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Abstract

Understanding the driving scene is critical for the
safe operation of autonomous vehicles with state-of-the-art
(SoTA) systems relying upon a combination of different al-
gorithms to perform tasks for mathematically representing
an environment. Amongst these tasks, lane and object de-
tection are highly popular and have been extensively re-
searched independently. However, their joint operation is
rarely studied primarily due to the lack of a dataset that
captures these attributes together, resulting in increased re-
dundant computations that can be eliminated simply by per-
forming these tasks together. To overcome this, we pro-
pose a weakly-supervised approach wherein, given an im-
age from the lane detection dataset, we use a pretrained
network to label different objects within a scene, generating
pseudo bounding boxes used to train a network that jointly
detects objects and lane lines. With an emphasis on in-
ference speed and performance, we utilize prior works to
construct two architectures based on Convolutional Neu-
ral Networks (CNNs) and Transformers. The CNN-based
approach uses row-based pixel classification to detect and
cluster lane lines alongside a single-stage anchor free ob-
Jject detector while sharing the same encoder backbone. Al-
ternatively, using dual decoders, the transformer-based ap-
proach directly estimates bounding boxes and polynomial
coefficients of lane lines. Through extensive qualitative and
quantities experiments, we demonstrate the efficacy of the
proposed architectures on leading datasets for object and
lane detections and report state-of-the-art (SoTA) perfor-
mance per GFLOPs. Codes with trained model will be
available at https://github.com/PS06/JOLD

1. Introduction

Object and Lane detection form a core component within
modern advanced driving assistance systems (ADAS) and
find application in features such as lane-keeping, collision
avoidance, visual positioning, adaptive cruise control, au-
tonomous navigation (in autonomous vehicles AVs), etc.
with vision sensors being the primary data source. To en-
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Figure 1: Performance Landscape of SoTA 2D Object De-
tection Algorithms on BDD100K dataset.

sure consistent performance in diverse weather and illu-
mination conditions, algorithms performing these tasks are
constructed using convolution neural networks that provide
SoTA performance while being robust, unlike traditional
computer vision algorithms that work well, only in certain
scenarios. However, present approaches formulate these
tasks independently, resulting in multiple repetitious com-
putations that increase the computational complexity while
bypassing information sharing that could boost the perfor-
mance of these tasks hence reducing latency.

To avoid redundant computations and better leverage the
common features, MultiNet [53] proposed a mechanism to
classify road scenes, perform object detection, and segment
road areas via a single encoder and triple decoder architec-
ture. However, the computational requirements were con-
sidered expensive for embedded systems to overcome, fol-
lowing which [48] proposed a ResNet-10 [18] based en-
coder and dual decoders for performing bounding box re-
gression and segmentation of road and sidewalks on KITTI
dataset [12]. Despite these advances, such approaches are
limited by attributes available in training dataset and hence
cannot capture finer details such as lane structure, traffic
signs and lights, different types of objects (traffic cones,
debris, animals, etc.), and vehicles (Trucks, Pickups, etc.)
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Figure 2: Performance Landscape of SoTA Lane Detection
Algorithms on CULanes dataset.

present on the road. A simplistic approach to overcome this
could be extending the labels within the dataset, but this
might be unfavorable due to large labeling time requiring
knowledge expertise of label formats.

Hence an alternative mechanism is needed to train multi-
task networks to exploit their full potential vis-a-vis their
task-specific counterparts for lane and object detection. To-
wards this goal, we propose a weakly supervised mecha-
nism wherein we utilize bounding box labels generated us-
ing a pretrained object detector to train a multi-task net-
work for jointly performing object and lane detection, as-
suming prior lane information in the training dataset. Thus,
we extend commonly used lane detection datasets to con-
tain object bounding box information additionally. This ap-
proach is motivated by the fact that current lane detection
algorithms require access to at least one lane segment to ex-
trapolate it into lane lines and are thus sensitive at intersec-
tions and occluded conditions. Contrarily, object detection
algorithms are more robust in diverse weather and occlu-
sion conditions, hence bounding boxes generated using a
pretrained network can be used as pseudo ground truth for
training the joint network.

With specific goals of maximizing performance in terms
of latency and accuracy, we examine two distinct architec-
tural configurations focusing on specific deployment ob-
jectives. To reduce latency, we emphasize upon a CNN
based architecture wherein multi-level features could be uti-
lized to jointly perform lane and object detection. To en-
sure reduced computations and small model for deployment
on edge devices, we utilize the formulation proposed in
UFAST [41] for performing lane detection, wherein given
predefined row anchors, the task is to perform row-wise lane
classification. We leverage anchor-free object detection for-
mulation to bypass computations needed to perform non-
maximum-suppression (NMS) for object detection. While
this approach ensures low latency, it comes at the cost of re-

duced performance, still being comparable to SoTA for both
object (Fig. 1) and lane detection (Fig. 2), that might not
be desired in situations where computational limitations are
non-existent. For such conditions, we propose a transformer
based architecture having dual decoders with each decoder
performing direct set predictions for object and lane detec-
tion. Our motivation for using transformers stems from its
strength to effectively capture long-range dependencies that
are useful for detecting both occluded objects and lane lines.
Thus we summarize our contributions as,

e Propose a weakly supervised framework that can be
used to jointly train object and lane detectors.

e For resource constraint devices, we propose CNN
based object and lane detection algorithm.

e For situations with relaxed computational require-
ments, we propose a dual decoder transformer based
architecture that leverage long range dependencies to
improve performance in occluded conditions.

e Compare performance of proposed architectures with
task specific SOTA algorithms to demonstrate viability
of the training mechanism as well as efficacy of the
proposed architectures.

2. Related Works

Lane Detection : Classical approaches for lane detec-
tion developed different masking operations [56, 60, 21] to
segment and extract lane markers which are extrapolated
to generate lane lines using curve fitting techniques such
as Hough transform [30, 23] and RANSAC [3]. However
sensitivity of these operations towards illumination and oc-
clusion resulted in multiple failure scenarios. To overcome
these limitations CNN based algorithms are proposed that
formulate this task either as regression by predicting poly-
nomial coefficients of lane lines [59, 13, 55, 40, 26, 49, 41,

, 63, 31] or semantic segmentation by pixel wise label-
ing of lane segments [38, 20, 14, 68]. LaneNet [36] utilized
this segmentation as intermediate representation to further
improve estimation of lane lines by integrating perspective
transformation information through a separate CNN. While
these works relied on lane marker information for determin-
ing lane lines, several works focused on improving perfor-
mance by extracting additional features for providing geo-
metric and structural cues. Specifically, VPGNet [28] pro-
posed a joint mechanism for extracting road and lane infor-
mation such as lane estimation, road marking detection and
classification and vanishing point detection using a single
encoder and multiple (four) decoders. Subsequently differ-
ent works relied on additional approaches such as key point
estimation i.e. PINet [26], neural architecture search i.e.
CurveLane-NAS [63].
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Object Detection : Common object detection pipeline
can be categorized either as single or two stage wherein
a single stage network predicts bounding boxes directly
which are then refined either using post processing tech-
niques such as Non Maximum Suppression (NMS for an-
chor based object detectors) or using CNNs (for two stage
object detectors [16, 17, 5]). While a complete review of
SoTA object detectors is beyond the scope of this work,
we provide a brief overview on single stage object detec-
tion algorithms are designed with an emphasis on speed.
Notably, Yolo [42] proposed to regress bounding boxes di-
rectly whereas SSD [34] proposed to regress deviations for
predefined anchor boxes, requiring a non maximum sup-
pression operation to remove weak detections. Taking a dif-
ferent approach, CenterNet [1 1] proposed to detect object
centers using which the width and height of the bounding
boxes could be estimated. Apart from different formula-
tions to estimate object bounding boxes, emphasis was also
given to the loss function being minimized such as focal
loss [29], Side Aware Boundary Loss [58] or Non maximum
suppression with Soft-NMS [2] or DANet [45] proposing a
dynamic anchor selection mechanism to automatically re-
duce the number of bounding boxes using IoU and class
probabilities.

Multi-Task Frameworks : Despite its advantages,
multi-task networks are not well studied with initial ap-
proach MultiNet [53] using VGG-16 [47] as the encoder
and three decoders, with detection decoder using regression
mechanism whereas segmentation decoder follows FCN ar-
chitecture [35] and classification decoder is constructed us-
ing fully connected layer with softmax. To reduce com-
putational overhead [48] used ResNet-10 while using two
decoders for performing the task of detection and segmen-
tation. However limitations of training dataset hinder in
reaching peak performance, which we aim to overcome us-
ing pseudo labels.

3. Methodology
3.1. Problem Formulation

We underline lack of dataset with diverse attributes as
one of the bottlenecks hindering research into multi-task
learning of lane and object detection. To avoid this we
propose a weakly supervised approach wherein we use a
pretrained object detection algorithm to generate bound-
ing boxes of objects of interest on current lane detection
datasets. The combined labels can then be used to train net-
works that jointly identifies and localized lane and objects
within an image while sharing information between them.
As computational resources dictate the peak performance
of an algorithm, we design two architectures focusing on
either latency or accuracy.

(c) CurveLanes Dataset

Figure 3: Extended datasets containing pseudo bounding
box labels (red) with prior lane information (green).

3.2. Generating Pseudo Bounding Boxes

While there are multiple datasets focused on detect-
ing different objects that can be encountered in real driv-
ing conditions, we choose NuScenes [4], and BDD100K
[65] datasets that collectively contain attributes such as car,
truck, trailer, bus, construction vehicle, bicycle, motorcycle,
pedestrian, traffic cone, traffic sign, traffic light, and bar-
rier. We used pretrained NuScenes weights from mmdet3d
[10] for Hybrid Task Cascade Network (HTC) [8], Cas-
cade Mask-RCNN [6] algorithms with ResNeXt-101 [62]
as backbone, however, for BDD100K dataset we retrained
the networks following training methodology mentioned in
mmdet3D[10]. These pretrained models are then inferenced
on lane detection datasets to generate bounding box labels,
and boxes with a C'on fidence > 0.8 are saved to ensure
high-quality labels. As we run models trained using dif-
ferent datasets, there would be conditions wherein different
bounding boxes enclose the same object. Hence for dedu-
plication, we first identify duplicates by computing IoU, and
when IoU > 0.75, these boxes would be considered as du-
plicates. We then discard the bounding box with a lower
confidence score. While model ensembling is preferred to
obtain high-quality labels, we observed this approach not
to work as effectively while requiring higher computational
resources. An alternative mechanism to use semantic labels
to generate high-quality bounding boxes is ineffective since
current segmentation models are performance limited by
domain and illumination changes, generating higher false
positives since current SOTA semantic segmentation models
cannot identify unidentified road objects. Hence we found
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Figure 4: Architecture of the proposed lightweight object
and lane detector.

the proposed approach as ideal to generate pseudo labels.
The final pseudo bounding boxes along with existing lane
information are visualized for different datasets in Fig. 3.
They are subsequently used for training the networks to de-
tect object and lane lines jointly.

3.3. Light Weight Joint Architecture

For edge devices where computational resources are lim-
ited, it’s desirable to have a lightweight network that can
perform these tasks with sufficient accuracy. To ensure such
performance characteristics, we utilize CNN as a feature ex-
tractor and integrate a feature enhancement network that en-
sures features across all levels have high semantic and spa-
tial information. To perform this, we use Path Aggregation
Networks [33] and use enhanced features from different lev-
els for predicting (1) bounding boxes that enclose an object,
(2) its category, and (3) segmenting the presence of lane
markers for predefined row anchors.

To perform object detection, we follow decoupled head
approach wherein two branches are tasked to perform clas-
sification and regression independently, resulting in im-
proved performance, and convergence speed [61, 29, 54].
Hence, we first reduce the number of channels from each
layer to 256 using 1x1 convolutions followed by 2 3 x 3
convolutions. The classification branch has N channels
for O number of objects (12 objects + 1 background). Fur-
thermore, we additionally perform center-ness detection
proposed in FCOS [54] to classify whether an object cen-
ter is within the cell of the feature map. This allows us to
reduce the number of computations by assigning one cell
the task of predicting a single bounding box where the val-
ues to be predicted are coordinates of the top-left point of
the bounding box and width and height. Following this ap-
proach allows us to reduce the number of parameters and

aids in performance as we can select the regression results
from detections that have a center lying in the cell. How-
ever, in the case of occluded objects, filtering predictions
based on center location might result in dropping bounding
boxes with an object. To avoid such a scenario, we include
an IoU head that estimates the IoU of a regressed bounding
box. Combining these two allows us to filter out bounding
boxes without performing non-maximum suppression.

For performing lane detection, we follow the approach
proposed in UFAST and construct a lane classification head
that uses features from the backbone network to classify
lane presence on predefined row anchors. Unlike the origi-
nal UFAST network that relied on global features obtained
at the backbone base, we use features from P3 layers as they
provide richer spatial and semantic content providing im-
proved performance. For our implementation, we assume
constant row anchors to 60 (H’) and a number of gridding
cells to 200 (W) with N, set to 6 for CULane and TuSim-
ple datasets and 11 for CurveLanes dataset.

To train the proposed framework (Fig. 4, referred
hereafter as LW-OL), we use binary cross-entropy (BCE)
loss for training the classification, IoU and centerness
branch, and IoU loss [67] for training the regression branch,
whereas for the lane detection branch, we use cross-entropy
loss (CE). We then train the complete network for 100
epochs for TuSimple, 300 epochs for CULanes, and Curve-
Lanes dataset with an initial learning rate of 0.001, image
size of 512 x 512, batch size of 4, and ADAM optimizer
[24] on a system equipped with RTX3090 GPU. Further-
more, we utilize random flipping, rotating, color jitter with
probabilities of 0.5 and copy-paste [15, 44] with maximum
number of samples as 5, as data augmentations techniques.

3.4. Performance focused Transformer Architec-
ture

CNN-based object and lane detectors observe a perfor-
mance drop in occluded conditions wherein the same object
or lane might be considered different, increasing the num-
ber of false positives. To ensure consistent performance in
such scenarios, we require effective modeling of features
present across complete feature space issued to directly pre-
dict a single bounding box or lane line. For this, DETR
[7] reformulated object detection using a transformer-based
encoder-decoder architecture that model feature relation-
ship along a sequence and leverage it to predict bounding
boxes. Subsequently, object detection is treated as set pre-
diction tasks wherein a single predicted bounding box is as-
signed to ground truth, eliminating NMS’s need. Following
similar motivation, LSTR [32] demonstrated that lane de-
tection could also be performed via a similar approach of
predicting lane line parameters, thereby avoiding any clus-
tering or post-processing. To further improve lane detection
performance LSTR reparamterized the curve lanes to also
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Figure 5: Architecture of the proposed dual decoder object
and lane detector.

account for camera position w.r.t road surface.

As these two approaches largely have a common archi-
tecture to a great extent, they are ideal candidates for de-
signing a transformer-based model that jointly estimates ob-
ject bounding boxes and lane line parameters using two de-
coupled decoders relying on feature relationship modelled
by the encoder. However, we observe that relying on com-
monly used curve parameter approach assumes a common
horizon line where all lane lines end. This is an inaccu-
rate model as it cannot capture lane information at intersec-
tions or horizontal lane lines wherein the number of horizon
lines increases. To avoid this limitation, we instead estimate
all the coefficients of lane lines following the polynomial
model of degree 3 following PolyLaneNet [49]. Apart from
the polynomial coefficient, a starting point is also estimated
resulting in a total of 6 parameters to be estimated per lane
line (4 for lane model and 1 each for start point, end point).
As we use bipartite matching loss, the model would ensure
a single lane line predicted for corresponding ground truth.
Hence we train the dual decoder transformer (Fig. 5, re-
ferred hereafter as DD-OL) for 500 epochs for TuSimple,
1000 epochs for CULanes, and CurveLanes dataset with an
initial learning rate of 0.001, image size of 512 x 512, batch
size of 4, and ADAM optimizer [24] on a system equipped
with RTX Titan GPU following the same data augmenta-
tion techniques as mentioned above. The larger epoch re-
quirement for training transformer-based models compared
to CNN-based ones arises from the optimization of a larger
parameter space.

4. Experimental Analysis
4.1. Datasets and Evaluation Metrics

To evaluate the performance on lane detection task, we
use CULanes [39], TUSimple [I] and CurveLanes [63]
datasets that have been widely used in lane detection litera-
ture. These have {88880; 9675; 34680}, {3268; 358; 2782}
and {100000; 20000; 30000} train, val and test images with

at most 5, 5, and 9 concurrent lane lines being present in an
image. Furthermore image resolution for these datasets is
1280 x 720, 1640 x 540 and 2650 x 1440 for TUSimple,
CULanes and CurveLanes respectively. For evaluating lane
detection performance, we follow dataset-specific metrics
such as,

e TuSimple follows three metrics namely false posi-

tive (FP), false negative (FN) and accuracy that is
2 linCerip
] > l.iPS clip
wherein C;),, refers to number of correctly estimated
lane points and Sy, refers to total number of ground

truth points in each clip.

calculated following the relation Acc. =

e CULanes measures the IoU (Intersection-over-Union)
for a 30 pixel-width predicted and ground truth lane
line with predictions having an IoU larger than 0.5 are
considered as true positive (TP). F1 measure is subse-

__ 2XPrecisionxX Recall
quently calculated as F'1 = 572582220 where

Precision = % and Recall = TF:‘CF% where
FP and F'N refer to false positive and false negative
respectively. In addition, CULanes dataset also pro-
vide performance in diverse conditions such as normal,
crowded, night, no-line, shadow, arrow, dazzle, curve
and crossroads.

e CurveLanes dataset follows similar approach of CU-
Lanes and uses F1, Precision and Recall to evaluate
different algorithms.

As we use CNN for generating pseudo labels, evaluat-
ing object detection performance on lane detection datasets
might not provide accurate results due to missed detections,
despite its accuracy on training dataset due to domain shift.
Hence we utilize BDD100K dataset to evaluate the perfor-
mance of SoTA object detection algorithms along with the
proposed architecture and use standard metrics such as av-
erage precision (AP) and average precision at 0.5 IoU.

4.2. Lane Detection

We summarize the performance landscape of SoTA lane
detection algorithms on CurveLanes, CULanes and TuSim-
ple datasets in Tab.l, Tab.2 and Tab.3 respectively with
qualitative results in Fig. 6. Apart from dataset specific
metrics we also summarize the backbones, input image
resolution and corresponding GMACs' to provide a bet-
ter overview of associated computational cost. For our
evaluations we choose lane detection algorithms such as
SCNN [38], SAD [19], RESA [66], HESA [27], E2E [64],
FastDraw [40], PINet [25], UFAST [41], CurveLanes [63],
LaneATT [50], PRNet [57].

To check performance on curved roads wherein multiple
lane lines are present, we utilize CurveLanes dataset that

'Where source code is available
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Figure 6: Visual performance comparison of proposed algorithms with joint operation of SoTA lane and object detection
algorithms on different datasets along with pseudo bounding box labels.

Method | F1 |Precision|Recall | GFLOPs

SCNN [38] 65.02| 76.13 |56.74 | 328.4
Enet-SAD [19] 5031| 63.60 | 41.60 3.9

PointLaneNet [9] |78.47| 86.33 | 7291 14.8
CurveLane-S [63] |81.12| 93.58 | 71.59 7.4

CurveLane-M [63] |81.80| 93.49 | 72.71 11.6
CurveLane-L [63] |82.29| 91.11 |75.03| 20.7
LW-OL (E-Lite-b0) [ 80.27 | 90.38 | 7049 | 3.96
DD-OL (E-b4) 81.42| 91.38 |73.66 | 27.42

Table 1: Evaluation SoTA lane detection algorithms on
CurveLane dataset

has a large number of lanes (= 9) with more than 90% hav-
ing curves. Thus based on performance summarized in Tab.
1 we can conclude PointLaneNet, Curvelane and proposed
algorithms to perform well with F'1 > 75.00. Comparing
the performance of proposed networks w.r.t neural architec-

ture search based algorithm (CurveLane) that emphasize on
lower GMACs, we observe our lightweight network LW-OL
to achieve comparable performance to CurveLane-S (-0.85
F1 score), taking only 53.5 % of the FLOPs (Floating Point
Operations Per Second) while simultaneously performing
object detection, whereas the performance-focused network
DD-OL achieves comparable performance to CurveLane-
M with a difference of -0.38 F1 score but surpassed by the
deeper variant of Curvelane model. However, on CULane
and TuSimple, the performance of LW-OL is comparable
to CurveLane-S with DD-OL surpassing CurveLane-L, per-
suading us to believe that performance of the proposed al-
gorithms is highly sensitive towards number of lanes that
are available in the training cycle. Despite the performance
difference between NAS-based Curvelanes we maintain the
proposed approach to be computationally efficient since our
approach also provides bounding boxes that localize an ob-
ject. In contrast, due to the formulation of Curvelanes, an-
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Method Backbone | Normal | Crowded | Night | No-Line | Shadow | Arrow | Dazzle | Curve | Cross | Total | GMACs
SCNN [38] VGG-16 | 90.6 69.7 66.1 434 66.9 84.1 585 | 644 | 1990 | 71.6 | 164.2
ENet 90.1 68.8 66.0 41.6 65.9 84.0 | 602 | 65.7 | 1998 | 70.8 -
SAD [19] R-18 89.8 68.1 64.2 425 67.5 83.9 59.8 | 65.5 | 1995 | 70.5 -
R-101 90.7 70.0 66.3 43.5 67.0 84.4 | 599 | 65.7 | 2052 | 71.8 -
RESA [66] R-34 91.9 72.4 69.8 46.3 72.0 88.1 66.5 | 68.6 | 1896 | 74.5 | 88.31
R-50 92.1 73.1 69.9 47.7 72.8 88.3 69.2 | 703 | 1503 | 75.3 | 97.38
HESA [27] R-34 90.2 67.7 65.2 42.0 64.3 84.7 59.1 60.8 | 1665 | 70.7 -
ERFNet 92.0 73.1 69.2 45.0 75.0 88.2 63.8 | 67.9 | 2028 | 74.2 -
ERFNet 91.0 73.1 67.9 46.6 74.1 85.8 645 | 71.9 | 2022 | 74.0 -
E2E-LMD [64] R-18 90.0 69.9 63.2 432 62.5 83.2 60.2 | 70.3 | 2296 | 70.8 -
R-101 90.1 71.2 65.2 44.9 68.1 84.3 60.9 | 70.2 | 2333 | 71.9 -
FastDraw [40] R-50 85.9 63.6 57.8 40.6 59.9 794 | 57.0 | 652 | 7013 - -
PINet [25] 1H 85.8 67.1 61.7 44.8 63.1 79.6 594 | 633 | 1534 | 69.4 1.19
4H 90.3 72.3 67.7 49.8 68.4 834 | 663 | 65.6 | 1427 | 74.4 3.73
UFAST [41] R-18 87.7 66.0 62.1 40.2 62.8 81.0 584 | 579 | 1743 | 68.4 8.46
R-34 90.7 70.2 66.7 444 69.3 85.7 59.5 | 69.5 | 2037 | 72.3 16.97
NAS-S 88.3 68.6 66.2 47.9 68.0 82.5 632 | 66.0 | 2817 | 71.4 9.0
CurveLanes [63] | NAS-M 90.2 70.5 68.2 48.8 69.3 85.7 659 | 67.5 | 2359 | 73.5 33.7
NAS-L 90.7 72.9 68.9 494 70.1 85.8 67.7 | 684 | 1746 | 74.8 86.5
LaneATT [50] R-18 91.11 7296 | 68.95| 48.35 7091 | 85.49 | 63.37 | 65.72 | 1170 | 75.09 9.3
R-122 91.74 76.16 | 70.81 | 50.46 7631 | 86.29 | 64.05 | 69.47 | 1264 | 77.02 | 70.5
PRNet [57] BiSeNet 90.8 72.3 69.2 47.6 70.6 85.2 642 | 67.2 | 1113 | 74.8 -
ERFNet 92.0 74.7 70.5 51.7 76.0 87.8 684 | 70.0 | 2114 | 76.4 -
LW-OL R.-18 88.13 64.67 | 63.50 | 41.09 63.14 | 82.42 | 60.08 | 58.16 | 1682 | 66.01 | 10.38
E-Lite-b0 | 90.21 71.67 | 68.69 | 46.67 71.96 | 8531 | 60.38 | 71.62 | 1522 | 73.49 | 1.98
DD-OL R-50 90.05 7042 | 66.46 | 45.08 68.19 | 86.12 | 57.44 | 68.32 | 1994 | 72.09 | 23.67
E-b4 91.08 76.69 | 69.72 | 50.98 75.84 | 87.22 | 67.58 | 70.08 | 1438 | 76.81 | 13.71

Table 2: Evaluation SoTA lane detection algorithms on CULane dataset (F1 score) under diverse conditions.

other object detection algorithm is required, increasing rep-
etitious computations.

Method | Backbone | Resolution| Acc | FP | FN |GMACs
SCNN [38] VGG-16 [288 x 800| 96.53 |0.0617|0.0180| 164.2
End2End [55] ERF 256 x 512(95.80 - - - 8.52
FastDraw [40] R-50 [352 x 640| 95.20 | 0.076 | 0.045 -
PINet [25] 1xXHG |256 x 512| 95.81 [0.0585(0.0330| 1.19
UFAST [41] R-18 288 x 800| 95.87 - - 8.38
E2E-LMD [64] ERF 256 x 512 96.02 |0.0321]0.0428 -
PolyLaneNet [49] | Eff. b0 |360 x 640| 93.36 [0.0942(0.0933 | 1.748
LSTR [31] R-18 360 x 640| 96.18 |0.0291]0.0338 | 0.574
LaneATT [50] R-18 360 x 640| 95.57 10.0356|0.0301 9.3
LaneNet [36] Custom [256 x 512| 96.4 |0.0780|0.0244 -
SAD [19] ENet 364 x 640| 96.64 |0.0602|0.0205 -
RESA [660] R-34 368 x 640| 96.82 |0.0363|0.0248 | 100.28
HESA [27] ERF 368 x 640| 96.01 |0.0329]0.0458 -
LW-OL E-Lite-b0 | 512 x 512 96.67 |0.0301 |0.0441 1.98
DD-OL E-b4 |512 x 512 97.23 |0.0267|0.0357| 13.71

Table 3: Evaluation of SoTA
Dataset

algorithms on TUSimple

We observe the performance of our lightweight approach
(LW-OL) to surpass that of UFAST [41] with the same
backbone, i.e., ResNet-18 [18] wherein our formulation is
based on the latter. This demonstrates that using the same
encoded features for multiple tasks can improve perfor-
mance on all the tasks. However, since this approach uti-
lizes large computations, we switch to a more efficient back-
bone, i.e., EfficientNet-Lite [51] that can achieve higher
performance on both object and lane detection while min-

imizing the computational requirement. A closer analysis
of model performance reveals, current SOTA lane detection
algorithms to be sensitive in the absence of lane line (No-
Line), in which condition performance of all lane detection
algorithms is peaked at 50.7 (by PRNet) in comparison to
92.1 (by RESA) under normal conditions. This strength-
ens our approach of relying on pseudo bounding box labels
instead of pseudo-lane lines as the absence of lane mark-
ers due to occlusion could generate many false negatives,
reducing model performance.

Furthermore, we observe shadows, dazzle, night, and
curves conditions limiting the performance of all lane de-
tection algorithms compelling us to believe a lot of work is
still accomplished for visual perception-based lane detec-
tion. That being said, performance in shadows, dazzle, and
night conditions can be significantly improved by simply
tweaking the camera signal processing pipeline, wherein the
objective would be to generate well-illuminated images ir-
respective of outdoor conditions. To verify if such a minor
tweak could improve the performance of object and lane de-
tection algorithms, we preprocessed the images using pre-
trained AFNet [46] and summarize the visual results in Fig.
8. Since the networks were not jointly trained, there is a
scope for performance improvement by joint optimization,
however, it is beyond the scope of this work. Nevertheless,
the results show that a well-tuned camera ISP can improve
the performance of lane and object detection algorithms.
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Figure 7: Joint Object, Lane and Drivable area detection
using LW-OL model on CULane dataset.

i 2=

Figure 8: Performance in shadow and no-line conditions
after image enhancement.

Moreover, we additionally examined pushing the limits of
lightweight architecture to also perform drivable road seg-
mentation based on labels generated by a model trained on
the BDD10OK dataset with visual results in Fig. 7.

As TuSimple was among the first lane detection dataset,
we can examine the performance landscape of SoTA in
terms of image resolutions and backbone to obtain a fair
performance overview. As latency is critical in lane detec-
tion, majority of works focused on lightweight backbones
such as ResNet-18, Hourglass [37] and ERFNet [43]. Fur-
thermore, inferring from image resolution, larger empha-
sis was given to information along the width rather than
height. This however would also warp the objects and
would thus require modification of anchor-based object de-
tectors. However, anchor-based object detectors such as
SSD [34] also require additional post-processing (NMS) to
filter out weak detections, encouraging us to use anchor-free
object detectors.

4.3. 2D Object Detection

Method Resolution | mAP@O0.5 | mAP | GMACs
Yolov5-s 512 x 512 0.44 0.23 5.44
Yolov5-m 512 x 512 0.50 0.27 25.61
Yolov5-1 512 x 512 0.52 0.29 57.73
Yolov5-x 512 x 512 0.54 0.30 109.4
Yolov5-s 640 x 640 0.50 0.27 5.44
Yolov5-m 640 x 640 0.55 0.31 25.61
Yolov5-1 640 x 640 0.58 0.33 57.73
Yolov5-x 640 x 640 0.60 0.34 109.4
EfficientDet-DO0 | 640 x 640 0.50 0.28 2.93
EfficientDet-D3 | 640 x 640 0.52 0.30 12.95
EfficientDet-D7 | 640 x 640 0.56 0.31 57.46
LW-OL-R18 512 x 512 0.48 0.30 10.38
LW-OL-ELO 512 x 512 0.52 0.31 1.98
DD-OL-R50 640 x 640 0.51 0.31 23.67
DD-OL-EB3 640 x 640 0.62 0.35 13.71

Table 4: Evaluation on SoTA object detectors on BDD100K
Dataset
We subsequently examine object detection performance

of pretrained LW-OL and DD-OL networks and compare
it with Yolov5 [22], and EfficientDet [52] models trained
on BDD100K datasets following training approach used to
train proposed algorithms, thus providing us with peak per-
formance. We observe LW-OL and DD-OL with efficient-
net backbones to perform on par with different variants of
Yolov5 and EfficientDet when the input resolution is 512 x
512 (Fig. 4). Despite domain gaps between lane detection
datasets and BDD 100K, the comparable performance is due
to copy-paste data augmentation process, wherein differ-
ent objects based on their masks are randomly cropped and
pasted onto training images. This approach, while origi-
nally proposed for image segmentation and restoration algo-
rithms, aids the performance of object detection algorithms
as well improves the generalization ability of both object
and lane detection algorithms as inferred from results sum-
marized in Tab. 5. Specifically LW-OL and DD-OL observe
a performance boost of 4.15 AP and 2.76 AP on object de-
tection and 1.49 Acc and 1.31 Acc on lane detection when
trained on TUSimple dataset and evaluated on BDD100K
dataset. While CNN based LW-OL witnessed higher im-
provement compared to DD-OL, we believe this to be due
to better modelling of feature relationship in transformer
based algorithms.

Method | Acc | FP | FN || AP | APso

Yolov5-m - - - 52.03 | 61.39
Yolov5-1 - - - 53.22 | 67.99
LW-OL | 95.18 | 0.0343 | 0.0501 || 48.34 | 60.47

DD-OL | 95.92 | 0.0355 | 0.0414 || 59.63 | 71.35

Table 5: Object Detection Performance of algorithms be-
fore copy-paste augmentation.

As SoTA is currently held by task-specific networks for
lane detection tasks, we require an additional task-specific
network for generating bounding box proposals. Hence to
ensure comparable GMACs, we club a lightweight object
detector with SoTA lane detector and present the visual re-
sults in Fig. 5. From model-specific GMACs we can ob-
serve the performance of joint networks to surpass prior
works while requiring 9.83x and 1.42x fewer computa-
tions for LW-OL and DD-OL algorithms, respectively.

5. Conclusion

In this paper, we presented a weakly-supervised ap-
proach for generating pseudo ground truth that can aid train-
ing multitask networks focused on jointly performing object
and lane detection. Focused on latency and performance,
we proposed two architectures using CNNs and transform-
ers that used the same feature encoder to avoid redundant
computations and quantitatively and qualitatively demon-
strated them to perform similar to SoTA while requiring
fewer computations, thus being ideal candidates to be de-
ployed on edge devices.
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