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Abstract

Autonomous driving relies on building detailed models
of a vehicles surroundings, including all hazards, obstacles
and other road users. At present, much of the autonomous
driving literature reduces the world to a collection of para-
metric 3D boxes. While this framework is sufficient for
many driving scenarios, other important scene details (e.g.
overhanging structures, open car doors, debris, potholes
etc.) are not modelled. Recently deep implicit functions
have been shown to be suitable for representing fine grained
details at arbitrarily high resolutions using images alone.
However, they have predominantly been employed in con-
strained situations, such as reconstructing individual ob-
jects or small-scale scenes. In this work we explore the ap-
plication of deep implicit functions to larger scenes in the
context of real-world autonomous driving scenarios. In par-
ticular we focus on the challenging case where only monoc-
ular images are available at test time. While most implicit
function networks rely on watertight meshes for training,
these are not in general available for real world scenes. We
therefore propose an alternative training scheme using Li-
DAR to provide approximate ground truth occupancy su-
pervision. We also show that incorporating priors such as
pre-detected object bounding boxes can improve the quality
of reconstruction. Our method is evaluated on a real-world
autonomous driving dataset.

1. Introduction

Understanding the 3D structure of a scene is an essential
element of applications that interact with the real world,
a prime example of which are autonomous vehicles. The
ability of algorithms to capture complex detail within
a scene determines the level to which the scene can be

understood. Cuboidal bounding boxes are commonly used
to capture the geometry of objects within a scene, such as
cars and pedestrians. They encode the relative position,
extent and pose of the object and enable applications such
as tracking [13] and trajectory forecasting [24]. However,
there are many instances where this coarse representation is
insufficient. Consider for example a car with its door open;
a truck with an overhanging load; or a pile of amorphous
debris. Such variations are difficult to represent with a
simple 3D bounding box, and yet to identify their extents
accurately is critical for safely interacting with them. In
this work, we take a first step towards building a more
expressive representation by taking advantage of recent
developments in 3D reconstruction using implicit function
representations, which allows us to reconstruct the scene
geometry at an arbitrary resolution, without the extreme
memory constraints required by other dense reconstruction
methods such as 3D occupancy grids [8]. Whilst previ-
ous works on implicit functions focus on reconstructing
individual objects [20], people [31], or indoor scenes [33],
we reconstruct entire large-scale traffic scenes, using only
monocular camera images as input. Moreover, our method
does not require 3D meshes nor synthetic data, and we
propose a pipeline for generating ground truth from real
sensors.

The uncertainty present in large-scale outdoor scenes of-
ten leads to scene reconstructions with blurred occupancy
predictions. We propose to alleviate this uncertainty, for ob-
jects of known categories, by providing priors in the form of
reference points. While cuboid bounding boxes are a min-
imal expression of an object geometry, we argue that they
serve as priors to guide the implicit function towards a more
accurate reconstruction. We study the impact of condition-
ing such representations with learnt shape priors, based on
said 3D bounding boxes.
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Figure 1. Overhead neural rendering of the geometry of a driving
scene, produced with a single image from a front-facing camera
of a vehicle. We condition the underlying implicit function rep-
resentation with shape priors (3D cuboids) of objects of known
categories in the scene.

Towards this goal, we present the following two contribu-
tions: 1) Works such as [20] and [31] rely on comprehen-
sive, watertight 3D meshes as ground truth to train their im-
plicit functions. For large scale 3D road scenes, no such
data is available. However, we propose a pipeline for ex-
tracting the required training data automatically using Li-
DAR observations and coarse bounding boxes, which are
easily obtainable and are freely provided by many recent au-
tonomous driving datasets. We use this approach to build a
large scale dataset based on the NuScenes dataset [2]. 2) 3D
Shape Priors. Using the implicit occupancy function frame-
work discussed above, we learn a generative shape model of
common traffic agents such as cars and pedestrians. Given
only the dimensions of a 3D bounding box as input, with
no visual observations, the method is able to generate an
approximate 3D mesh of a given object, even if that object
has never been seen in the training data. This forms a vital
element of our solution to the full scene reconstruction, al-
lowing our implicit function to reconstruct parts of the scene
which are completely hidden from view.

2. Related Work

3D reconstruction plays an important role in scene un-
derstanding and as such it has been extensively studied.
Given the apparently continuous nature of 3D space, a
recurrent question is what should be the underlying rep-
resentation of 3D geometry. There have been multiple
candidates for sparse and discrete quantization of the 3D
space, including point [25, 26], mesh [10, 15] and voxel-
based [5, 35, 27, 38] representations. Recent works propose
using implicit functions [4, 20, 32] as a continuous repre-
sentation of the 3D space.
Neural representations for scene reconstruction learn a map-
ping function from a 3D spatial location to a feature repre-
sentation, which describes the geometry, and other proper-

ties [16], of a scene at that location. These representations
are coupled with neural rendering engines which render and
decode the features to form 2D images. This allows the su-
pervision of the representation from images, and to generate
novel views of the scene.
Occupancy Networks. A desirable property of a 3D ge-
ometric representation is the ability to sample at arbitrar-
ily high resolutions and to be able to generalize to unseen
points of view. In [20], occupancy networks are proposed
as a way to implicitly represent 3D surfaces as the contin-
uous decision boundary of a deep neural network classifier.
They approximate an occupancy function, at every possi-
ble point in 3D, with a neural network that assigns to ev-
ery location an occupancy probability. This representation,
related to level set approaches, encodes the 3D geometry
in a fixed memory, regardless of the sampling resolution.
This approach is extended in [23] to convolutional occu-
pancy networks. Saito et al. recover geometry and texture
of humans at high resolution in [30, 31]. They define the
surface as an implicit function, and align the pixel-level fea-
tures to the 2D projection of the surface. This allows the
learnt model to preserve the local details present in the im-
age. This approach is extended in [12] by regularizing the
reconstruction using the latent voxel feature representation
and incorporating geometry-aligned shape features, as well
as pixel-aligned features. In [36] the same principle is ex-
tended by combining global and local features.
NeRF [21] represents a 3D scene as a function of its co-
ordinates and the radiance emitted from each point to the
position of the camera. For each viewpoint, they march
camera rays and accumulate colors and densities into an im-
age, given the estimated radiance. Similarly, [17] learns the
surface with differentiable ray-marching. However, in this
case, the surface is reconstructed progressively, by having
individual implicit fields for each voxel in an octree. In an
iterative process, the voxels are pruned and adjusted to the
underlying scene.
While there has been recent advances in reconstruction
of highly-controlled, synthetic settings [37], fewer works
tackle the more challenging setting of shape reconstruction
in the wild. Single objects are reconstructed in [7], which
builds on early work [22] on signed distance functions. It
tests the reconstruction based on sparse LiDAR and option-
ally images from street scenes. However, differently from
us, they exploit synthetic 3D meshes, and simulated LiDAR
scans and images to build the representation. Our approach
does not require synthetic data and is able to reconstruct en-
tire outdoor scenes.
3D scenes. Neural implicit functions show expressive re-
constructions of single objects with limited complexity and
local shape variability. Recently, some works have shown
significant advance in reconstruction of more complex in-
door scenes[33]. In [14] it is suggested that the local geo-

2876



metric forms of objects of different categories share similar
features at a certain scale. They exploit this observation to
reconstruct indoor scenes, by aggregating parts of decom-
posed objects and learning their common shape features.
3D object detection. In this work we study how object
shape priors influence the reconstruction of an otherwise
unconstrained scene. A common representation of 3D ob-
jects are 3D bounding boxes, which minimally encode po-
sition, dimensions and pose. We use as priors similar output
as that of any of the recent examples of 3D object detection
from monocular images [18, 1, 32, 29].

3. Method
3.1. Background: Deep Implicit Functions

The objective of our work is to recover a full 3D re-
construction of a large-scale outdoor scene using a single
monocular image as input. We begin by representing the
3D structure of the scene in the form of an occupancy func-
tion fθ, which maps a 3D point x ∈ R3 to the probability
that the point lies inside the solid surface of the scene

p(ô) = fθ(x, z) ∈ [0, 1] (1)

where z ∈ Rn is a conditioning feature vector correspond-
ing to the point x and ô is the occupancy:

ô =

{
1 if x is inside the surface
0 otherwise

In this work, the occupancy function fθ takes the form of
a neural network which is trained to minimise the binary
cross entropy loss between the predicted and ground truth
occupancy over a set of randomly sampled points {xi}:

L(ô, o) =
∑
i

oi log(fθ(xi, zi)+(1−oi) log(1−fθ(xi, zi)).

(2)
At inference time the 3D surface of the scene can then
be extracted by computing the level set corresponding to
fθ(x, z) = 0.5.

3.2. Pseudo-ground truth occupancy from LiDAR

In order to train an implicit occupancy function fθ(x, z)
as described in Section 3.1, it is necessary to sample arbi-
trary 3D points in the scene x and determine their ground
truth occupancy o. For real-world outdoor scenes, water-
tight 3D meshes which can be used to query the ground
truth occupancy state of the world, are not generally avail-
able. However, observations from a range sensor such as a
LiDAR system, which are widely available in datasets de-
signed for autonomous driving [3, 2], provide a strong prior
estimate of the occupancy state of points which lie along the
returned rays.

d0

d

p0

pprior

p1

Φ
(d

;d
0
)

Figure 2. The inverse sensor model, which estimates the proba-
bility that a point x a distance d along a LiDAR ray is occupied,
given the LiDAR return distance d0.

Let us begin by considering a LiDAR ray r, which ter-
minates at a solid surface a distance d0 along the ray. For
a point x which lies at a distance d along the ray, we can
infer that if d < d0, it is highly likely that the point x
represents free space, since the lidar ray was unobstructed
by any surface closer than d0. Similarly, for points where
d > d0, there is a high likelihood that the point lies inside
an object since we know that d0 lies on the surface. We
can encode this prior knowledge in the form of an inverse
sensor model [34], which approximates the probability of
occupancy p(o) = Φ(d; d0) for a point a distance d along
the ray, given an observed LiDAR return at distance d0. For
this work we adopt a simple heuristic inverse sensor model
of the form

Φ(d; d0) =

{
p0 if d < d0

pprior + (p1 − pprior) e−α(d−d0) otherwise
(3)

In practice, real LiDAR point clouds exhibit noise due to
reflection and other effects, so the terms p0 = p(o|d < d0)
and p1 = p(o|d = d0) allow us to introduce some uncer-
tainty into the estimated occupancy values. Meanwhile, the
exponential decay factor e−α(d−d0) encodes the fact that for
points which lie just beyond the surface, we can be reason-
ably confident that the point is inside the object. For points
where d >> d0, however, it is unclear whether the point is
still inside the object or whether it has emerged from the oc-
cluded back face, so we set p(o) to the prior probability of
occupancy pprior. Using this heuristic, we are able to train
an implicit occupancy network as described in Section 3.1
by replacing the ground truth occupancy state o from (2)
with the approximate occupancy probability p(o).

3.3. LiDAR augmentation

The aim of this work is to reconstruct the full 3D ge-
ometry of the scene, including surfaces which are occluded
or facing away from the camera. However, a limitation of
the above approach is that typically the LiDAR point cloud
is captured from the same perspective as the camera sys-
tem, meaning that pseudo-ground truth can only be obtained
for points which are visible to the camera. Furthermore,
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LiDAR point clouds are typically sparse, with distant ob-
jects returning only a handful of points. Fortunately, many
autonomous driving datasets consist of sequences captured
from a moving vehicle, meaning that we can obtain mul-
tiple views of the same scene by combining LiDAR point
clouds across time. Consider a trajectory T which consists
of a sequence of ego-vehicle poses T = {Pt}, P ∈ SO(3)
at times t. We can map each LiDAR ray rit captured at
time t into the target frame at time t0 by applying the rigid-
body transformation P−1t0 Pt to the start and end points of
the ray. Aggregating across the entire sequence results in
a dense set of rays which capture the surfaces of the scene
from multiple perspectives.

Dynamic objects The above approach assumes the scene
is static: a rarely satisfied assumption for traffic scenes.
However, ground truth bounding boxes bnt for most dy-
namic objects in the scene are available in the same au-
tonomous driving datasets, in the form of the object pose
Qnt ∈ SO(3) and dimensions dn ∈ R3 for object n at time
t. We map each LiDAR ray rit that intersects the bound-
ing box bnt to the target frame by applying the rigid-body
transformation P−1t0 Qnt0Q

−1
nt Pt.

Symmetry constraints Despite aggregating rays across
multiple frames as described above, many parts of the scene
will still only be visible from one side. For objects such
as vehicles with 3D bounding boxes provided, we can fur-
ther densify the rays by taking advantage of simple bilateral
symmetry constraints. For each ray which intersects a 3D
bounding box, we append a duplicate ray which is a mirror
image about the vertical plane.

3.4. Sampling strategies

A key element in the success of occupancy networks is
the strategy used to sample points at training time; methods
balance uniformly spanning the volume of interest against
choosing points which provide useful training signal. In
our setting the problem is particularly challenging since the
ground truth occupancy is only defined for points which lie
along LiDAR rays. We approach the problem by applying a
weighted combination of the following strategies:

Surface sampling In order to maximise the discriminitive
power of the network, the most useful training signal comes
from points which lie close to the surface of objects. Al-
though we do not know the true surface of the scene, the
endpoints of the LiDAR rays r provide a sparse approxi-
mation. Given a ray r with start and end points (s, e), we
sample points x by applying random Gaussian noise to the
end point along the direction of the ray

x = e + ε
e− s

|e− s|
, ε ∼ N(0, σ) (4)

Uniform sampling Sampling points exclusively around
surfaces causes the method to overfit and fail in regions of
large open space, which for road scenarios form the major-
ity of the scene. Unfortunately, we cannot apply the uniform
sampling strategy used by other works since in our case the
occupancy is only defined along the LiDAR rays r. We in-
stead obtain an approximation to uniform sampling as fol-
lows. We begin by clipping each ray to the visible volume
of the scene, resulting in clipped rays r̄ = (s̄, ē). For rays
which intersect objects, we instead clip to the object bound-
ing box b. We then randomly sample N points along each
clipped ray, where N is proportional to the length |ē− s̄|.
The sampled points x are taken uniformly between the start
and end point of the clipped ray:

x = (1− η)s̄ + ηē, η ∼ U(0, 1) (5)

Sparse sampling For some parts of the scene, the number
of LiDAR rays passing through a given region can be rela-
tively small, for example regions in the sky where many of
the returns are invalid. To encourage low occupancy proba-
bility in these regions, we first divide the scene into coarse
voxels and compute the number of rays passing through
each voxel. For voxels where the number of rays is below
a certain threshold, we uniformly sample points over the
voxel, and set the ground truth occupancy to a low value.
This helps avoid ‘cave’ artifacts which can occur due to lack
of supervision in the sky region.

Object-centric sampling In traffic scenes, much of the
structure of the road, buildings etc. is relatively uniform,
and provides little useful training information to our net-
work. To encourage the network to focus more on objects
of interest such as cars, pedestrians etc., we apply a sim-
ple inverse frequency weighting to the surface and uniform
strategies described above, such that rays which intersect
objects with fewer LiDAR returns are sampled more fre-
quently. The weighting factor wn for object n is given by
(Nn/NT )−γ , where Nn is the number of rays intersecting
object n, NT is the total number of rays, and γ is a hyper-
parameter.

3.5. Pixel-aligned implicit function network

As described in Section 3.1, an occupancy network takes
as input a 3D point in space x and a conditioning vector z,
and predicts the probability of occupancy p(ô) at that lo-
cation. In order to reconstruct the fine-grained details of
the scene, we adopt the pixel-aligned implicit function ap-
proach of Saito et al. [30] to obtain the conditioning vector
z from a single-view input image I. We begin by transform-
ing the image into a dense feature representation by passing
the image through a convolutional image encoder g result-
ing in a set of spatial feature maps F = g(I). For each 3D

2878



query point x we then obtain the conditioning vector z by
sampling the feature maps at the location corresponding to
the projection of x into the image:

z = F (π(Kx)), (6)

where π is the 2D perspective projection operator and K
is the 3×3 camera intrinsics matrix, which is assumed to
be known at test time. The probability occupancy for the
point x is then obtained by passing x and z through our
fully-connected occupancy network fθ. At inference time,
we can reconstruct an entire scene by sampling the points x
over a dense grid in space and applying the marching cubes
algorithm [19] to generate the final output mesh.

3.6. Bounding box conditioning

One of the major challenges of reconstructing large-scale
outdoor scenes from a single view is that there is a high
degree of uncertainty in estimating the depth of surfaces
in the scene. This uncertainty can manifest as low-quality
reconstructions or missed objects where the network blurs
the predicted occupancy probability over multiple possible
depth values. We can alleviate some of this uncertainty and
force the network to commit to a particular set of depth val-
ues by providing a set of known reference points within
the scene. Recent work has demonstrated that it is pos-
sible to obtain accurate 3D bounding boxes of objects of
interest such as cars and pedestrians from a single monoc-
ular image [18, 32, 1, 29]. We propose to leverage these
predicted bounding boxes to provide fixed anchor points
within the scene, allowing the network to resolve some of
the depth uncertainty and exploit detailed prior knowledge
of the shapes of common objects such as cars and pedestri-
ans.

Let us consider a point x which lies within a predicted
bounding box bn. In addition to the image feature condi-
tioning vector z, which we rename zimage, we additionally
provide the network with a set of features zbox derived from
the bounding box. Specifically, zbox consists of:

zlocal ∈ R3: The offset of the point x in the box’s local
coordinate system, obtained by multiplying x by the inverse
of the object pose Q−1n .

zdim ∈ R3: The dimensions of the bounding box dn.
zclass ∈ {0, 1}|C|: A one-hot encoding of the object

category cn ∈ C, e.g. car, pedestrian etc.
The final conditioning vector z is then simply

the concatenation of the individual features z =
(zimage, zlocal, zdim, zclass). For points which do not lie
inside any predicted bounding boxes we set zlocal and zdim
to zero and zclass to the label corresponding to the back-
ground class.

4. Experiments
4.1. Dataset

We benchmark our approach using the NuScenes
dataset [2]. NuScenes is a large-scale autonomous driv-
ing dataset consisting of 850 sequences captured over
four international locations. Crucially, it provides multi-
modal data including six surround view camera images, Li-
DAR point-clouds, and densely-annotated ground bound-
ing boxes which allow us to apply the LiDAR augmenta-
tion strategy described in Section 3.3. We focus our eval-
uation on the front-facing camera images only, and adopt
the dataset splits of Roddick et al. [28] to avoid overfitting
to the geometry of scenes which appear in both the default
training and validation sets.

4.2. Implementation details

The architecture for our pixel-aligned implicit function
network is inspired by the architecture of Saito et al. [30].
We use the same implicit function network which consists
of a five-stage multi-layer perceptron with skip connections
to the input features z before the 2nd, 3rd and 4th layers.
Differently from Saito et al., we found that in our setting an
image encoder based on a standard ResNet-50 network [11],
pre-trained on ImageNet [6], was most effective. To obtain
the image conditioning vector zimage, we sample features
from the 3rd, 4th and 5th stages of the image encoder network
using the camera parameters K provided by the NuScenes
dataset. To condition our method on 3D object bounding
boxes, we apply the state-of-the-art monocular 3D object
detector of Liu et al. [18], which is pretrained on the KITTI
dataset [9] and then finetuned on NuScenes.

We train our method using a balanced version of the
cross-entropy loss in (2) where the loss corresponding to
positive (p(o) > .5) and p(o) < .5 negative samples are
weighted according to wpos = NT /Npos and we wneg =
NT /Nneg respectively, where Npos and Nneg are the num-
ber of positive and negative samples. For each training
image we sample 10000 points, according to the surface,
uniform and sparse sampling strategies described in Sec-
tion 3.4, in the ratio 45 : 45 : 10. We also apply object-
centric sampling to the surface and uniform samplers with
an exponent of γ = 0.1. For the inverse sensor model
discussed in Section 3.2, we set p0 = 0, p1 = 1 and
pprior = 0.5 for simplicity, and select α = 0.01 for the
decay factor. We train the model using stochastic gradient
descent with a learning rate of 0.1, momentum factor 0.9
and weight decay 10−4.

4.3. Metrics

Our primary evaluation metric is the Chamfer-L1 dis-
tance as described by Mescheder et al. [20]. The Chamfer-
L1 distance is the mean of an accuracy term, which mea-
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Figure 3. An overview of our deep implicit function-based approach. Our method accepts a single monocular image as input, and predicts
the probability of occupancy p(ô) for 3D points in space x. The system comprises three main components: (1) a convolutional image
encoder which is sampled to provide image-based features zimage. (2) a monocular 3D object detector which predicts bounding boxes
for each object in the scene, providing bounding box features zlocal, zclass, zdim, and (3) an implicit function network fθ which predicts
occupancy probability p(ô) given the 3D point x and conditioning vector z.

sures the average distance from the predicted surface to the
ground truth, and a completeness term, which measures the
converse. In our setting, the true ground truth surface is un-
known, so we approximate it using the aggregated LiDAR
point clouds described in Section 3.3. We uniformly sample
a set of N points from the surface of our predicted mesh,
and compare them against a subset of N points sampled
from the ground truth LiDAR point clouds.

Whilst this metric gives an overall indication of the qual-
ity of the scene reconstruction, for traffic scenes we observe
that the vast majority of points on the mesh represent rel-
atively uninteresting surfaces such as the road or walls. In
order to capture the more relevant features of the scene, we
additionally compute the above metrics at the individual ob-
ject level. We achieve this by cropping the predicted mesh
to a region equal to 1.5× the dimensions of the bounding
box for each object in the scene. We then provide the aver-
age metric computed over each object category (car, truck,
pedestrian etc.) in the NuScenes dataset. We use a sur-
face sampling rate of N = 10000 for evaluating the scene
meshes and N = 1000 for each object.

4.4. Baselines

As the first work to tackle the problem of large-scale
scene reconstruction on the NuScenes dataset, we consider
two baseline methods to benchmark our performance:

Bounding box mesh In the absence of detailed informa-
tion about the 3D shape of objects in the scene, a simple
approximation to the scene reconstruction is to simply rep-
resent each object as its 3D bounding box. To provide a
basic sanity-check, we apply the monocular object detec-
tor of Liu et al. [18] to each input image, and convert the
resulting bounding boxes to a triangle mesh representation.
To represent the ground surface, we place a simple plane at
the minimum base height of all objects in the scene, or at a

fixed height below the camera if no objects are present.

Pixel-aligned Implicit Function The basis for our ap-
proach is the Pixel-aligned Implicit Function (PIFu) ap-
proach of Saito et al. [30], which we provide as a baseline
for our method. Since the LiDAR rays used to generate our
ground truth training data do not provide explicit colour in-
formation, we train only the surface reconstruction subnet-
work. In order to offer a fair comparison to our approach,
we also adopt the same ResNet-50 image encoder as used
in our approach.

4.5. Qualitative results

We begin by presenting qualitative examples of the re-
constructions produced by our method evaluated on the
NuScenes validation set. Figure 4.3 shows the 3D scene
viewed from two views: the camera view and an overhead
viewpoint. We annotate the reconstructions with the 3D
bounding boxes predicted by our front-end object detector,
which are used to condition the implicit function network.
The final column of Figure 4.3 compares the reconstructed
mesh against the ground truth LiDAR points used for eval-
uation. From these results it can be seen that our method is
able to model complex scene geometry, accurately captur-
ing the shapes of objects such as cars and correctly localise
the boundaries of the road surface. It can additionally han-
dle challenging edge-cases such as cluttered scenes (row 1),
adverse weather conditions (row 3) and objects which are
distant from the camera (row 4).

4.6. Comparison to baselines

We evaluate our box-conditioned implicit function ap-
proach alongside the two baseline methods on the NuScenes
validation set. Table 1 presents the results of this evaluation
according to the metrics discussed in Section 4.3. We also
provide a qualitative comparison of the three methods in
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Image Front view Overhead view Ground truth LiDAR
Figure 4. Qualitative examples of our method on the NuScenes validation set. We show reconstructions produced by our method from the
camera perspective and alternative side view. Predicted object bounding boxes, which are generated as part of our method, are shown in
blue. We also show the set of densified LiDAR points in red, which provide the ground truth reference points used for evaluation.

Image Bounding box mesh PIFu [30] Ours
Figure 5. Qualitative comparison of ours and baseline approaches on the NuScenes validation set.
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Table 1. Baseline comparisons on the NuScenes validation set. We evaluate each metric both at the scene level, and averaged across each
NuScenes object category. ↑/↓ indicates metrics where higher/lower scores are better..

Metric Chamfer-L1 (m) ↓ Completeness (m) ↓ Accuracy (m) ↓ F1Score (%) ↑
Object Scene Object Scene Object Scene Object Scene

Bounding box mesh 0.554 0.866 0.737 1.022 0.372 0.710 23.1 13.5
PIFu [30] 0.528 0.680 0.711 0.564 0.345 0.795 24.5 30.3

Ours (GT boxes) 0.389 0.753 0.518 0.659 0.260 0.847 41.6 26.9
Ours 0.483 0.710 0.625 0.544 0.341 0.876 30.4 30.3

Table 2. Ablation study. We investigate the impact of the four components of the conditioning vector z on the final reconstruction
performace. ↑/↓ indicates metrics where higher/lower scores are better.

Conditioning vector z Chamfer-L1 (m) ↓ Completeness (m) ↓ Accuracy (m) ↓ F1Score (%) ↑

Image Local Class Dim Object Scene Object Scene Object Scene Object Scene

X X X X 0.483 0.710 0.625 0.544 0.341 0.876 30.4 30.3
X X X 0.506 0.766 0.661 0.518 0.351 1.015 29.2 25.3
X X 0.500 0.828 0.644 0.530 0.355 1.126 30.6 25.2

X X X 0.579 1.219 0.766 0.722 0.392 1.716 22.1 15.4

Figure 4.3. Across the majority of the metrics our method
outperforms both baseline methods, often by a consider-
able margin. Notably, our method performs particularly
well when evaluated at the object level. The results in Fig-
ure 4.3 demonstrate that our method takes advantage of the
explicit knowledge of predicted object locations, and thus
produces results of significantly higher sharpness than the
competitors. This observation emphasises the value of the
bounding box feature conditioning described in Section 3.6.
At the scene level, our method produces a slightly worse
Chamfer-L1 score than PIFu, largely on account of a higher
accuracy error, indicating that the method has a tendancy
of over-estimating the geometry of background elements of
the scene such as trees and buildings. However this is par-
tially compensated for by the fact that the outperforms both
baselines on the scene completeness metric, indicating that
fewer elements of the background are missed.

To further understand the behaviour of our method, we
seek to disentangle the bounding box conditioning perfor-
mance from the accuracy of the underlying monocular 3D
object detector by providing ground truth boxes at test time,
which we present as an additional entry in Table 1. This
analysis shows providing more accurate boxes at inference
time dramatically improves the performance of the metric.
Since our method is agnostic to the choice of front-end ob-
ject detection architecture, these results provide optimism
that future developments in monocular object detection will
further improve the efficacy of our approach.

4.7. Ablation study

A key novelty of our approach is the addition of the
bounding box conditioning vector zbox to the pixel-aligned
feature encoding of Saito et al. [30] as discussed in Sec-
tion 3.6. To understand the significance of each element of

zbox, we conduct an ablation experiment in which we sys-
tematically remove each component and evaluate the effect
quantitatively. The results of this experiment are shown in
Table 2.

We found that the component of the box encoding zbox
most critical for performance was the encoding of the ob-
ject dimensions zdim. Ablating this component resulted in
a significant increase in error across most metrics. By con-
trast, further ablating the class encoding zclass resulted in a
minor improvement in error, which we suspect was due to
overfitting to the class label.

As a final ablation experiment, we additionally ablate the
pixel-aligned image-features zimage. As expected, doing so
caused the reconstruction over the background regions of
the scene to fail completely, since the network cannot ex-
ploit any local information in these regions. For the areas
corresponding to objects however, this variant was still able
to achieve surprisingly good reconstructions despite never
having seen the object in an image. This suggests that the
bounding boxes alone provide strong prior shape informa-
tion for common objects in the scene.

5. Conclusions
We have presented a method for reconstructing large-

scale traffic scenes. We draw inspiration from recent ad-
vances in implicit function representations, and propose to
condition the reconstruction of known object categories on
reference points in the form of cuboid bounding boxes.
We conduct our experiments on a large autonomous driv-
ing dataset, and provide strong baselines, together with a
pipeline for automatic generation of ground truth from real
sensors. We have shown that our method, together with our
sampling strategy and sensor modelling, is able to better ap-
proximate the shape of the scene, particularly in the context
of autonomous driving.
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