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Abstract

In autonomous driving, the robust and accurate percep-
tions of the environment is a fundamental and challenging
task. Resorting to the advancing of different sensors such
as LiDAR and Camera, the autonomous systems are able to
capture and process complementary perceptual information
for better detection and classifying objects. In this paper, we
propose a LiDAR-Camera fusion method for multi-class 3D
object detection. The proposed method makes the utmost
use of data from the two sensors by multiple fusion stages,
and can be learned in an end-to-end manner. First, we ap-
ply a multi-level gated adaptive fusion mechanism with the
feature extraction backbone. This point-wise fusion stage
assiduously exploits the image and point cloud inputs, and
obtains joint semantic representations of the scene. Next,
given the regions of interest (RoIs) proposed based on the
LiDAR features, the corresponding Camera features are se-
lected by RoI-based feature pooling. These features are
used to enrich the LiDAR features in local regions and en-
hance the proposal refinement. Moreover, we introduce a
multi-label classification task as an auxiliary regulariza-
tion to the object detection network. Without relying on ex-
tra labels, it helps the model better mine the extracted fea-
tures and discover hard object instances. The experiments
conducted on the KITTI dataset have proved all our fusion
strategies are effective.

*Work done primarily while Zejie Wang was an intern at Didi AI Labs,
Didi Chuxing.

1. Introduction

The 3D object detection tasks [2, 29, 24, 11, 17, 20,
21, 23, 27] create both an opportunity and a challenge for
the intelligent transportation industry as a whole. Demands
for multi-class 3D object detection are increasing in com-
plex traffic situations, particularly in large, metropolitan ar-
eas. As the foundational components, LiDAR and Camera
are two most common sensory inputs in autonomous driv-
ing. LiDAR points provide 3D structure information, but
suffer from uneven and sparse points distribution. Espe-
cially small distant objects are hardly to be recognized by
a LiDAR-only model due to extremely low density points.
Cameras can capture images with rich semantic features
while inevitably lack depth information. The demonstration
is shown in Figure 1. To fully utilize the advantage of each
sensor modality, LiDAR points and image features are com-
bined to enhance detection accuracy. However, many exist-
ing works [2, 12, 11, 20, 5] tend to focus on fusing vehi-
cle mixture perceptual information rather than other classes,
such as pedestrian and cyclist. Other fusion works [24, 21]
requires additional complex networks for a priori reasoning.
To fill this gap, we propose an end-to-end learnable archi-
tecture for fusing Camera and LiDAR sensors in a feature-
wise manner for multi-class 3D object detection.

The structure of the fusion model can be divided into
multi-view projection fusion [2, 12, 11, 20] and feature
mapping fusion [24, 21, 23]. In the multi-perspective pro-
jection fusion method, most of the works adopt via perspec-
tive projection and voxelization to quantify point cloud to
pseudo-image by using BEV (birds-eye-view) map. The
BEV format typically comes up with a CNN detection head
to predict bounding box, which can be processed by the ex-
isting mature convolutional neural network. Unfortunately,
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Pedestrian Cyclist

Figure 1. The problems faced by LiDAR-based multi-class 3D de-
tection. The sparse 3D structure captured by LiDAR cannot ef-
fectively express the object. The small goals of ‘Pedestrian’ and
‘Cyclist’ are very sparse, such as the red areas. For relatively dis-
tant target points, it is almost missing, such as the blue area.

the BEV format progressively breaks down the spatial fea-
tures and inevitably downscales resolution, and the con-
version process is inefficient. As a result, the detection
head fails to regress localization precisely due to insuffi-
cient point cloud features.

The feature map fusion method is usually recommended
to employ an image segmentation auxiliary network [1, 16,
30] to extract semantic information before fusing with Li-
DAR features to ensure the effective spatial structure of the
point cloud. The image segmentation auxiliary network is
off-the-shelf and not learnable. Specifically, it is separately
pre-trained and only performs inference in the fusion net-
work’s training phase, which is efficient. [21] has shown
that the precision of the whole fusion network mainly relies
on the performance of the segmentation auxiliary network.
Meanwhile, the recognition situation of the auxiliary seg-
mentation network and the point cloud detection network
is split, and mutual optimization cannot be realized. More-
over, obtaining segmentation mask annotations is less cost-
effective than bounding box labeling in terms of human re-
sources. It is rarely possible to apply for access to open
source dataset for both image segmentation and LiDAR ob-
ject annotations at same frames.

To address these challenges, we propose a novel end-
to-end LiDAR-Camera fusion method, multistage fusion
for multi-class 3D object detection (MSF-MC). We design
a classification-aware auxiliary model which can generate
image features for multi-label prediction to guide LiDAR
backbone to learn more discriminative features. Unlike
popular LiDAR-Camera fusion network [21, 23], instead

of image segmentation annotations, the object classifica-
tion labels are sufficient to provide multi-label supervision.
Importantly, we apply VGG Network as the segmentation
backbone to emphasize that the performance of image back-
bone is not critical for the LiDAR stream prediction ac-
curacy. The fusion model leverages the attention mech-
anism to adaptively inject high-dimensional semantic im-
age features into the LiDAR encoder in point-wise manner
through a lightweight gated network module. As a result,
the LiDAR encoder-decoder module could maintain the
point cloud structural feature losslessly and efficiently and
receive supplemental image semantic information. We fur-
ther add image global semantic information to point cloud
ROIs (regions of interest) to amplify the refinement of the
proposal regression. In order to achieve the correlation be-
tween LiDAR predicted objects and corresponding image
object classification, we adopt classification-based regular-
ization mechanisms to efficiently assist point cloud detector
to recognize small objects.

In summary, our key contributions are as follows:
1. This is a novel work for multi-class LiDAR-Camera

fusion that can be used for end-to-end training, which does
not require additional segmentation annotations.

2. We propose a multi-level gated fusion method to re-
tain the original point cloud structure information, while
provide feature supplement in the ROI.

3. We develop a prediction consistency regularization
mechanism to align the feature gap between LiDAR detec-
tion and image classification.

4. We conducted extensive experiments on the authori-
tative dataset KITTI, which proved the effectiveness of our
proposed method.

2. Related Work
LiDAR-based 3D object detection Like the development
of image object detection, there are two categories in Li-
DAR object detection, one stage approach and two stage ap-
proach. A typical one stage model consists of a point feature
extraction module and a detection module. Point feature ex-
traction module generally produces bird eye’s view or vox-
elization grids. The joint detection head is either 2D or 3D
CNN to learn the features for 3D box prediction. Complex-
yolo [19] projected point cloud to BEV format and used
2D detector. PointPillars [10] encoded point cloud with 6
statistical quantities and stacked voxel features as ‘pillar’.
VoxelNet [29] exploited the PointNet as the backbone to
extract features for each voxel. While Yang et al. [26] ap-
plied a 3D CNN to a grouped voxel grid. Though one stage
approach efficiently saves computing resources, as a trans-
formed compact presentation, voxelization inevitably lose
original spatial information and result in relatively low pre-
cision.

The two-stage approach lifts a 3D region of interests in
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Figure 2. The structure of the proposed multistage fusion for multi-class 3D object detection model(MSF-MC). The proposed model uses
PointRCNN as the 3D object detection network, and the VGG-16 structure as the backbone network for image feature extraction to achieve
3-stage fusion. The point-wise semantic information fusion structure is used to realize the point-wise fusion of multi-level image depth
semantic information and point cloud features. The object region fusion structure is used to achieve the feature fusion of the object region.
At the same time, the consistency regularization structure realizes the multi-label prediction results to implement the point cloud prediction
consistency regularization mechanism.

stage one and refine the regression in stage two. Part-a2

net [18] generated ROIs from voxel-based feature extrac-
tion layer and adopted intra-object part-aware analysis to
enrich ROI features. Votenet [13] utilized PointNet++ [15]
as the backbone and introduced the Hough voting principle
to group deep features. Yang et al.[28] used PointNet++
[15] as well to keep spatial information and divided ROIs
into voxel grid to fit regular CNN. Generally, the two-stage
approach utilizes PointNet++[15] as the backbone, espe-
cially SA layers and FP layers, to generate proposal for the
refinement module. It achieves better accuracy by learning
more fine-grained features from the proposal.

Multi-sensor 3D object detection In the past years,
there has been a rapid rise in the use of multi-sensors. Some
works [14, 22] proposed to produce ROIs from image and
applied the PointNet backbone to extract corresponding Li-
DAR features. One obvious limitation was 3D frustum view
was extruded from 2D region, the image backbone dom-
inated the performance of 3D detection. Chen et al. [2]
gathered image, front view point cloud and bird view point
cloud as the threefold input branches to generate 3D pro-
posal. The variant research [9] proposed image features in
the proposal generation stage. These works had a cumber-
some structure that involved different backbones for each

view though the optimization were end-to-end.
There is a trend that researchers are paying more atten-

tion on image semantic information in fusion work rather
than relying on image detection. Huang et al. [5] merged
point cloud features with image semantic features in a point-
wise way. Xie et al. [23] proposed an attention fusion mod-
ule to solely merge 3D proposals and image segmentation
masks. Vora et al. [21] applied a semantic segmentation
network obtaining pixel-wise image segmentation scores, to
decorate point cloud for fine-grained semantic understand-
ing. The above works inspire us to take advantages of global
semantic features from images.

3. Method

In this section, we propose a multi-stage fusion model
for multi-class 3D object detection (MSF-MC) that can
be used for end-to-end training. We obtain two differ-
ent sensory inputs from LiDAR and Camera. Given the{
x[i], b[i], c[i]

}n
i=1

donate the LiDAR data set containing n
frames, where x[i] presents the point cloud at i-th frame, b[i]
and c[i] are the bounding box location and object classifica-
tion relatively. Meanwhile, the calibrated Camera dataset{
z[i], c[i]

}n
i=1

can be obtained, where z[i] represents image
data corresponding to x[i]. Because the z[i] are synchro-
nized with x[i], it is possible to use c[i] for supervised learn-
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ing of the image content without introducing additional an-
notations. For the convenience of the following presenta-
tion, we use x and z to represent the current i-th point cloud
and image respectively. We aim to thoroughly use two dif-
ferent sensory inputs to gain the understanding of comple-
mentary features, and make the 3D object detection more
precise.

The principle of MSF-MC utilizes the gated adaptive
network to accomplish the effective fusion of multi-level
image semantic information and point cloud features. To
additionally refine the ROIs local feature, image global se-
mantic information is concatenated with ROI module in the
LiDAR stream. we also adopt multi-task training strategy
to perform the consistency regularization of cross-modality
object class prediction. As mentioned in the related work,
we select a widely used point-based 3D object detector,
PointRCNN, as the detection model in the LiDAR stream.
In terms of image stream, to simplify the training and
to emphasize the effectiveness of our fusion method, the
lightweight VGG-16 model is exploited as the backbone for
multi-label learning and semantic feature acquisition. Un-
like previous work [23, 21], the efficiency of image back-
bone won’t dominate our fusion performance. Its structure
is shown in Figure 2.

3.1. Point-wise Semantic Information Fusion

In multi-class object detection scenarios, it is crucial
that the learned image and point cloud features include
effective local regions. So we propose to employ point-
wise regional self-attention fusion principle in the first stage
to realize sensitivity to effective regions. We exploit the
mapping strategy to leverage the correspondence relation-
ship between LiDAR points and image pixels in a feature
wise manner. LiDAR detection branch consists of four
set abstraction (SA) layers as the feature encoding module.
Given the point cloud x, we gain the point cloud feature
set
{
Sl
}

(l ∈ [1, 2, 3, 4]) from these set abstraction layers.
Concurrently we obtain the deep semantic features

{
F l
}

(l ∈ [2, 3, 4, 5]) for the the last four layers of the VGG back-
bone. In order to establish the mapping correspondence of
Sl → F l+1, where l ∈ [1, 2, 3, 4].

In the same way as in [6, 5], we leverage bilinear in-
terpolation and calibration matrix M to project 3D point
to corresponding image feature where we can sample 2D
feature map and accordingly obtain the feature set

{
V l
}

(l = 2, 3, 4, 5), an example of which is shown in Figure 3.
Specifically, for a specific point e in a given point cloud
space, according to the mapping matrix and bilinear inter-
polation method, we can obtain its corresponding position
ê in the feature map output by the Camera image branch.
Therefore, we can further obtain point-wise feature V l by
sampling the size area of the image feature F l. The num-
ber of points in V l+1 is exactly the same as the number
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Figure 3. Project 3D point to corresponding image feature. Using
the mapping matrix M , the point cloud is projected into the im-
age, and the image features are sampled at the corresponding pixel
positions.

of points in Sl. With this strategy, the original space of
the point cloud can be preserved and depth semantic in-
formation can be introduced at the same time. As a con-
sequence, we could apply multi-level fusion on

{
Sl
}

and{
V l
}

, which is proved more effective in the following ex-
periment section.

On account of illumination, occlusion and truncation,
discrepant representation might occur during cross modal
perception fusion [6, 5]. Inspired by [4, 7], we pro-
pose a gated adaptive fusion mechanism which is able to
evaluate the relevance of point cloud feature and image
feature accordingly. Detailed demonstration is shown in
Figure 4. Specifically, by concatenating point-wise im-
age feature V l+1 and point cloud feature Sl, we get a
compressed feature vector SV l, and obtain weighted fea-
ture map from W = σ(MLP (SV l), where MLP de-
notes shared weighted feature extraction network and σ is
sigmoid activation function. To balance the complemen-
tary feature, we design two boosting attention equations
Sl
w = Sl � W and V l+1

w = V l+1 � (1 − W ), where �
presents element wise production. We further merge above
two weighted feature to update LiDAR feature Sl:

Sl = Sl
w ⊕ V l+1

w (1)

where ⊕ stands for merge operation. Self-attention feature
fusion learning is expected to enhance the relevance of Sl

and F l+1, in order to achieve effective fusion in original
spatial structure.

3.2. Local Region Fusion

In the previous section we were mainly concerned with
point-wise fusion of corresponding features in the same
space. Since the global semantic information of the im-
age can directly and effectively express the scene, we sug-
gest that in the second stage, the target area feature of
ROI-Pooling extracted by the RCNN module in PointR-
CNN should be fused with the global depth semantic in-
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Figure 4. Gated adaptive fusion network. The point-wise features
obtained from two different sensors are fused using relevant atten-
tion features to update the point cloud features.

formation of the image to enhance target information and
achieve more precise regression prediction. In the image
feature extraction stage, z can obtain the feature F 5 ∈
RH×W×C through the last layer of the feature extrac-
tor to generate the global depth semantic feature vector
f = MaxPooling(F 5) ∈ R1×C . Similarly, in the cur-
rent point cloud x, the ROI-Pooling region features R =
{r1, r2, . . . , rt} can be obtained, where t represents the
number of features obtained. At this time, there is no con-
flict between the global semantic information and the char-
acteristics of the target area, so we suggest that the global
semantic information of the image can be directly supple-
mented with the object region information:

R∗ = {MLP (ri ⊕ f)}ti=0 (2)

where ⊕ represents a cascading operation on two features.
We use the fused object region features R∗ as the input of
the final refined regression task for training update.

3.3. Multi-Label Prediction Auxiliary Regulariza-
tion

In this section, we introduce the multi-label training
method and the accomplishment of the consistency regu-
larization on the third stage.

Multi-label learning To make the image feature extrac-
tor learn fine-coarse semantic information, we send z to
it and obtain F 5 as the input of multi-label classification.
The multi-label classifier is composed of K separate bi-
nary classification sub-module, C1, C2, . . . , Ck, to predict
K different classes. Each sub-module is made up of 3 × 3
kernel, 512 channel convolution layer and a sigmoid activa-
tion function. The labels c of image z could be converted to
yc ∈ Rk×1 via a fixed [0, 1] encoding transformation. Then
the multi-label classifier can be learned by minimizing the

cross-entropy loss:

Lml
i = ycT log(pm) + (1− yc)T log(1− pm) (3)

The output prediction vector pm ∈ R1×k consists of k
object classification possibilities. Through multi-label clas-
sification loss training, we expect to be able to achieve ef-
fective extraction of image features and obtain predictions
containing objects.

Cross-modal multi-objective category regularization
In the RPN module of PointRCNN, we can obtain the
N point-wise features of the current point cloud x. These
features use the classifier to obtain the corresponding cat-
egorical variables to construct the segmentation part of the
background before and after for precise adjustment. The
prediction probability matrix Q ∈ RN×K of K categories
can be obtained on the N point cloud features. Further,
we can get the multi-category prediction probability vec-
tor qm = Max(Q) ∈ R1×K of the current point cloud
x, where Max is max operation, which takes N × K ma-
trix as the input and return the vector of each column’s max
value. We adopt the distribution-wise asymmetric measure
- KL divergence (Dkl) to accomplish the prediction consis-
tency between two different sensor modalities. We prospect
the usage of KL divergence to make prediction robust and
avoid incorrect prediction. In order to maintain the consis-
tency between the prediction generated by the 3D detector
and the prediction generated by the image multi-label target
recognition, we suggest to use Softmax function to nor-
malize the vector pm and qm. The loss function of cross
modal regularization is defined as following:

Lkl
i = Dkl(p

m||qm) +Dkl(q
m||pm) (4)

3.4. Overall Learning

We introduce three-stage fusion method to promote the
performance of 3D object detection. We group 3D object
detection loss L3d

i, image multi-label classification loss
Lml

i and cross-modal consistency regularization loss Lkl
i

to achieve multi-task training. The total loss function on all
data is interpreted as:

Lall =

n∑
i=0

(L3d
i + λLml

i + µLkl
i) (5)

Among them, λ and µ are trade-off parameters for
weighing different loss conditions. We use Adaptive Mo-
ment Estimation (Adam) [8] optimization algorithm for
training.

4. Experiments
We evaluated our proposed fusion method (MSF-MC) on

the KITTI 3D object detection dataset [3]. In the following,
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we introduce the dataset and model implementation details
in Sec.4.1. In Sec.4.2, we provide the evaluation results
of our model on KITTI. Extensive ablation experiments are
performed in Sec.4.3. Finally, we provide qualitative visu-
alization results in Sec.4.4.

4.1. Dataset and Implementation Details

The KITTI dataset We evaluate our work on KITTI, the
widely used 3D object detection dataset, which has 7,481
training images and 7518 testing images. The training set
was annotated on both point cloud data and image data, and
testing result must be uploaded to official test server. Fol-
lowing the same splitting protocol as [17], we further divide
the training set to 3712 training samples and 3769 validation
samples. We train our model on three commonest classes,
‘Car’, ‘Pedestrian’ and ‘Cyclist’. We use average precision
(AP) metric as the comparison method, which is calculat-
ing recall at 40. In our experiment, we provide the result for
each official difficulty standard, easy, moderate and hard, of
both validation samples and testing set. The difficulty stan-
dard is defined by size, occlusion and truncation. We also
follow the official IoU threshold protocol, 0.7 for ‘Car’, 0.5
for ‘Pedestrian’ and ‘Cyclist’.

Implementation details We adopt the common settings
in [17]. We use the Adam optimizer to train the network
for 80 epochs. The initial learning rate, momentum param-
eter and weight decay are set to 0.005, 0.01, and 0.9, re-
spectively. Set the λ=0.01, and µ=0.05. In order to align
the input of the network, 16384 points are obtained in the
viewable area of the Camera as the input of PointRCNN.
For scenes with less than 16384 points, we randomly repeat
these points to obtain 16384 points. We select the point
cloud located between the ranges of (0m, 70.4m),(-40m,
40m), and (-3m, 1m) along the x,y and z axes, and delete the
remaining areas of invisible points. The four set abstraction
layers subsample and encode the point cloud with sizes of
4096, 1024, 256, and 64, respectively. We resize the image
size to [1280, 384] as the input of the VGG Network.

Data augment Many LiDAR-based object detection
methods adopt the data augment [25, 10, 17] to increase the
performance. This data augment strategy sampled all the
annotated object from point cloud, and pasted some of them
randomly to the scene which has relatively few amount of
objects. However, we abandon this effective augment strat-
egy during the whole training phase. The correct matching
between the original point cloud and image pixel must be
guaranteed. Any point-cloud-based data augment method
will dilapidate the matching relationship because it won’t
generate corresponding images.

4.2. Results on the KITTI Dataset

We adopt the 3D/BEV indicator task to show our per-
formance. We first compare with our own replicated object
detection detector that can give multi-category confidence
at the same time, and the results on the validation sets are
shown in Table 1. Our proposed MSF-MC method is better
than PointRCNN in all three categories of AP indicators,
and the improvement is obvious for ‘Pedestrian’ and ‘Cy-
clist’. The average performance of ‘Pedestrian’ and ‘Cy-
clist’ on the three difficulty levels increased by 2.29% and
6.85%, respectively. We can also find that our model still
has excellent performance even in the face of the difficulty
level of ‘hard’. This shows that our proposed method is in-
deed effective and can significantly improve the categories,
which are inherently small and difficult to detect.

We also provide a performance demonstration of BEV
metrics, as shown in Table 2. Our proposed MSF-MC also
showed excellent performance. Significant improvement
for ‘Car’, ‘Pedestrian’ and ‘Cyclist’. It further illustrates
the effectiveness of our method.

4.3. Ablation Study

In this section, we conduct the comprehensive analysis
to evaluate different proposed methodologies on the ‘Car’,
‘Pedestrian’ and ‘Cyclist’ classes.

Investigations on different fusion stages To figure out
the effectiveness of different methodologies, we demon-
strate the ablation study in Table 3. When we only use
the point-wise semantic information fusion module (SF),
the average performance of ‘Pedestrian’ and ‘Cyclist’ at
the three difficulty levels is increased by 2.94% and 2.42%,
respectively, compared to the baseline. This shows that
the use of the SF can effectively supplement the seman-
tic features of the point cloud, making the model more
conducive to detecting sparse object. The module of lo-
cal region fusion (RF) has a more obvious contribution
to ‘Pedestrian’, with an average performance increase of
6.19%. When multi-objective category regularization (MR)
module is adopted, the average performance of ‘Pedestrian’
and ‘Cyclist’ is increased by 3.88% and 2.23% respectively,
further proving that this mutually influencing regularization
mechanism can effectively promote Camera recognition re-
sults to help the 3D detection network to be sensitive to
sparse small objects. When we integrate all of these mod-
ules, we get the best overall performance at the moment.
However, it is worth mentioning that the category accuracy
of ‘Pedestrian’ has a corresponding decline, but it is still
much higher than the baseline. At the same time, there is
a huge improvement in ‘Cyclist’. It shows that the model
is more inclined to detect ‘Cyclist’ under the condition of
ensuring that the other two categories are at a higher level.
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Table 1. The comparison of 3D mAP results of our proposed method with Point-RCNN.

Method
Car Pedestrian Cyclist

Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

PointRCNN[17] 88.78 77.67 75.15 66.26 55.59 48.45 75.38 52.25 48.24

MSF-MC (Ours) 89.63 80.06 75.83 66.69 58.18 56.21 82.36 59.17 58.71

Table 2. The comparison of BEV results of our proposed method with Point-RCNN.

Method
Car Pedestrian Cyclist

Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

PointRCNN[17] 92.97 86.28 82.05 72.16 83.82 55.79 75.44 54.69 52.04

MSF-MC (Ours) 93.42 86.97 84.54 74.51 82.75 55.74 86.36 66.66 59.60

Ablation study of SF The SF module uses the idea of
multi-scale to integrate the features of LiDAR point cloud
and image. Semantic content information is more prevalent
at higher levels of the extraction network. Therefore, we be-
gin to merge the SF module from the higher-level features
and gradually transition to the lower-level feature fusion.
We conduct ablation study on the SF module, and the ex-
perimental results are reported in Table 4. We can see that
when the third and fourth layers are fused simultaneously,
the overall performance of the model is optimal. But when
added to the lower level (l = 2, 3), it actually degrades its
overall performance, which has a significant negative im-
pact on the ‘Pedestrian’ category. This indicates that the
higher semantic features of the image are more suitable for
fusion operation. It is worth noting that, in order to en-
sure the integrity of the model, the SF module in the above
experiment adopts the method of 4-layers simultaneous fu-
sion.

Parameter sensitivity on λ and µ The multi-objective
category regularization mechanism is based on the multi-
label prediction output through the regularization loss Lkl.
The label information output by the image classification
network and the category information from the LiDAR
point cloud are mutually influencing. In order to study
the influence of these loss components, we conduct a more
comprehensive ablation study.

In Figures 5 and 6, we conducted sensitivity analysis on
the two trade-off parameters λ and µ. µ controls the weight
of multi-label feature fusion, while λ controls the degree
of focusing on hard-to-classify examples. Other parameters
are set to their default values.

Figure 6 shows the sensitivity of our proposed model
to the changes of λ parameters. We adjust λ by fixing
µ = 0.05. We can see that when the parameter λ changes
from 0.001 to 0.01, the basic trend of detection performance
of the model for the three categories is constantly improv-
ing. When the value of λ is further increased, it can be
found that the model performance is in a downhill stage.
It reveals that in the fusion mechanism of LiDAR-Camera,

Figure 5. Parameter sensitivity analysis on µ.

Figure 6. Parameter sensitivity analysis on λ.

the semantic features learned by multi-label learning have
an obvious correlation to the detection performance of 3D
point cloud targets, which can also further explain why
many workers now adopt a very powerful prior model to
fuse point cloud. Figure 5 shows the change range of the
parameter µ when λ = 0.01 is fixed. We can find that
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Table 3. The ablation study on SF, RF, MR on val set.
Ablation Car Pedestrian Cyclist

SF RF MR Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

88.78 77.67 75.15 66.26 55.59 48.45 75.38 52.25 48.24

X 88.95 77.70 75.28 69.79 60.63 51.72 76.78 55.26 51.10

X 88.50 77.60 75.16 72.17 62.85 53.88 76.03 54.22 51.51

X 89.23 77.71 75.18 69.09 60.15 52.73 77.42 53.91 51.22

X X X 89.63 80.06 75.83 66.69 58.18 56.21 82.36 59.17 58.71

Table 4. Detection results of SF with deployment on different lay-
ers. Use l to represent the point-wise semantic information fusion
of the point cloud feature Sl of the l-th layer and the image se-
mantic feature F l+1 of the l+1-th layer.

SF mAP

l=1 l=2 l=3 l=4 Car Pedestrian Cyclist

X 79.65 58.95 65.63

X X 80.72 58.41 66.23

X X X 81.18 54.91 65.02

X X X X 81.84 60.36 66.75

the multi-objective category regularization mechanism con-
trolled by µ is more sensitive to the category of ‘Cyclist’.

4.4. Compare with other fusion method

In Table 5, it can be found that our proposed method
has no obvious difference in the category of ‘Car’ com-
pared with the latest methods,but it is worth noting that our
method is a multi-class end-to-end training method, mainly
focusing on the other two classes of small target sparse point
clouds. Our focus is on fusion methods, rather than optimiz-
ing the basic model of 3D detection.

Table 5. Performance comparison of 3D AP(Car) with previous
methods on KITTI validation sets

Method 3D AP(Car)
easy moderate hard

MV3D [2] 71.29 62.68 56.56
ContFuse [12] 82.54 66.22 64.04

AVOD-FPN [9] 84.41 74.44 68.65
F-PointNet [14] 83.76 70.92 63.85
PI-RCNN [23] 88.27 78.53 77.75

PointPainting [21] 88.38 77.74 76.76
MSF-MC (Ours) 88.14 77.48 75.92

5. Conclusion
In this paper, we study the limitations of current LiDAR-

Camera fusion works and propose a multistage fusion for
multi-label 3D object detection task. We have implemented
end-to-end training by adopting a three-stage fusion method
without the need to introduce additional annotations. In the

first stage, the multi-level gated adaptive fusion mechanism
is adopted to achieve point-wise fusion of the features of
point cloud and image, so as to ensure the spatial struc-
ture of point cloud and introduce effective image semantic
information. In the second stage, the camera features are
fused with point cloud ROI-pooling to enhance the integrity
of proposals. We also introduce the third stage, using the
multi-label classification task as the auxiliary regularization
of the object detection network to achieve the consistency
of category recognition. The experimental analysis shows
that our proposed method is very effective.
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