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Abstract

Autonomous vehicles (AV) often rely on perception mod-
ules built upon neural networks for object detection. These
modules frequently have low expected error overall but high
error on unknown groups due to biases inherent in the train-
ing process. When these errors cause vehicle failure, man-
ufacturers pay humans to comb through the associated im-
ages and label what group they are from. Data from that
group is then collected, annotated, and added to the train-
ing set before retraining the model to fix the issue. In other
words, group errors are found and addressed in hindsight.
Our main contribution is a method to find such groups
in foresight, leveraging advances in simulation as well as
masked language modeling in order to perform causal inter-
ventions on simulated driving scenes. We then use the found
groups to improve detection, exemplified by Diamondback
bikes, whose performance we improve by 30 AP points.
Such a solution is of high priority because it would greatly
improve the robustness and safety of AV systems. Our sec-
ond contribution is the tooling to run interventions, which
will benefit the causal community tremendously.

1. Introduction

Our guiding motivation in this paper is to understand
where a detection module has poor performance before it
enters production. We focus on a realistic setting – au-
tonomous vehicles (AV). These systems are becoming more
apparent in our lives as they enter mainstream. It is vital
that this module is extremely capable, however biases in the
training process such as in the data distribution, the chosen
architecture, or the hyperparameters will lead to the model
having groups of data where the error is much higher than
what it is in expectation over the full dataset. These gaps

Figure 1: After training models on any of four disjoint 10000 IID
subsets from CARLA’s Town03 environment, they do well on the
Town03 validation set and poorly on a validation set biased to-
wards Diamondback bikes. This establishes that there is at least
one challenging group for the model. Our method will now find
other challenging groups.

in its scene understanding lead to faulty operation, disen-
gagements, and emergency consequences, and we would
prefer that they be identified before deployment. We fo-
cus in this work on semantically meaningful groups such as
specific weather patterns, vehicle types, and vehicle posi-
tioning. These are high priority problems to the community
because finding challenging groups in advance informs effi-
cient data acquisition, in turn improving the robustness and
safety of AV systems. However, naı̈vely searching for them
is difficult because the search space is so large.

Recent advances in masked language models [12]
(MLM) have granted us understanding of sequences such
that we now reliably generate fluent language (see Sec-
tion 2). Advances in AV simulation frameworks (e.g.
CARLA [13]) have granted us fine-grained control over
scenes. We leverage both of these by first encoding sim-
ulated scenes from synthetic data as flattened sequential
scene graphs of symbolic tokens. We then mask out select
tokens and use the trained MLM to infer new ones. This
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Figure 2: Finding challenging groups for a detection model: We generate 10000 scene graphs G and encode those graphs into sequences
S using a pre-defined deterministic language. For each S, we intervene by randomly selecting a single node from either the weather or
a random agent’s location, rotation, or vehicle type, and then having our trained MLM resample that node. We render images and labels
from S and S0 with CARLA, and feed them to the scoring function f� for assessment. After applying a threshold and grouping these
assessments, we attain an ordered list of challenging groups for our model. The area inside the dotted box is the intervention machinery.
The MLM is a modular component, as we show in Section 5 in order to compare with a random approach.

intervention, e.g. changing the weather from sunny to dark,
allows us to test causal interactions in a scene and see which
are the most impactful.

Our primary contribution is a method for taking such

interventions on the data distribution using MLMs op-

erating on scene graphs. We employ this procedure to find
which groups in the data distribution are most challenging
for the model and confirm that the difficulty of these groups
with respect to average precision (AP) aligns with our ap-
proach’s predictions. We then show that adding indepen-
dent and identically distributed (IID) data or more model
capacity does not address the problem. Predictably, includ-
ing data from the groups in training helps the model’s per-
formance on that group. Surprisingly, we find that including
just one group in training helps every other group as well.

The MLM ensures that our interventions stay close to the
true data distribution. This is critical, as we show via a com-
parison to random interventions that tend to produce exam-
ples which are highly unlikely under the true data distribu-
tion. Consequently, using random interventions requires a
much higher budget for data collection and model capacity
than using the MLM interventions.

Our second contribution is a toolbox for causal re-

search. We developed software1 that allows us to prin-
cipally test questions of model capacity, dataset size, and
dataset makeup. We did this in a simulated environment
upon which we take causal interventions in a challenging
and practical application setting. Beyond the AV commu-
nity, we think this toolbox will benefit the causality commu-
nity because the state of the art [21] involves static datasets
with low complexity tasks.

1We will release this publicly after submission.

2. Background

We train detection models on synthetic datasets from
simulated AV environments, and take interventions using
an MLM on scene graphs of those environments.

For the detection models, which operate on RGB images,
we use the Detectron2 library [44]. It provides a plethora
of battle-tested architecture choices along with suggested
training and testing configurations. We select six models:
18C4, 18FPN, 34C4, 34FPN, 50C4, and 50FPN. These are
all common ResNet [18] architectures that include a litany
of other attributes such as Feature Pyramid Networks [26].
See the Appendix for details. We create additional configu-
rations that are 2x, 3x, 4x, and 5x wider versions of 50FPN,
exemplified by 50FPN2x, for a total of ten tested model ar-
chitectures. The C4 and FPN mix allows us variation in
model configuration, while the 18, 34, and 50 layer counts
and their width increases provide variation in capacity. We
made minimal changes to the models to account for train-
ing on our dataset and with 4 gpus instead of 8. All mod-
els were trained for 90000 steps (8-9 hours) without pre-
training; none reached zero training loss.

For data, we use the ubiquitous CARLA simulator and
produce synthetic data from the preset Town03 or Town05
maps. Besides RGB images and COCO [25] annotations for
training the detectors, we also use scene graphs to let the
MLM semantically manipulate the scene. These are repre-
sentations of an image in a deterministic tree structure with
symbolic elements that each have symbolic or numeric at-
tributes. We flatten the tree and use absolute positioning.

MLMs are trained by receiving sequences of discrete to-
kens, a small number of which are masked, and predicting
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what tokens should be in the masked positions. Through
this process, they learn the data distribution [30, 39] of
those sequences. At inference, they are fed a sequence
with a chosen token masked and replace the mask with
their prediction. We use FairSeq [33] and specifically the
base MaskedLMModel transformer architecture2 to train
the MLM. We cannot use pre-trained models because our
data is original, but instead train and validate on held out IID
datasets of sequences converted from scene graphs (Sec-
tion 3). These are converted to the FairSeq format before
using the standard training pipeline.

For detection results on all charts, we report average pre-
cision (AP) over vehicles as returned by Detectron2.

3. Method

Figure 1 compares the performance of trained models
on held-out data sampled from the training distribution and
held-out data with increased occurrence of a challenging in-
stance type, a brand of bikes called Diamondbacks. The
performance gap between the sets is stark. We expected in
advance that bikes would be difficult because they are un-
derrepresented in the training distribution and are motivated
to find similarly challenging groups with limited human in-
volvement, especially groups that are not so easily hypoth-
esized as the bikes.

One approach to doing this would be to iterate through
the training set and gather examples for which the model
� gives poor results. Given a simulator R, if x is a triplet
of (scene graph G,RGB image I, label L), and pR(x) is
the scene generation process, then we sample (G, I, L) ⇠
pR(x). To ascertain the model’s ability on this example, we
also need a per-example scoring function f : (�, I, L) ! y.
Repeat this over the full training set to attain tuples (Gi, yi).

We immediately run into a problem when trying to glean
causal factors from this data because each Gi has many
scene constituents, such as the agents’ attributes, the time
of day, rain, etc, whose interactions scale combinatorially.
The core issue is that we know the yi at too high of a level
to parse which constituents were problematic. Even if we
associate a score per ground truth bounding box, we still
would not be able to disambiguate the cause because there
are a multitude of reasons why a specific detection could fail
that are a consequence of the interactions within a scene.
Understanding those causes is important because it would
help us in both finding more data that would patch the de-
ficiency but also downstream in grokking whether we have
sufficiently addressed the issue.

Causal interventions on simulated scenes We take in-
spiration from causal inference where interventions allow

2See masked lm.py#L30 in the FairSeq library, commit hash
1bba712622b8ae4efb3eb793a8a40da386fe11d0

us to assess the causal links between the scene and the
model’s score. We change an aspect of a scene Gi, such
as a rotation or location of a specific car, render this new
scene G0

i as RGB image I 0, and then compute the � =
f(�, I 0, L0) � f(�, I, L). If this � is sufficiently negative
(or positive), then the target (or original) attribute in the in-
tervention is potentially problematic for �. We decide suf-
ficiency by whether |�| � ⌧ , where ⌧ > 0 is a threshold
parameter. After performing this procedure N times and
grouping by the intervention type, we attain an ordered list
of challenging groups at the semantic level of specific rota-
tions, car types, or weather patterns.

What determines the intervention? Intervening ran-
domly may produce data that is unlikely under the true dis-
tribution, which will make it challenging to draw conclu-
sions about the difficulty of the example with respect to its
actual utility in improving our model. In other words, we
would like for the model to be able to detect flying cars,
but given a computational budget, that out-of-distribution
group is much lower priority than detecting motorbikes in
the dark, and so we should favor finding the latter over the
former. This is especially true for a limited model capacity
because learning to detect flying cars and other unrealistic
low-priority scenarios will take capacity away from press-
ing needs; it is also true in practice because detection la-
beling is expensive and our budget for data outside of the
simulator is never infinite.

With pR(x) as the generation process, y our surrogate
score, and z a confounder that affects both x and y, we need
to draw a counterfactual x0 that is independent of z. Sam-
pling from pR(x) is challenging because retrieving the same
scene again with just one change is difficult. Instead, we
train a denoising autoencoder (DAE) to sample faithfully
from pR(x) [6, 28, 38]. This sampling is satisfied by using
a masked language model (MLM) as our DAE [30, 39].

The MLM is trained on flattened scene graphs where the
discrete tokens are representations of weather, agent asset
types, rotations, and locations (details below). Figure 2
shows how, at inference time, we convert G to a flat se-
quence S and re-sample masked tokens to create counter-
factual scenes. Because the model was trained to a low
perplexity on data drawn from the distribution, it faithfully
samples from the original distribution pR(x). Because our
model is not the exact distribution and errors will accumu-
late when applying many interventions sequentially, we in-
tervene for just one categorical step, equivalent to a single
node change in the scene graph.

Scene-sequence encoding Encoding the scene graph lan-
guage requires us to translate G with continuous node at-
tributes into discrete S. The first 10 tokens correspond
to weather attributes (cloudiness, precipitation, sun altitude
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angle, etc), the next 5 are camera intrinsics, and the fol-
lowing 15 represent the ego agent. After these 30, we have
a variable number of agents, each sequentially represented
by 17 tokens. The two extra tokens for the non-ego agents
are related to vehicle type, which is fixed for the ego agent.
Although the 10 weather attributes are each continuous, we
select these vectors from 15 weather choices during training
and so, with regards to the encoding, they each correspond
to discrete choices. Similarly, because the camera intrin-
sics were drawn from the (realistic) discrete Nuscenes [7]
distribution, their encoding is discrete.

The agent tokens have a set order. First is the discrete
type (‘blueprint’), then the continuous (x, y, z) locations
and (roll, yaw) rotations. To discretize the locations, we
first subtract their minimum possible value. The resulting
value is in [0, 600) and we encode it with three tokens wk:
w0 2 [0, 5] represents the hundreds place, w1 2 [0, 99] the
ones, and w2 2 [0, 9] the decimal. This small sacrifice of
precision marginally impacts scene reproduction. Rotation
uses the same encoding, albeit it is bounded in [0, 360).

Scoring We require a per-example scoring function f to
quantify the intervention delta � = f(�, I 0, L0)�f(�, I, L).
Our goal was to replicate the AP score’s intent, which
values having few predictions with high intersection over
union (IOU) to ground truth targets. Another goal was to
evaluate entire scenes and not just target assets. This is im-
portant because even though our interventions are local to a
node, they may still impact detecting any scene constituent.

We first get the model’s predictions and order them by
confidence, highest to lowest. We sequentially align each
prediction with the highest IOU ground truth. If IOU > .05,
then we mark this ground truth as claimed. The per predic-
tion score is the product of the prediction’s confidence and
its IOU. We then take the mean over all predictions to get
the model’s final score on this example. This penalizes the
model for having low confidence or a poor IOU and bolsters
it for having high confidence on quality boxes.

Summarizing, we propose finding hard groups for a
trained model � by taking interventions on scene sequences
through the use of an MLM and assessing the results with
our own surrogate scoring function f . Our MLM infers a
new scene close to the original distribution with semantic
changes such as weather, agent asset type, location, or ro-
tation, and then the scores from f delineates between in-
terventions that were minimal and those that caused a high
delta change. The assumption is that high negative delta
changes imply that the intervention was deleterious to � and
high positive changes are the same in reverse. Asserting that
a particular scene is hard does not provide any insights into
why nor how to fix it; Asserting that a type of intervention
is consistently hard narrows greatly where the model’s dif-

ficulties lie without ever including humans in the process
and suggests a route to fixing those difficulties. After find-
ing this priority list, we address the groups via hard nega-
tive mining [40, 23, 41], a common technique for improving
models by first mining the data for the hardest examples and
then emphasizing those examples in the training set by ei-
ther retraining or fine-tuning.

4. Related Work

MLM as a generator While we believe we are the first
to propose using an MLM as a generator in order to take
causal interventions, Ng et al. [30] generates from an MLM
in order to augment training with generated examples. Man-
simov et al. [28] and Wang and Cho [39] do so in order to
generate high quality examples for use in downstream ex-
amples, with the former producing molecules closer to the
reference conformations than traditional methods and the
latter producing quality and diverse sentences.

AV Testing and Debugging We discover perception vul-
nerabilities in the AV detection system through scene ma-
nipulation using MLMs. Concurrently, 3DB [24] proposed
a configurable system to diagnose vulnerabilities in percep-
tion systems through synthetic data generation. While the-
oretically possible to implement our proposal within their
framework, we additionally show how to generate complex
scene manipulations using the MLM and study scenes of
significantly higher complexity. Multiple approaches test
AV systems – usually the planning subsystem – through ad-
versarial manipulation of actor trajectories. We believe we
are the first to take causal interventions in static scenes to
test AV detection systems. Ghodsi et al. [16] manipulate tra-
jectories of actors to discover avoidable safety critical sce-
narios for an AV using their proposed scenario complexity
metrics. Abeysirigoonawardena et al. [1] perform Bayesian
optimization to discover adversarial driving scenarios and
show their use in improving policy robustness through ad-
ditional training. The Adaptive Stress Testing framework
used for aircraft collision avoidance systems has also been
extended to AVs [22, 9]. Done in simulation, deep RL is
used to generate adversarial actor trajectories for an AV sys-
tem. Wang et al. [42] also generate adversarial scenarios for
AV systems by black-box optimization of actor trajectory
perturbations. Key to their work is the simulation of Li-
DAR sensors in perturbed real scenes, allowing adversar-
ial attacks and closed loop testing on a complete LiDAR-
based AV system. O’Kelly et al. [31] also propose a closed
loop simulated testing framework by importance sampling
of safety critical AV scenarios using a learned distribution
of driving behavior. We refer to [10] for a detailed survey.
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Scene manipulation Ost et al. [32] learn neural scene
graphs from real world videos via a factorized neural radi-
ance field [29], while Kar et al. [20], Devaranjan et al. [11]
generate scene graphs of AV scenes that match the image-
level distribution of a real AV dataset as a means to pro-
duce realistic synthetic training data. All three can be seen
as a precursor to our method for handling real world data.
Dwibedi et al. [14] generate synthetic training data for ob-
ject detectors by learning to cut and paste real object in-
stances on background images, which elicits a confounder
because of how artificial the pasted scenes appear.

Adversarial detection is another way of viewing our
work. Xie et al. [45] showed that we should consider the
detection task differently from the perspective of adversar-
ial attacks, but did not explore finding root causes. Liu et al.
[27] use a differentiable renderer to find adverse lighting
and geometry. Their renderer is consequently less capable
and images appear stitched, a confounder with regards to
the natural distribution. Athalye et al. [4] synthesizes real
3D objects that are adversarial to 2D detectors. They are
limited to single objects, moving in the location, rotation, or
pixel space, and do not identify causal factors. Zeng et al.
[46], Tu et al. [37] synthesizes 3D objects for fooling AV
systems, both camera and LIDAR, with a goal to demon-
strate the existence of one-off examples.

Challenging groups Improving the model to recognize
found groups, potentially sourced from the distribution’s
long tail, is an important goal. Numerous methods [34, 2]
do this by re-weighting or re-sampling the training set, with
Chang et al. [8] focusing on detection. Sagawa et al. [36]
uses regularization and Wang et al. [43] uses dynamic rout-
ing and experts. All of these approaches require us to know
the problematic groups in advance, which would only hap-
pen after applying our method. Further, they do not assess
why the model is weak, but only seek to fix the problem.
This makes it challenging to understand if the core issue has
been addressed. Gulrajani and Lopez-Paz [17] suggests that
these approaches are not better than ERM, which is how we
incorporate our found groups in Section 5.

5. Experiments

This section introduces a litany of experiments showing
the virtue of our proposed method, as well as support for
random interventions being less efficient.

5.1. Datasets

To create the datasets, we first select the CARLA preset
map (Town03 or Town05). Then we randomly choose from
among the pre-defined weather patterns. We randomly se-
lect the camera calibration and the number V of vehicle as-

Figure 3: Test results with config 18C4 when training on dis-
joint IID subsets. Results are consistent, suggesting that the harder
groups - bikes, rotations, and cybertruck - are ubiquitously hard.

sets according to the distributions in Nuscenes. We place
those V vehicles, the ego agent, and P = 20 pedestrian as-
sets, at random town waypoints suitable for the asset type.
Finally, we attach the calibrated camera to the ego agent and
set every agent to autopilot.

We wait for 50 timesteps after spawning so the scene sta-
bilizes. We then record for 150 steps and save every 15th
frame. We need the 2D ground truth boxes for each asset,
but found the suggested approach3 lacking because it fre-
quently has trouble with occlusions and other challenging
scenarios. See the Appendix for heuristics we developed to
help filter the ground truth boxes.

5.2. Interventions

Table 1 shows selected ordered results from the inter-
vention procedure described in Section 3. We performed
the procedure on N = 10000 held out scenes Gk where our
� is an 18C model trained on the base 10000 subset from
Town03 and ⌧ = 0.2. We additionally filter the categories
to have at least 20 entrants.

On the left side we see the intervention taken, for exam-
ple changing a single agent type to a Cybertruck or chang-
ing the weather such that it is now sunny with reflective
puddles. The second column shows the probability that the
intervention produced a � � 0.2. We include both when the
change was to that target and the delta was negative as well
as when it was from that target and the delta was positive.
The last column in the table reports how many times in total
this intervention occurred in the 10000 scenes.

Summarizing the table, we find that a handful of asset
switches appear to be deleterious groups for the model ac-

3See client bounding boxes.py in the CARLA repository, commit hash
4c8f4d5f191246802644a62453327f32972bd536.
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Intervention Percent > 0.2 Total
Tier 1: Likely Challenging Groups

DiamondbackBike 24.4 123
Cloudy Dark 19.4 36
GazelleBike 18.9 122

Cloudy Dark Puddles 17.2 29
CrossBike 16.5 121

Rotation - 178.6 15 20
Rotation - 121.3 13.0 23

Tier 2: Borderline Groups
KawasakiBike 6.5 92

Cybertruck 6.4 94
Carla Cola 6.0 198

Sunny Puddles 5.4 56
Tier 3: Easy Groups

Citroen C3 1.6 188
Mercedes CCC 1.0 206

Table 1: Illustrative table of selected interventions, ordered
by the percent of times that they were involved in a high
magnitude � event. The 2nd column shows that percent
and the 3rd column the total number of observations. Sec-
tion 5.3 suggests that between 6.0 (Carla Cola) and 6.4 (Cy-
bertruck) is where our cutoff should lie.

cording to this metric. In particular, ‘small bikes’ have an
outsized effect, as does cloudy weather and the rotations
where a car is coming at the ego agent or turning to the left.
Just after the last bike are two large vehicles, the Cybertruck
and the Cola Car. The specificity of the listed weathers and
rotations are due to our discretization gifting us an exact
value that we translate in the table for semantic understand-
ing. Practically speaking, there is a range of rotation and
weather values around the group that would all suffice.

Finally, we do not include any location results in this ta-
ble because the MLM would frequently re-position the as-
set somewhere out of the camera’s purview. This says more
about the asset than it does about the location, and it is also
rife with confounders based on what was behind that asset.
We could have localized the location interventions more by
zeroing out MLM options, but leave that for future work.

5.3. Analysis

After obtaining candidate groups from the designed in-
terventions, we investigate the effect of modifying the data
sampling procedure to increase the prevalence of these
groups by building and evaluating datasets sampled from
the MLM training set. For asset groups, for each datum,
we uniformly sample nv 2 [3, 6] as the number of vehicles
selected from the scene. We then randomly choose vehicles
v0, v1, . . . , vnv in that scene, including vehicles that may ac-
tually not be in the camera’s purview, and change them to be
the target mode. So as to not accidentally introduce a bias

Figure 4: Charts showing independently increasing the model ca-
pacity (left) and increasing the data size (right). We see that no
model distinguished themselves and that we quickly taper in how
effectively the model utilizes the data. We consider the dip in the
capacity chart to be an artifact of the training procedure and using
the same settings for all of the models.

through the random process, we select the same vehicles
vk for all group datasets. For rotation groups, we choose
those same vehicles but rotate them to be the target rotation
instead of switching their asset. For weather groups, we
change those scenes to have the target weather instead.

Does our method correlate with AP score? Figure 3
shows evaluation results on these groups when training
18C4 on four disjoint 10000 sized subsets of the data. The
models perform best on the IID data from Town03 and just
a little bit worse on the same from Town05. Further, they
do exceptionally well on those two datasets, validating that
they were trained sufficiently.

The group results are mostly in line with our expecta-
tions from the interventions - the models do well on Citroen
and Mercedes, poorly on the rotations, and terribly on the
bikes. There is a large jump from the reasonable results on
ColaCar and SunnyPuddles to the mediocre results on Cy-
bertruck, which is directionally correct per Table 1. How-
ever, the strong results on CloudyDark are surprising.

Summarizing, if the threshold for choosing a group is
between 5.5% and 6.5% and we focus on interventions
affecting vehicles directly (rotation and type), then our
method correlates well with empirical results. This does not
mean that we have found the exact causes of the model’s is-
sues, but that we have narrowed them greatly. The model’s
regression when changing a car to a bike may be because
it performs poorly on bikes. It may also be because the car
was occluding another vehicle or that it itself was not oc-
cluded. This is especially true in light of the weather results
suggesting that weather is not a conclusive factor. Finding
the exact cause is a difficult problem, even in simple set-
tings [3]. We restrict our scope to this level of understand-
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Figure 5: Results of training 18C4 on the base IID 10000 training set plus additional group data. The five groups in the top left (Cybertruck,
Cola Car, Diamondback, Gazelle, and Crossbike) are added equally. Observe that, for all charts, adding any one group improves all of the
other evaluation scores, and at no point do we lose efficacy on the IID data as a whole. Figure 10 (Appendix) zooms in on the initial jump.

Figure 6: How much IID data is required to match a small amount
of extra hard group data. The top left shows 20000 more IID data
is required to reach par on IID with 250 group data. The bottom
left shows that we never reach the same level on Diamondbacks
with IID data as with adding Cybertrucks, let alone actual bikes.

ing and leave improvements for future work.

Can we address these issues by increasing capacity?

Recent papers [47, 5] suggest that scaling our models will
improve results. An affirmative answer would mean we
would not need to collect more data. While it is possible
that we did not scale enough or use the right architectures,
the left side of Figure 4 suggests a negative answer. We see
that no model was distinguished with respect to their final
values when using 10000 IID examples.

What if we increased IID data? While we would have to
collect data, this would be easier to attain than group spe-
cific data. The right side of Figure 4 suggests this too will
not be sufficient. We see an initial jump from 1000 to 10000
IID data points, but efficacy slows precipitously across town
and group data. We have no reason to think this will sud-
denly change, and Figure 8 (Appendix) affirms that by sug-
gesting that the percentage of representation of the group is
what matters, rather than absolute count.

What if we increased data and capacity simultaneously?

Results remain negative, as seen in Figures 7 and 9 (Ap-
pendix). The left graphic in Figure 7 evaluates all of the
models on 85000 examples and the right one hones in on
the 34C4 model, showing its results across a range of IID
data counts. Three aspects stand out. The first was that
all of the models have similar evaluation scores. The sec-
ond is that they all struggle on the harder groups. And the
third, seen more clearly in Figure 9, is that more data yields
a small accretive effect. This suggests that, all else equal,
adding data may be better than adding model capacity.

Using group data We expect that when we add data from
the groups to the training set that we will address the issues.
The top left plot in Figure 5 confirms that to be true. We add
an even amount of each group to the base 10000 IID subset
and see that every group improves without impacting the
Town03 and Town05 results.
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Intervention MLM Random Random Total
CrossBike 16.5 19.0 126

GazelleBike 18.9 18.7 171
DiamondbackBike 24.4 15.8 152

Carla Cola 6.0 8.1 210
Cybertruck 6.4 6.8 176

KawasakiBike 6.5 6.6 121
Citroen C3 1.6 3.5 197

Mercedes CCC 1.0 3.8 183

Table 2: Results for MLM and Random asset intervention
strategies, ordered by the percent of times that they were
involved in a high magnitude � random event. While the
top three types are the same, Random places a) Cybertruck
above Kawasaki Bike and b) Carla Cola well ahead of both.
Its failure rate for the easy cars is much higher and, in gen-
eral, posits 3% more failures than MLM.

The other plots in Figure 5 show what happens when
we add in training data from any one group M . This pre-
dictably improves the model’s results on M ’s validation
set. It surprisingly also improves results on all of the other
groups M 0 and the Town data. The improvement to M 0

is smaller than that to M , but it is notable. The gains
for a specific group are more pronounced for like groups
- adding data from a biker group (Diamondback, Omafi-
ets, Crossbike) improves the other biker groups a lot more
than adding data from the heavy car groups (Cybertruck,
Colacar), and similarly for the heavies. Adding rotation
groups helps ubiquitously albeit not as much as adding a
bike group does for the other bikes. The least effective fix
is adding the CloudyDark weather mode. Figure 8 shows
that this trend persists for a base of 85000 IID data as well.

Comparison with random interventions As we alluded
to in Section 3, taking random interventions is problematic
because whether the group is reasonable for the distribution
will be a confounder. We wish to prioritize the found groups
to be those that are more likely seen in the wild. We show
here that this is true by taking the 10000 source scenes used
for the MLM interventions and applying random manipula-
tions of the same type. For example, if we changed agent
aj’s vehicle type in Gk ! GMLM

k , then we change aj to a
random vehicle type in Gk ! GRandom

k .
Table 2 shows results for random and MLM interven-

tions over the same assets specified in Table 1. One imme-
diate observation is that the assets are ordered incorrectly
with CarlaCola higher than both Cybertruck and Kawasaki
Bike. Another observation is that Random has a higher per-
cent of high threshold events. This holds in general, with
13.2% of random interventions impacting the model versus
10.2% of MLM interventions. We hypothesize this is be-
cause random re-sampling of elements of the scene graphs

corresponds to sampling from a data distribution that does
not faithfully represent the original training distribution.

Figure 11 (Appendix) shows density plots for rotation
and cloudiness interventions, conditioned on the interven-
tion being deleterious. We use density plots to demonstrate
the differences between Random and MLM because these
interventions are continuous for Random. For rotation, we
see that there is a mostly steady plateau for Random while
MLM shows a clear single group aligned with the bi-modal
humps in Original. For weather, we see that Original and
MLM are almost overlapping and, while Random is simi-
larly bi-modal, its shape is less pronounced and more even
as expected. These both further reinforce our claim that the
advantage of MLM is that it gears us towards higher priority
groups to fix that are in line with the actual data distribution.

Qualitatively, why do these groups exist? With groups
in hand, it is now easy to ascertain why our models were
failing. For the bikes, it is because they are underrep-
resented in Nuscenes. For Rotation121, the model infre-
quently trains on turning cars due to the town layout. For
Rotation178, the model infrequently trains on cars facing it
due to the traffic policy and the quantity of cars. The Cy-
bertruck is challenging because it is very large and causes
occlusion issues in labeling. The ColaCar also has this is-
sue, just not as severely as the Cybertruck. These issues can
only be hypothesized without the groups in hand.

6. Conclusion

Combining causal interventions, MLMs, and an AV sim-
ulator, we presented a novel method that finds challeng-
ing groups for a detection model in foresight by having
the MLM resample scene constituents. This direction is
promising towards making more robust AV systems and in-
spiring confidence in downstream users.

Our method has limitations. Although we cannot apply
it to real world data because we do not have fine control
over scenes, Ost et al. [32] is a step towards overcoming
this concern. Until then, the sim2real gap [35, 19] is ever-
present. Another limitation is that our method only works
on first-order interventions because otherwise the samples
drift from the data distribution. However, taking multiple
node changes is necessary for understanding complicated
causal interactions.

Each of these limitations are also potential future direc-
tions. A final one is understanding better why many groups
improved when adding a single group, which remains a
compelling question.
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