Average Scale Error (ASE): Calculated as (1 - IOU)
after aligning the centers and orientation of both.

3. Average Orientation Error (AOE): Smallest yaw angle
difference (θdir).
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Method mAPÒ mATEÓ mASEÓ mAOEÓ mAVEÓ mAAEÓ NDSÒ

CBGS [32] 0.499 0.335 0.256 0.323 0.251 0.197 0.613
CenterPoint [28] 0.591 0.277 0.251 0.269 0.258 0.189 0.671
CyliNet RG (ours) 0.576 0.283 0.253 0.291 0.268 0.180 0.661

Table 1. nuScenes Experiment Results on Validation set: The results of CBGS and CenterPoint as shown on their github. Top results
are in bold, second place is underlined.

Method Car Truck Bus Trailer CV Ped Motor Bicycle All

CenterPoint [28] 3.676 2.637 1.468 14.364 9.197 0.642 2.641 3.155 3.051
CyliNet RG (ours) 2.610 1.485 1.273 12.964 7.267 0.561 3.333 3.974 2.160

Improvement by %: 28.982 43.696 13.291 9.743 20.985 12.535 -26.207 -13.067 29.223

Table 2. Flip Orientation Error on Validation set: Percentage per class for ”flip orientation” error (i.e predicted orientation for an object
is nearly 180° from the GT orientation). CV stands for Construction Vehicle, Ped for pedestrian and Motor for Motorcycle.

4. Average Velocity Error (AVE): Absolute velocity er-
ror for vx and vy separately, measured in meters per
second.

5. Average Attribute Error (AAE): Calculated as 1 - acc,
where acc is the attribute classification accuracy.

The final NDS is calculated as follows:

NDS “ 5mAP `

5
ÿ

i“1

maxp1 ´ TPi, 0.0q

NuScenes has recently added a new hidden evaluation
metric to their evaluation server, called Planning KL-
Divergence [20] (PKL). The PKL metric measures percep-
tion performance by measuring differences between how a
planner would plan when given detections from a detector
instead of human-labeled detections. A larger PKL score
corresponds to poorer performance. On the test set, this
metric will be displayed.

Implementations Details: Following the nuScenes
benchmark, we set the detection range to r1m, 53.8ms

for the range axis, r´π, πs for the θ axis and r´5m, 3ms

for the Z-axis. Utilizing the structure of the cylindrical
coordinates, we do not need extra spaces in our input map,
in order to detect an object within the required 50m range.

With the choice of r0.075m,π{600, 0.2ms for the vox-
els size in each axis respectively, our network input size is
704 x 1200 x 40 voxels. In our range-guided backbone we
use four times stride 2 for the range axis, and three times
for the θ axis, resulting in 88 x 300 output size. Due to
the cylindrical shape of our output map, it is almost 20%
smaller than CenterPoint’s [28] output map. We train the
model with a batch size of 56 for 20 epochs on 8 RTX8000
GPUs. We have chosen adamW [18] optimizer with one-
cycle policy [11], LR max 0.0035 with division factor 10,
momentum from 0.85 to 0.95, weight decay 0.01 and chose

λreg to be 0.25. During inference, we keep the top 500 de-
tection proposals per sample. Afterward, we filter out all
proposals with a detection score lower than 0.1 and apply
maximum suppression (NMS) with an IOU threshold of 0.1
for all classes except for the car class where we use 0.2. Ul-
timately, we limit the maximum output to 83 proposals per
group.

5.1. Results

We present our results on both nuScenes validation set
shown in Table 1 and nuScenes test set shown in Table 3.
The test results were obtained from nuScenes official evalu-
ation server, where test sample annotations remain hidden.
Our single model on the LiDAR track outperforms all meth-
ods but a single one, both for NDS and PKL scores. Our net-
work also outperforms both of CVCNet’s [22] submissions
by a very large margin. Although they used the polar co-
ordinate system to quantize the input points cloud, and not
the cylindrical one as we did, they are still the only other
method that uses another coordinate system than the Carte-
sian, and therefore we believe a comparison is worthwhile.
In NDS we achieved a score of 0.661 versus 0.642 and
0.644 while in the PKL metric (lower is better) we achieved
a score of 0.708 as opposed to 0.935 and 0.919 (around 30%
improvement).

Moreover, we examined the mAOE and we noticed a
fundamental improvement in flip orientation error reduc-
tion. Due to the structure of the roads, there are high picks
in the orientation distribution for p0,˘π{2,˘πq, especially
for vehicles. This gives the Cartesian coordinate system an
advantage, especially for avoiding small errors in orienta-
tion detection, but with the price of increase flip error. Our
network on the other hand is comparable on average mea-
suring rotation error, but due to the nature of Cylindrical
coordinates point of view we better identify the direction
of each element, which is a critical unit for the planners.
With the modification we conduct for orientation (eq.3) our
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Method mAPÒ mATEÓ mASEÓ mAOEÓ mAVEÓ mAAEÓ NDSÒ PKLÓ

CBGS [32] 0.528 0.300 0.247 0.379 0.245 0.140 0.633 0.766
CVCNet single [22] 0.558 0.300 0.248 0.431 0.269 0.119 0.642 0.935
CVCNet single V2 [22] 0.553 0.300 0.244 0.389 0.268 0.122 0.644 0.919
MMDetection3D [29] 0.575 0.316 0.256 0.409 0.236 0.124 0.653 0.710
HotSpotNet-0.1m [6] 0.593 0.274 0.239 0.384 0.333 0.133 0.660 0.851
CenterPoint single[28] 0.603 0.262 0.239 0.361 0.288 0.136 0.673 0.690

CyliNet RG single (ours) 0.585 0.272 0.243 0.383 0.293 0.126 0.661 0.708

Table 3. nuScenes Experiment Results on Test set: Top results for single model on the LiDAR track, taken from the nuScenes website.
Top results are in bold, second place is underlined.

CC.mod. 0.5mÒ 1mÒ 2mÒ 4mÒ mAPÒ mATEÓ mASEÓ mAOEÓ mAVEÓ mAAEÓ NDSÒ

ˆ 0.468 0.561 0.618 0.648 0.574 0.282 0.250 0.314 0.312 0.185 0.652
‘

0.469 0.562 0.623 0.651 0.576 0.283 0.253 0.291 0.268 0.180 0.661

Table 4. Ablation Experiment on nuScenes Validation set: Cylindrical-coordinate modifications (CC.mod.) refers to modification
explained on subsection Multi Group Center Head under section Method 4 for both orientation (θ̄dir) and velocity (θ̄velocity). Notice, how
our CC.mod. significantly improves performance for both, orientation (mAOE) and velocity (mAVE).

Cylindrical network is learning the relative orientation as
shown and explained in Figures 6 and 7, therefore when
learning for example θ̄dir “ 0 it is always related the same
orientation in space, in this case a rear view of the object.
As Table 2 indicates, this modification led to a decrease in
”flip orientation” error. In this table we show the percentage
per class for such error, averaging on all four of nuScenes
mAP metrics. As can be seen, our network is decreasing
the error rate in almost all classes by a large margin, and
improves results by 29.2% when combining all classes in
all mAP together.

5.2. Ablation studies

We further conduct our ablation studies on the nuScenes
validation set.

First, we demonstrate the significance of our Cylindrical-
coordinate modifications detailed in Multi-Group Center
Head on section 4. Table 4 shows the result for two identi-
cal networks, trained in the same way, both utilizing circu-
lar padding. In the first network, we did not use our velocity
and orientation modifications, while in the second, we did.
As expected, the most significant improvement in the sec-
ond network’s performance can be observed in the velocity
and orientation metrics. The mean average orientation er-
ror decreases from 0.314 to 0.291 and the mean average
velocity error decreases from 0.312 to 0.268 (a 15% im-
provement). Additionally, all the mAP metrics indicate an
increase as well, and we see a significant increase in the
NDS from 0.652 to 0.661.

Moreover, we show the effectiveness of our range-
guided backbone to reduce the receptive field for larger
distances and for smaller objects. For range r30m, 50ms

over all classes we achieve NDS of 0.485 when the guid-
ance mechanism is applied, and 0.478 when omitted while
using the heavily optimized backbone of CBGS [32]. For
the entire range we also witness an improvement in NDS
from 0.658 when omitted versus 0.661 when applied. An
interesting point to note is that the range information is in-
cluded in our Cylindrical network even without the guiding
units. Nevertheless, we see here that an additional use of it
as convolution weight guidance in the first block, is proving
beneficial for the network.

6. Conclusions
In this paper, we explore the vast potential of a

Cylindrical-coordinate based network for representing Li-
DAR point clouds in an outdoor scene. We present the first
end-to-end framework for 3D object detection in those coor-
dinates along with a novel range-guided backbone that con-
trols the receptive field based on the range information. We
further report a fundamental improvement in flip orientation
error which is critical to the planner in identifying poten-
tial risks. Our method achieves strong results on the highly
challenging nuScenes dataset and lays the foundation for
further Cylindrical methods in this domain.
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