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Abstract

The unmanned aerial vehicles (UAVs) have been widely

used in various application fields, yet unauthorized use of

UAVs raises great threats for restricted areas and public se-

curity. Therefore, it is urgently necessary to develop a prac-

tical anti-UAV target tracking technique. In this paper, we

propose a real-time anti-distractor infrared UAV tracker for

infrared anti-UAV tasks, which employs a global real-time

perception mechanism to find candidate targets, then uti-

lizes spatial-temporal information to obtain the real UAV

target. Moreover, we integrate a channel feature refinement

module into multi-scale feature fusion to better enhance

the representation of the finer features of the UAV targets

channel-wisely, thus improving the tracking performance.

We test the performance of the proposed method and the

other competitive ones on the constructed UAV dataset from

ourselves, and eventually verify the validity of the proposed

method as the best performing method with a better balance

between tracking accuracy and speed.

1. Introduction

In recent years, unmanned aerial vehicles (UAVs) have

been widely used in both civil and military areas. With

the rapid development of low-altitude, slowly-moving and

small-scale UAVs [1], uncooperative UAV is posing many

*This work was supported in part by the National Natural Science

Foundation of China under Grant 41501371 and Grant 61971460, and in

part by the Open Research Fund of the National Key Laboratory of Sci-

ence and Technology on Multispectral Information Processing under Grant

6142113190103.
†Corresponding author

potential threats towards public safety as well as aerial secu-

rity [2, 3], urging the research on anti-UAV target tracking

technologies [4]. Meanwhile, the infrared imaging technol-

ogy, with its all-day imaging capability and various-weather

working flexibility, has been one of the most important tech-

nologies for constant surveillance of UAV targets at long-

range, and has already become a crucial complement to

other UAV tracking technologies like radar [5]. However,

there are several difficulties in the task of infrared anti-UAV

target tracking: (1) In long-distance imaging, the UAV tar-

gets are relatively small in scale and weak in visual features,

and thus it is difficult to extract discriminatory features [6–

8]; (2) Infrared UAV tracking can be easily affected by com-

plex backgrounds (e.g., trees, buildings, heavy cloud, and

strong clutter) and distractors (e.g., birds); (3) Tracking fail-

ures may occur as UAV target shifts its locations between

the two neighboring frames drastically due to its sudden

motion or the instability of the infrared imaging platform;

(4) In order to promote the practical application, anti-UAV

tasks usually require the tracking algorithms to possess a

real-time processing ability.

Up to now, many target tracking methods have been de-

veloped [9–29]. Target tracking algorithms locate the tar-

get largely by taking advantage of the spatial information of

the targets as well as the temporal correlation within the se-

quences [9–11]. Traditional target tracking algorithms, such

as KCF [12] and TLD [13], can poorly model the appear-

ance of the target in complex scenarios, thereby yielding

incorrect tracking results. As deep learning (DL) advances,

a considerable number of DL-based visual tracking algo-

rithms emerged, e.g., MDNet [14], SiamFC [15], CFNet

[16], and those DL-based algorithms can be generally di-

vided into two categories: in the first category, the deep
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learning network is utilized as a feature extractor embedded

into the traditional target tracking algorithm [17–19]; in the

second one, the network is trained end-to-end to directly

output the tracking results [14, 20, 21]. Recently, target

tracking algorithms based on the siamese network achieved

breakthroughs in improving the balance between the track-

ing precision and the tracking efficiency [15, 22–28], where

the network trains the similarity metric function offline with

image pairs. SiamFC [15] converted the tracking task into a

template matching task, which is simple and fast, but can-

not properly deal with scale or distance variances of the

UAV targets. SiamRPN [23] addressed this issue by intro-

ducing the Region Proposal Network (RPN) to its architec-

ture, but still suffers from comparatively low tracking pre-

cision due to its limited modeling ability of the backbone

network AlexNet [30]. Based on SiamRPN, SiamRPN++

[29] improved the tracking precision by adjusting the sam-

pling method of the positive samples in the network training

stage.

The aforementioned algorithms, classified as short-term

target tracking methods, whose performance are highly sub-

ject to their insufficient ability to discriminate appearance

model as well as search region limitation, and thus it is

difficult for them to recapture the target after tracking fail-

ure, whereas long-term target tracking methods have the ad-

vantage for anti-UAV tasks in these aspects. Off-the-shelf

long-term tracking algorithms can be coarsely divided into

two classes: one, exemplified by TLD, has created the clas-

sic paradigm of combining local tracking with global de-

tection; the other one is to search globally on the feeding

image while having the local tracking method as an auxil-

iary temporal constraint. The state-of-the-art long-term DL-

based target tracking algorithms follow these two tracking

patterns. For instance, SPLT [31] opts to use SiamRPN as its

basic tracker, and changes its searching strategy through the

skimming and the perusal modules. GlobalTrack [32] and

Siam R-CNN [33] leverage the successes from target detec-

tion, and incorporate them into Siamese network architec-

ture, making great progress in the field of long-term target

tracking. Nevertheless, when dealing with infrared UAV tar-

gets, some issues remain to be solved: (1) Current long-term

target tracking algorithms struggle to process infrared UAV

target images in a real-time fashion, thus being inapplica-

ble in practical scenarios. (2) UAV targets in long-distance

imaging are relatively tiny in scale, with barely any obvi-

ous features, making it extremely challenging to precisely

distinguish their features, especially when the background

contains trees, heavy cloud or strong clutter. (3) Birds and

other distractors may lead to unstable tracking performance.

Therefore, a tracking algorithm well-balanced between the

tracking precision and the tracking efficiency is urgently

needed for infrared anti-UAV target tracking tasks.

To solve the three problems above, inspired by Global-

Track and Siam R-CNN, we refer to the regression-based

single-stage target detector YOLOv3 [34]. We combine it

with siamese architecture, and come up with a real-time

anti-distractor infrared UAV tracking model named SiamY-

OLO, which obtains a better equilibrium between the per-

formance and the efficiency of tracking. Besides, since

channel attention mechanism can highlight the representa-

tive features channel-wisely [35], we integrate it into the

multi-scale feature fusion operation, which enhances the

model’s ability to refine finer features of UAV targets while

repressing non-UAV ones. Furthermore, from the spatial-

temporal perspective, we locate the real UAV target from its

tracklet by using the spatial-temporal information of candi-

date targets. This can discard distractors and thus improving

the model’s anti-distractor ability.

Our contributions are summarized as follows:

(1) We incorporate an efficient searching strategy based

on single stage detector into the siamese network architec-

ture, and construct a real-time global-search infrared UAV

tracking model.

(2) We integrate the channel feature refinement mod-

ule (CFRM) into multi-scale feature fusion, which enriches

the representation of the finer features of the UAV targets

channel-wisely.

(3) We introduce a spatial-temporal information-based

anti-distractor module, which further judges the similarity

between the distractors and the real target, and find it effec-

tive in improving model’s anti-distractor ability.

2. Proposed method

In this paper, we study the feasibility and the perfor-

mance of a basic idea towards anti-UAV task, which is to

globally search for candidate targets in the feeding frame

and to use spatial-temporal information to discard distrac-

tors. By following this tracking paradigm, especially in

long-term tracking scenarios, we can attain a better track-

ing performance by devising a more accurate candidate tar-

get generator and a more robust motion model.

Specifically, we propose a real-time anti-distractor in-

frared UAV tracking model (i.e. SiamYOLO), and the

overview of SiamYOLO is shown in Fig. 1. It mainly con-

sists of a real-time global tracking component and a spatial-

temporal information-based anti-distractor module, which

is featured by the following four points.

(1) Classic long-term tracking algorithms adopt local

tracking combined with the redetection after target disap-

pearance, but may easily miss the UAV target due to dis-

tractions and occlusions from the background as well as its

unpredictable flying route. Therefore, we use a global in-

stance search-based tracker to search the target on a global

scale, which overcomes the disadvantage from traditional

long-term tracking patterns.

(2) To achieve real-time tracking while the search region
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Figure 1: The overview of the proposed SiamYOLO. Our tracker combines YOLOv3 with the siamese network structure,

which can effectively improve the real-time performance, and the search area is the whole image to solve the situation

where tracking fails because of rapid movement of the UAV. The CFRM can enhance the features of UAV targets in complex

scenarios and improve the tracking precision. In addition, anti-distractor module utilizes the UAV trajectory information from

the space-temporal dimension, which improves the model’s ability to discriminate UAV targets from similar distractors.

enlarges, we construct a real-time multi-scale infrared UAV

tracker based on siamese network by referring to YOLOv3,

a single-stage detector well-known by its speed superiority.

(3) For better feature extraction of UAV target from

background and clutter, we embed CFRM in multi-scale

feature fusion, where it can enhance the UAV target features

while repressing the others, leading to the tracking localiza-

tion and the robustness improvements.

(4) We use the spatial-temporal clues of the UAV tar-

get with the Kalman filter [36] to predict the target location

based on current tracklets, compare the candidate targets

with that predicted location and eventually retain the real

UAV target as well as discarding the other ones. In contrast

to merely calculating visual feature similarity, this approach

is relatively more robust.

2.1. Real­time multi­scale infrared UAV tracking
component

To accomplish global real-time tracking, we refer to

YOLOv3 to establish our basic tracking component. Al-

though we are not the first one to incorporate target de-

tection mechanism into the target tracking task, our tracker

still has the edge compared to other competitive methods.

For instance, SiamFC and SiamRPN track targets located

around the center of the image, which enforces the net-

work to learn the location deviation from the image center,

thereby yielding poor tracking results. However, our tracker

is designed to track the target regardless of where the target

is on the image, breaking the limits of spatial invariance of

the network architecture. Additionally, our tracker can re-

track and rectify the tracking results on the spatial-temporal

dimension even if the tracking component tracks the dis-

tractors, showing its greater robustness than SiamRPN [23]

and GlobalTrack [32].

The feature extraction backbone network of our track-

ing component is DarkNet-53 [34], from which we use the

output feature maps of layer No. 12, 28, 44 and 53, and

group them as a pyramid structure representing the multi-

scale features of the input image. On one hand, the shallow

feature maps are coarser in semantics but finer in resolu-

tion, which is conducive to small infrared UAV target local-

ization; on the other hand, deep feature maps have bigger

receptive fields and abundant semantic information, which

benefit the UAV target classification.

The backbone network ϕ accepts the template image Z

and the search image X as its two inputs, extracts their fea-

tures and obtains the template features for the template im-

age fz i = ϕ(Z), i ∈ {1, 2, 3, 4}, and the search region

features fx i = ϕ(X), i ∈ {1, 2, 3, 4}, both of four multi-

scale feature branches, respectively. After that, we clip out

and calibrate those UAV target features fobj i of four dif-

ferent scales using region of interest (RoI) align [37] from

template features using

fobj i = R(bobj , fz i), (1)

where R represents the RoI align operation, bobj the

ground-truth bounding box, and i ∈ {1, 2, 3, 4}, fobj 1 ∈
R

512×3×3, fobj 2 ∈ R
256×6×6, fobj 3 ∈ R

128×12×12,

fobj 4 ∈ R
64×24×24. Subsequently, we achieve the similar-

ity between fobj i and fx i of the same scale by calculating

x̂i = ϕz(fobj i)⊗ fx i, (2)
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where ⊗ indicates convolution, ϕz converting fobj i to an

1×1 convolutional kernel over fx i. By that, x̂i and fx i

have the same size, which facilitates the follow-up classi-

fication and bounding box regression of the tracking layer.

The candidate target locations are obtained from the track-

ing layer and non-maximum suppression (NMS) based on

{x̂i}
4

i=1
.

2.2. Channel feature refinement module (CFRM)

The backbone network is able to extract features from the

feeding image and gradually stack them along the channel

dimension, so it is significantly crucial to fully utilize them

for target discrimination. To this end, we propose to use the

feature pyramid structure, fusing classification information

from the deep layer and the localization ones from the shal-

low layer. However, we find it is relatively inaccurate to use

the fused channel-wise features directly from the pyramid

structure as the UAV target becomes small and the back-

ground is complicated, leading to mis-tracking or tracking

failure. We conjecture that the feature pyramid structure has

submerged the original channel-wise UAV target features

with other redundant ones, and thus later operations strug-

gle to determine the most contributing features.

To address this problem, we introduce the channel

feature refinement module (CFRM) to our model. The

overview of this module is shown in Fig. 2, which we em-

bed at the fused feature maps from the feature pyramid

structure. Our intention is to weigh the features channel-

wisely by the contribution each channel-wise feature has to

the infrared UAV target tracking. From Fig. 2, the module

firstly takes an input image of size (C,H,W ) and obtains

the initial feature significance statistics of each channel

sized (C, 1, 1) using global average pooling (GAP). Then

the statistics are forwarded to a convolutional sub-network

to calculate (C, 1, 1) relational feature significance statis-

tics that are not channel-wisely mutually-exclusive. Even-

tually, those statistics are normalized by an upcoming sig-

moid function, and are multiplied onto the input feature map

channel-wisely.

By incorporating the CFRM, the model is characterized

by an automatic channel feature weighting mechanism. The

CFRM serves as a channel feature weighting branch that

calculates the feature priority in each channel of the fea-

ture map, hence highlighting the infrared UAV target and

suppressing other unimportant distracting features, and fur-

ther leading to effectively discarding distractors and re-

taining the real infrared UAV target, especially in complex

background and when the target is small, occluded or dis-

tracted. From this perspective, the model is capable of adap-

tively refining channel-wise features from feature submer-

gence, thereby yielding more precise and robust results in

the course of infrared UAV tracking, and ultimately improv-

ing the overall infrared UAV target tracking performance.
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Figure 2: The illustration of the proposed channel feature

refinement module (CFRM). The CFRM weighs the fea-

tures channel-wisely by the contribution each channel-wise

feature has to the infrared UAV target tracking.

2.3. Anti­distractor module based on spatial­
temporal information

After capturing template-similar candidate targets us-

ing tracking component, it is rather computation-costly and

time-consuming to discriminate two similar objects only

by their visual features. Therefore, we propose a spatial-

temporal information-based anti-distractor module over the

spatial and the temporal dimensions to suppress the interfer-

ence from distractors and background clutter. The main idea

of this module is to exclude outliers in respect of continu-

ous target movement, and the details are specified as follows

(c.f . Algorithm 1). We firstly initialize the Kalman filter us-

ing the location of the template frame templateBbox. Sub-

sequently, the tracking component generates candidate ob-

ject locations candidateBboxt at t frame, and the Kalman

filter predicts a target location based on the tracklets (line

1). After that, we calculate the distance between each can-

didate target and the predicted location, and select the one

candidate target that has the minimum distance as the track-

ing result bounding box Bbox (line 2). Then we compare

this distance with the threshold parameter τ : if the distance

is no greater than τ , the module will take the correspond-

ing bounding box as the final tracking result and correct the

Kalman filter by the bounding box Bbox (line 3-5), other-

wise the module believes no UAV target exists in the image

and returns a no-result descriptor (line 6-7). Empirically, we

set τ to 50.

3. Experiments

In this section, we conduct some experiments using the

proposed method along with some state-of-the-art long-

term tracking methods based on our anti-UAV infrared

dataset, and evaluate the performance of these methods. We

firstly introduce the composition of our dataset, then present

some implementation details of our experiments, and even-
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Algorithm 1 Sift candidate targets at frame t

Input:

candidateBboxt, τ

▷τ is set to 50
Output:

Bbox or Non exist

▷Non exist is a descriptor of no result bounding box

1: predictBbox ⇐ Kalman.predict();
2: Bbox = argmin ||canBboxi−predictBbox||2, where

canBboxi ∈ candidateBboxest;

3: if ||Bbox− predictBbox||2 ≤ τ then

4: Kalman.correct(Bbox);
5: return Bbox

6: else

7: return Non exist

8: end if

tually demonstrate the experiment results as well as the ex-

perimental analysis.

3.1. Dataset

We construct our Anti-UAV infrared dataset by collect-

ing infrared images of UAV with our infrared imaging de-

vices. In our perspective, the common difficulty of tracking

infrared UAV targets is that, apart from their regular pres-

ence in dynamically-motioned complex backgrounds (e.g.,

backgrounds with buildings and sky with heavy cloud, in

which the infrared UAV target could be easily submerged),

they often vary in shape and scale in the field of sight, hard

to be spotted especially when being small, and easy to be

mis-tracked due to distractors similar to the provided tem-

plate.

In this work, we gathered around 14,700 images and use

them as the training data. We then select another five se-

quences as our testing data to verify the chosen methods,

and these two data are intersection-free. The details of the

testing sequences are listed in Table 1, where Seq. 1 are the

long-distance UAV target infrared images, Seq. 2 includes

complex backgrounds such as strong cloud, electrical wires

and buildings, Seq. 3 has a distractor, Seq. 4 contains trees,

wires and cloud as the UAV target is extremely small in

sight, and Seq. 5 is mainly about complex tree background.

3.2. Implementation details

We first use the training dataset to train the proposed net-

work and tune a group of training hyperparameters for ob-

taining the best performance. The total training epochs, ini-

tial learning rate, momentum, weight decay, and batch size

are set to 500, 0.001, 0.9, 0.0005 and 36, respectively.

Since the proposed method belongs to the long-term

tracking category, we select TLD, SiamRPN-LT, SPLT, and

GlobalTrack as the comparison methods. We use the same

training dataset to train the comparison methods (except for

TLD), and the training hyperparameters are tuned meticu-

lously to the optimal. We conduct all the experiments on

a server with 2.40 GHz Intel Xeon Silver 4210R CPU and

three NVIDIA RTX3090 GPU cards. For software configu-

rations, we use PyTorch 1.8.1 with CUDA 11.1.

3.3. Experiment results

3.3.1 Evaluation metrics

To fairly compare different tracking methods, we use Preci-

sion (P ), Recall (R), F1 score (F1) [38] and tracking aver-

age accuracy (acc) [39] as our evaluation metrics. The for-

mer three metrics are commonly used in evaluating long-

term tracking algorithm, and are related to the deviation of

the tracking bounding box and the corresponding ground-

truth box. The last metric is associated to the IoU (Intersec-

tion over Union) of those two boxes. The definition of P ,

R, F1 and acc are given as follows.

P =
1

Np

Np
∑

f=1

M
∑

t=1

√

(

T
f,t
x −G

f,t
x

)

2

+
(

T
f,t
y −G

f,t
y

)

2

, (3)

R =
1

Ng

Np
∑

f=1

M
∑

t=1

√

(

T
f,t
x −G

f,t
x

)

2

+
(

T
f,t
y −G

f,t
y

)

2

, (4)

F1 =
2× P ×R

P +R
, (5)

acc =
1

T

T
∑

t=1

IoUt × 1[vt > 0] + pt × (1− 1[vt > 0]) . (6)

In the above formulas, Np denotes the number of frames

which the tracking method yields tracking results on, and

Ng the number of frames which have any ground-truth la-

bels. P and R are both averaged by Np and Ng . M is the

number of tracked result in one frame, usually set as 1 in

single-target tracking tasks. Subscripts x and y in Eq. 3

and Eq. 4 indicate the coordinates of tracked target T and

ground truth G, respectively.

In Eq. 6, IoUt defines the Intersection over Union

(IoU) between the tracked bounding box and its corre-

sponding ground-truth bounding box. Pt equals 1 when the

tracked bounding box is empty and 0 otherwise, and vt is

the ground-truth existence flag of the target. The Iverson

bracket indicator function 1[vt > 0] equals 1 when [vt > 0]
and 0 otherwise. Finally, acc is averaged over T frames.

3.3.2 Comparisons

The quantitative comparison results are shown in Table 2.

For better demonstration on method generalizability, we

calculate the average value of all 5 test sequences on each

evaluation metric. Red and blue represent the highest and

the second highest values, respectively, and it is evident that
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Sequence Frames Image size
UAV target

size (pixels)
Background details

UAV distance

(m)

Focal length

(mm)

Seq. 1 2966

640×512

50-90 Sky, wires 500-1000 300

Seq. 2 2087 100-120 Strong cloud, wires, buildings 200-400 75

Seq. 3 3379 80-120 Strong cloud, distractor 200-210 75

Seq. 4 2700 30-70 Strong cloud, wires, trees 300-350 75

Seq. 5 2582 100-200 Trees, telegraph pole 60-80 75

Table 1: The details of the five real test sequences for the infrared UAV target tracking, which contain species: frames, image

size, UAV target size, background details, UAV distance, and focal length.

Tracking

methods
P R F1 acc FPS

TLD 0.350 0.353 0.352 0.112 12.1

SiamRPN-LT 0.701 0.708 0.705 0.470 20.5

SPLT 0.433 0.434 0.471 0.284 8.3

GlobalTrack 0.925 0.926 0.915 0.619 9.0

Ours 0.976 0.976 0.976 0.703 37.1

Table 2: Quantitative tracking results for different long-term

tracking methods on the testing sequences of our infrared

UAV dataset. Red and blue represent the highest value and

the second highest value, respectively.

P-R curve F1 curve

Figure 3: P-R and F1 curves of five methods. A larger area

under the curve means that the method has a better tracking

performance.

the proposed method surpasses others in all aspects, and

that ours achieves the best scores in all metrics, where P ,

R, F1 and acc are 0.976, 0.976, 0.976 and 0.703, respec-

tively. Our method also has the best real-time tracking per-

formance with a tracking frames per second (FPS) of 37.1.

Compared with the second best method GlobalTrack, the

proposed method not only leads in tracking accuracy but

also is 4.12x faster. In addition, we also give the P-R and

F1 curves of five methods in Fig. 3. In general, a larger area

under the P–R and F1 curves indicates that the method has

a higher tracking accuracy. It can be seen that our method

shows optimal performance among five methods in Fig. 3.

We analyze the cause of these results: for TLD, we be-

lieve its insufficient modality for modeling small-scaled

UAV target in complex background leads to unimpressive

tracking performance; for SiamRPN-LT, it mainly suffers

from its backbone network AlexNet for its limited feature

extraction capability; for SPLT, due to its target recapture

strategy, it struggles to determine if any target exists in the

input image as the background becomes complicated, and

its enormous complexity jeopardizes its tracking speed; for

GlobalTrack, the adoption of two-stage tracking mechanism

increases the tracking precision but decreases the tracking

speed, which we presume is not compatible with the re-

quirements of practical applications. Above all, the pro-

posed method applies a simple but effective global percep-

tion mechanism, which helps obtain an acceptable balance

between tracking accuracy and speed.

The qualitative comparison is shown in Fig. 4. Each row

in Fig. 4 represents typical infrared tracking result images

for each sequence, where each purple box, blue box, green

box, orange box, and red box are the visual descriptors of

tracking result bounding boxes from TLD, SiamRPN-LT,

SPLT, GlobalTrack, and the proposed method, respectively.

Apparently, the proposed method obtains better tracking ef-

fect, whereas other methods are less satisfactory. We ana-

lyze the results according to the tracking difficulties as fol-

lows.

Complex background. From Seq. 2 to Seq. 5, the main

backgrounds are characterized by strong cloud and trees.

TLD, SiamRPN-LT and SPLT are inconsistent dealing with

complex backgrounds, and thus unable to further track ac-

curately. Although GlobalTrack employs a global percep-

tion mechanism to promptly correct false tracking, it is still

easy to mis-track due to limited visual similarity calcula-

tion, e.g., in Seq. 4(a), (c) and (d) GlobalTrack regards the

bird and the telephone pole as the UAV target. However,

benefiting from the CFRM and multi-scale structure, the

proposed method is able to extract target features precisely,

even when the target is extremely small as Seq. 4(c), (d) and

(e).

Distrctor objects. Seq. 3(a)-(c) represent a typical dis-

tractor scenario. For SPLT, it completely failed to track

throughout. As for TLD and GlobalTrack, it mis-track the
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Seq. 1

No exist

Seq. 2

Seq. 3

Seq. 4

Seq. 5

(a) (b) (c) (d) (e)

No exist

Figure 4: Qualitative tracking results. Each row displays 5 typical frames of one sequence from (a) to (e), with tracking results

from different tracking methods: TLD (purple box), SiamRPN-LT (blue box), SPLT (green box), GlobalTrack (orange box),

and the proposed method (red box), respectively. A method that performs better results in its corresponding bounding boxes

enclosing the UAV target better. Close-ups for each tracking result are placed at the corner of each image.

distractor when the real target leaves out of view. And

SiamRPN-LT believes where the target disappears still con-

tains the target. However, the proposed method is capable of

correctly discriminating between the real target and the dis-

tractor even if the real target disappears. This is attributable

to the strong ability of feature extraction of the proposed

method and the anti-distractor module. On one hand, it can

extract target features accurately and match with the tem-

plate precisely. On the other hand, it uses spatial-temporal

information to exclude distrators.

Target absence. In Seq. 2(e) and Seq. 3(b), the UAV tar-

get leaves out of the field of view, and the proposed method

is the only one that has successfully avoid false tracking,

while none of the others yield correct results. It comes

down to the global perception mechanism and the multi-

scale channel attention mechanism we use, which is able

to exactly perceive target absence without missed or false

targets.

3.4. Ablation study

We perform ablations focusing on the impact of the

CFRM and the anti-distractor module based on spatial-

temporal information. We use the same amount of training

and testing data and the same training criteria as discussed

in Section 3.2. The results of the ablation study are given in

Table 3. From the first and second rows of Table 3, we can

see that all the evaluation metrics increase except acc, this

is because the anti-distractor module can only eliminate the
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Anti-distractor module CFRM
Evaluation metrics

P R F1 acc

- - 0.960 0.962 0.962 0.683

✓ - 0.965 0.963 0.964 0.683

- ✓ 0.968 0.969 0.968 0.699

✓ ✓ 0.976 0.976 0.976 0.703

Table 3: Ablation studies for the proposed method. The first

two columns of the table specify different versions of the

proposed method.

distractor, and it is more useful for improving the perfor-

mance of P , R, and F1; while the acc is related to the IoU

between the tracked bounding box and ground-truth bound-

ing box, so there is less improvement about acc. From the

first and third rows of Table 3, we can observe that all the

evaluation metrics increase due to the introduction of the

CFRM module, and they improved more than that of only

using the anti-distractor module in the second row. It could

be properly explained by the CFRM highlighting the in-

frared UAV target from the complex background. As for the

last row, we can see that integrating the two modules can ef-

fectively improve tracking performance. This validates the

effectiveness of these two modules.

4. Conclusion

We propose a real-time anti-distractor infrared UAV

tracker with global perception mechanism and channel fea-

ture refinement module for the anti-UAV mission. We com-

bine YOLOv3 with the siamese network-based tracking

framework, which is conducive to fast and long-term track-

ing for UAV targets. We build the channel feature refine-

ment module through a multi-scale structure, which can

further enhance the ability to extract UAV target features.

And the anti-distractor module eliminates the influence of

false targets from the spatial-temporal dimension and en-

hance the robustness of the tracking algorithm. On the five

test sequences, our method achieves the best performance

compared with the state-of-the-art methods, and its optimal

real-time performance reaches 37.1 FPS.
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[38] A. Lukeźič, L. Č. Zajc, T. Vojı́ř, J. Matas, and M. Kristan,

“Performance evaluation methodology for long-term single-

object tracking,” IEEE transactions on cybernetics, pp. 1–14,

2020.

[39] N. Jiang, K. Wang, X. Peng, X. Yu, Q. Wang, J. Xing,

G. Li, J. Zhao, G. Guo, and Z. Han, “Anti-UAV: A

large multi-modal benchmark for UAV tracking,” CoRR,

vol. abs/2101.08466, 2021.

1248


