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Abstract

With the growing threat of unmanned aerial vehicle
(UAV) intrusion, anti-UAV techniques are becoming in-
creasingly demanding. Object tracking, especially in ther-
mal infrared (TIR) videos, though provides a promising
solution, struggles with challenges like small scale and
fast movement that commonly occur in anti-UAV scenar-
ios. To mitigate this, we propose a simple yet effective
spatio-temporal attention based Siamese network, dubbed
SiamSTA, to track UAV robustly by performing reliable
local tracking and wide-range re-detection alternatively.
Concretely, tracking is carried out by posing spatial and
temporal constraints on generating candidate proposals
within local neighborhoods, hence eliminating background
distractors to better perceive small targets. Complemen-
tarily, in case of target lost from local regions due to fast
movement, a three-stage re-detection mechanism is intro-
duced to re-detect targets from a global view by exploit-
ing valuable motion cues through a correlation filter based
on change detection. Finally, a state-aware switching pol-
icy is adopted to adaptively integrate local tracking and
global re-detection and take their complementary strengths
for robust tracking. Extensive experiments on the Ist and
2nd anti-UAV datasets well demonstrate the superiority
of SiamSTA over other competing counterparts. Notably,
SiamSTA is the foundation of the 1st-place winning entry in
the 2nd Anti-UAV Challenge.

1. Introduction

Recently, unmanned aerial vehicles (UAVs) technique
have received increasing attention for their wide range of
applications, such as aerial photography [26], video surveil-
lance [10, 11], and biological monitoring [4]. On the con-
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Figure 1. Qualitative comparisons of SiamSTA with SiamR-CNN
baseline on three challenging sequences, with large scale variation,
sever occlusion and dynamic background, respectively. Conven-
tional SiamR-CNN tends to drift from the target in the presence
of background distractors. In contrast, our SiamSTA is not prone
to drift, thanks to the novel spatio-temporal attention and change
detection mechanism, and thus demonstrates strong robustness in
various challenging tracking scenarios.

trary, the potential abuses of this technique could lead to sig-
nificant negative impacts on social society. Thus, anti-UAV
techniques are of great importance and in urgent need of
practical research, among which vision-based approaches
are more widely adopted due to their higher efficiency,
lower power consumption, and easier deployment.

With similar objective, visual object tracking, especially
in thermal infrared (TIR) mode, servers as a fundamental
step for anti-UAV task, immensely paving the way for sub-
sequent research. As is obvious, TIR tracking technique
is better suited to the low-light scenarios, thus catering to
all-weather requirements. However, tracking UAVs in TIR
video, compared to tracking objects in natural scenes, fur-
ther introduces significant challenges such as small object,
fast motion, and terminal background, etc. How to tackle
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these problems remain challenging and ill-solved.

Siamese-based algorithms play a dominant role in the
field of visual object tracking. SiamFC [I] first treats the
tracking task as a similarity matching problem between tar-
get template and the search region. Later on, numerous
improvements have been done in aspect of adding auxil-
iary branch [30, 12], digging deeper feature [18], improv-
ing embedding strategy [9], augmenting online mechanism
[5, 7, 13], etc. While considering our tracking object as
UAVs, which contain a wide range of fast motion and out-
of-view situations, we argue that, unlike the improvements
mentioned above, the global re-detection mechanism and
trajectory modeling could play critical roles in accurate
tracking.

SiamR-CNN [29] introduce global re-detection mecha-
nism into Siamese networks and achieve outstanding track-
ing performance, which is thus used as our baseline al-
gorithm. But on the other hand, as the target themselves
severely lack semantic features, continuous detection mech-
anism could be more likely to induce tracking drift, espe-
cially when the UAV targets are drowned in terminal back-
ground. At this time, it seems more appropriate to detect
targets in the local neighborhoods. Obviously, local de-
tection and global re-detection are the two opposite strate-
gies, yet two strategies that are needed in different situa-
tions. For this reason, we elaborately design a framework
adaptively switching these two strategies, achieving robust
tracking through performing reliable designed local track-
ing and wide-range re-detection alternatively.

In this paper, we propose a simple yet effective spatio-
temporal attention-based Siamese network, SiamSTA, to
track UAVs in thermal infrared (TIR) videos robustly.
SiamSTA follows the typical Siamese framework that con-
sists a template branch and a detection branch. The tem-
plate branch extracts features for the template target spec-
ified in the first frame, while the detection branch takes as
input a search image and selects target candidates from re-
dundant RPN proposals. To tackle the key challenges, i.e.,
small scale and fast movement, commonly faced in anti-
UAV tracking scenarios, SiamSTA integrates both a reli-
able local tracking and a wide-range global re-detection
mechanism, and takes their complementary advantages in
an alternative-performing fashion.

Specifically, to better perceive small targets that easily be
distracted by background clusters, the local tracking strat-
egy incorporates spatial and temporal constraints to limit
the position and aspect ratio of generated candidate pro-
posals in a local neighborhood, so as to suppress back-
ground distractors and locate the target accurately. Mean-
while, in case the target runs out of the local region due
to rapid movement, the global re-detection mechanism re-
detects the target by three stages: i) provide re-detections
of the first-frame template, ii) implement re-detections of

high-confidence predictions from previous frames, and iii)
adopt correlation filter based on change detection, short for
CDCEF, to exploit beneficial motion features to better locate
fast-moving target in a wide range. Finally, a switching pol-
icy is adopted to apply local tracking and global re-detection
adaptively depending on varying target states to make opti-
mal predictions, hence achieving robust tracking.

We test the proposed SiamSTA on the challenging UAV
infrared tracking datasets [ | 6]. Extensive experiments show
that our method is superior in handling the key challenges
faced with anti-UAV tracking, including but not limited to
small scale and fast movement, compared to other compet-
ing counterparts. In addition, SiamSTA serves as the foun-
dation of the Ist-place winning entry in the 2nd Anti-UAV
Challenge, further evidencing its robustness in real-world
scenarios.

To sum up, this paper makes the following contributions:

e A novel Siamese based tracker that integrates local
tracking and global re-detection mechanisms in a uni-
fied framework and perform them adaptively depend-
ing on varying target states.

e A spatio-temporal attention based local tracking strat-
egy to eliminate background clusters and better per-
ceive small targets.

e A three-stage global re-detection strategy to search for
fast-moving targets in a wide range by exploiting valu-
able motion cues.

e Our method establishes state-of-the-art performance in
the 2nd anti-UAV Challenge.

2. Related Works

In this section, we first review the development of
Siamese tracking networks and then introduce some repre-
sentative tracking algorithms in thermal infrared videos.

2.1. Siamese Network

Recently, the Siamese network based trackers have
gained a lot of attention for their great success in mul-
tiple video object tracking benchmarks and competitions.
Bertinetto et al. [I] propose the initial SiamFC tracker,
which formulates visual tracking as a cross-correlation
problem and expects to learn a similarity evaluation map
based fully-convolutional network in an end-to-end man-
ner. Li et al. [19] considerably enhance the tracking per-
formance of SiamFC by introducing a region proposal net-
work (RPN), which allows to estimate the target location,
size, and ratio with the enumeration of multiple anchors.
However, these trackers implement nearby search, which is
difficult to recapture target after it lost. Recently, Voigtlaen-
der et al. [29] unleash the full power of global searching by
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Figure 2. Overall architecture of SiamSTA. It consists of a Siamese backbone that extracts deep features from the template and the search
image, followed by a three-stage re-detector that first re-detects the first-frame template, then re-locates historical predictions from previous
frames, and finally fixes potential tracking failures using a change detection based CF. The symbol €P indicates an ensemble classifier that
conditionally switches between local track and global detection to make optimal decisions upon predictions from the three-stage re-detector.

a two-stage Siamese re-detection architecture, which makes
full use of both the first-frame template and previous-frame
predictions for the optimal decision. [29] not only solves
the problem of update, but also improves the probability
of re-detection after target lost. However, global searching
also introduces too much distractors which hurts the perfor-
mance of tracking small target in complex background.

2.2. TIR Tracking

Recently, more attentions have been paid to TIR track-
ing for the rapidly development of infrared sensors in res-
olution and quality. Due to the poor semantic information
in TIR image, how to extract effective features is crucial in
distinguishing the target from background. [24, 8] compute
motion features by thresholding the absolute difference be-
tween the current and the previous frame in pixel-wise as an
extra feature channel. [32] propose structural learning on
dense samples around the object. Their tracker uses edge
and HOG features which is suitable for UAV tracking. With
the development of deep learning, convolutional neural net-
works have shown competitive performance compared to
handcrafted feature. However, due to the limited seman-
tic information in TIR images, traditional RGB backbones
performs poorly, and a number of works [31, 21, 22] start
to design networks specialized for TIR images. Different to
previous works, we first extract motion feature using Gaus-
sian mixed model, then we extract the HOG feature of can-
didate region to train a CF tracker to assist our SiamSTA,
thus better perceiving small targets in TIR images.

3. Method

In this section, we first briefly review SiamR-CNN, and
then elaborate on the design of our proposed SiamR-CNN
that consists of spatio-temporal constraints, global motion
estimation and change detection based CFs. Next, the on-

line tracking and updating strategy integrating both local
search and global detection is further presented.

3.1. Revisiting SiamR-CNN

SiamR-CNN [29] is a two-stage Siamese tracking al-
gorithm with elaborate re-detection mechanism. Its net-
work architecture is sequentially composed of three mod-
ules: 1) A backbone feature extraction module that con-
tains a template branch to extract ground truth feature in
target region and a test branch to prepare possible RPN
proposals in search region; 2) A re-detection head module
that performs a two-stage re-detection to learns a similar-
ity evaluation using the initial template and previous pre-
dictions; 3) An online dynamic programming module that
implicitly tracks both the object of interest and potential
similar-looking distractors based on spatio-temporal cues.
In the vital third module, SiamR-CNN preserves plenty of
discontinuous trajectories for making the most comprehen-
sive decisions. Suppose one tracking trajectory consists of
N non-overlapping sub-trajectories, A = (a1, az,...,an),
each sub-trajectory a;,Vi € {1,2,..,N —1} satisfies
end(a;) < start(a;1+1), where start and end denote the
start and end times of a sub-trajectory, respectively. The
overall measuring score of such trajectory is calculated by,

N N—1
score(A) = Z sim_eva(a;) + Z wiloc_eva(ai, a;y1),
i=1 i=1

(1
where the similarity evaluation sim_eva and location con-
sistency evaluation [oc_eva are defined as following,

end(a;)

>

t=start(a;)

sim_eva(a;) = [w,sim(a; ¢, gt)

2

+ (1 — wr)sim(ai7t, ai,start)]?
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loc_eva(ai, aiy1) = — |end_box(a;) — start_box(ai+1)|; ,

3)
here w; and w, are the complementary ratios. a;; de-
notes the detection of sub-trajectory a; at time ¢, and
;i stqrt Mmeans the first detection of a;. sim(a; ¢, gt) and
sim(a; i, @i, stare) return the re-detection confidence of a; ¢
using the first-frame ground truth reference and the initial
detection of the current sub-trajectory, respectively. As pre-
sented in Eq. 3, the location consistency evaluation between
two adjacent sub-trajectory is computed using the negative
L+ norm of the difference between the last bounding box of
a; and the first bounding box of a; ;.

SiamR-CNN backs up a lot of trajectories to ensure the
success rate of re-detection. But on the other hand, track-
ing performance could be directly degraded right by the so-
phisticated search mechanism, due to the severely lack of
semantic target features and complex terminal background.
To address such issue, finer exploitation of spatio-temporal
prior knowledge is a feasible solution.

3.2. SiamSTA Framework

Inspired by SiamR-CNN, we build our SiamSTA based
on a three-stage re-detection mechanism that first retains
template information in the initial frame, then integrates
predictive information from historical frames, and finally
lifts discriminative capability to perceive tiny objects with
a change detection based CF, as shown in Figure 2. To deal
with background distractors, several practical guidelines us-
ing spatio-temporal attention are introduced to regulate can-
didate proposals. We further incorporate a collaborative
strategy that combines local search and global detection to
facilitate online tracking.

3.2.1 Spatio-Temporal Constraints

UAV targets in practical TIR tracking are typically very
small and without salient texture or fixed shapes, making
them extremely hard to be distinguished. To alleviate this,
we introduce a novel spatio-temporal constraint. From the
spatio perspective, considering the fact that dramatic loca-
tion change of the target is less likely to appear in two adja-
cent frames captured by a long-range static camera, we ar-
gue that reliable tracking results can be obtained by search-
ing the target within local neighborhoods rather than by de-
tecting it globally. From the temporal perspective, we in-
troduce a memory bank to store valuable historical states of
the targets, i.e. target size and aspect ratio, learned from all
previous frames to better distinguish potential distractors.
Concretely, we record the historical minimum and max-
imum size and aspect ratio of the target appeared in all pre-
vious frames, denoted as (Syin, Smaz) and (Rmin, Rmaz)s

respectively, to indicate its range of potential scale varia-
tion. We initialize Sy.in = Smae = S, Rmin = Rmaz = R
with the size S and aspect ratio R of the ground-truth tar-
get bounding box specified in the first frame. For an ar-
bitrary frame ¢, we specify a local neighborhood around
the previous target center as the search region where the
target is most likely to appear. Only if a high-confidence
proposal has been found within the specified search region,
whose size S, and aspect ratio R, meets the constrain below
S¢ € [0.8%Spmin, 1.2%Smaz)s Re € [0.8%Ronin, 1.2 Rinazl,
we regard the detection result to be reliable and the trajec-
tory to be continuous. We then update the stored target state:

Smin = mzn(smzna SC)? Smaz = maw(smaxa Sc)a (4)

Rnw’n = mzn(Rmin» Rc)» Rmaz = max(Rmax; Rc) (5)

The above process lasts until the end of a trajectory. We
define the trusted trajectory as C = (¢, ¢a, ..., 1), and
compute the evaluation score of a candidate proposal cc as,

score(cc) = wysim(cc, gt)
1L
+ (1 —wr) 7 > sim(ce, ¢istart) + wiiou(ce, e end),

i=1
(6)

where iou(cc, ¢, enq) is the intersection over union (IoU) of
bbox(cc) and bbox(cr, enq). Thanks to the spatio-temporal
constraints, the number of remaining candidate proposals
can be very small, or even unique, which greatly alleviates
the interference of distractors.

However, if the target is temporarily lost, the local search
strategy may cause the tracker to fail completely. To mit-
igate the effect of target loss, especially severe occlusion
or out-of-view, global re-detection techniques associated
with a mutual compensation mechanism that conditionally
switches between local tracking and global search is essen-
tial, as detailed below.

3.2.2 Global Motion Estimation

Targets in anti-UAV tracking are typically very small with
little semantic information, which easily leads to early
tracking failures. Fortunately, background scenes in such
tracking scenario commonly remain fixed throughout an en-
tire sequence, which provides feasibility to employ motion
features to re-capture lost targets.

Motivated by this, we establish a global motion estima-
tion model to reveal dynamic change of background scenes.
To be specific, we extract the ShiTomasi [28] key points
from background regions and track these points to estimate
the motion of background scenes. Let I(x,y) denotes the
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Figure 3. Motion features of CDCF. When background is static at
frame #0007, the motion feature is quite distinct, which is suit-
able for CDCF to perceive target, even the target is tiny and with
little semantic information. When dynamic background occurs at
frame #0013, the moving clouds in the scene will cause a heavy
disturbance in discerning the real target.

intensity value of pixel (x,y) on input image /. Key points
should have a significant gradient change in gray values,
such as corner points. Let [u, v] be the local displacement,
and the gradient change vector in the local neighborhood
can be calculated as,

E(u,v) =Y 7@, y)l(z+uy+v) - I(z,y), )

z,Y

where 7(x,y) is a Gaussian window function. Eq. 7 can be
further simplified as,

Blu,0) = uor 1], ®

where M is a 2 X 2 matrix:
ER
M = w(x,y){ ; 121,}7 )
; 11, Iy

where I, and I, represent the derivatives of image I in the
horizontal and vertical direction, respectively. We can ob-
tain two eigenvalues Ay, Ao of M, and the key point re-
sponse function is defined as,

G =X X — k(A1 4+ M\2)2 (10)

Point (z,y) is consider as a key point if G > 0, more
details can be found in [28].

We control the number of key points in the range of 5 to
100. Then Lucas-Kanade (L-K) optical flow algorithm [17]
is applied to track these key points, with forward-backward
(F-B) error [17] employed to evaluate the matching accu-
racy of key points between two consecutive frames. Key

points with F-B error less than a preset threshold are re-
garded as successful tracking points. If the average spatial
displacement of all successful tracking points is less than
0.5 pixel across 5 consecutive frames, we consider the back-
ground scene is static without camera jitters.

3.2.3 Change Detection based CFs

Based on the accurate motion estimation of background, we
further develop a change detection based correlation filter
(CDCF) tracker to take advantage of target’s motion fea-
tures. When the background is static, each pixel is nor-
mally distributed in the time domain, pixels within a certain
threshold are judged as background and vice versa as mov-
ing targets. Based on this assumption, we build a Gaussian
mixed model (GMM) to capture moving targets. Denote
X as the intensity value of pixel (z,y) in frame ¢, and the
GMM model is computed as,

K
P(Xy) = kg #0( X, i, Si), (11)
=1

where K is the number of Gaussian components, x; ; is the
weight of component ¢ in frame ¢, y; ; and ¥, ; are the mean
and variance matrix of component ¢, respectively. Gaussian
probability density function 1( Xy, p; ¢, X; ¢) is defined as,

n(Xe, i, Xit) = — 3 T e~ (Xemu)TET (X empe),
(2m)= |3
(12)
For a pixel value, X, it will be checked from the existing
K Gaussian components, until a match is found. The match
is defined as success if the pixel value X} is within 2.5 times
the standard deviations of a component. Then, we update

GMM model as,
Kit = (1 —a)Kit—1 + aQiy, (13)

where « is the learning rate, (J; ; equals 1 when the match-
ing is successful and O otherwise. We keep the parame-
ters 1, 2 for unmatched components unchanged, and update
matched component as,

pe = (1= p)p—1 + pXz, (14)

S = (1= p) i1+ p(Xe — ) (X — ), (15)
where p is learning rate:

p = an(X¢|pr, or)- (16)

If X does not match any of the K components, we clas-
sify the pixel as motion target. Finally, we obtain accurate
foreground candidate regions, as shown in Figure 3. How-
ever, candidate regions in adjacent frames are not continu-
ous, and thus not suitable for single target tracking. So, we
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introduce correlation filter (CF) to assist GMM model. We
train a CF tracker using the initial frame and perform cor-
relation operation to track the target in subsequent frames.
When the background is static, we use motion feature to lo-
cate target, otherwise, we use the CF tracker to search for
the target in local regions where the target last appears.

3.3. Online Tracking and Updating

As aforementioned, local tracking equipped with spatial-
temporal constraints helps to locate small targets with lim-
ited semantic information. Global re-detection, instead,
could be more reliable when faced with challenges like
occlusion and out-of-view in long-term tracking. Hence,
learn to adaptively switch between local track and global
re-detection to their complementary strength is critical.

Suppose ¢; = [, starts Ci,start+1s -+, Ci,t—1) 18 @ contin-
uous sub-trajectory from frame start(c;), and ¢; ;1 is a
trustworthy tracking result in frame ¢ — 1. For frame ¢, pre-
vious trusted predictions in [c1, ¢a, ..., ¢;| are fed into the
second stage of the re-detector. For static background, only
proposals with an overlap greater than 0.01 with the bound-
ing box in ¢; ;1 are considered as target candidates. If the
re-detector finds a proposal with a confidence score over
0.5, local tracking is believed to be valid, and its corre-
sponding result ¢; ; is added to ¢;. Otherwise, local tracking
is paused, indicating the end of this continuous trajectory.

Starting from the failed frame, global re-detection is per-
formed. Like SiamR-CNN, we also track potential similar-
looking distractors and record their trajectories A. Then
we introduce the results of CDCF to guide the global re-
detection. We compare the bounding box size S¢cp pre-
dicted by CDCF with the target size of previous frames.
When the background is static and Scp € [Simin, Smaz)s
we judge CDCF’s results to be credible, initialize a new
sub-trajectory c;y1, and restart local tracking. Otherwise,
we treat it as a reference result to facilitate selecting the
suitable proposal as output for the current frame. When the
predicted bounding box of CDCF has a large overlap with
a high-confidence proposal, we consider the target has been
successfully recaptured and initialize a new sub-trajectory
ci+1, then restart local tracking. If there is no overlap be-
tween CDCF and high-confidence proposals, we choose the
proposal with highest score as current frame output. For dy-
namic background, the continuous sub-trajectory is termi-
nated directly, and the tracker relies on global re-detection
to estimate the position and size of the target.

4. Experiments

4.1. Experimental Setup

Datasets. We use the 1st and 2nd Anti-UAV test-dev
datasets to evaluate the proposed approach. The former con-
tains 100 high quality IR videos and 100 RGB videos, span-

ning multiple occurrences of multi-scale UAVs with com-
plex backgrounds such as clouds, urban buildings, etc. The
latter abandons RGB videos and extends the IR data of the
former to 140 videos. Furthermore, the 2nd test-dev incor-
porates more complex scenarios such as sea, forest, moun-
tain, and more challenging issues such as tiny objects, weak
targets, which makes the tracker easily overwhelmed in the
clustered backgrounds.

Evaluation metrics. We use three widely-used metrics to
evaluate, including precision plot, success rate plot and av-
erage overlap accuracy. The first metric computes the per-
centages of frames in which the estimated target location
is within a given distance threshold to the ground-truth.
The second one measures the fractions of successful frames
where the Intersection over Union (IoU) between the pre-
dicted bounding box and ground-truth is greater than a cer-
tain threshold varied from O to 1. The last one is the eval-
uation metric given in the Anti-UAV benchmark [16]. It
calculates the mean IOU of all videos. In this experiment,
an error threshold of 20 pixels are adopted in the precision
plot, and the area under the curve (AUC) of the success plot
is used to evaluate tracking performance.

Network parameters. Our SiamSTA is built upon SiamR-
CNN network, and we also borrow its trained weights. The
max corners, min distance and block size for computing
the background key points are set to 500, 7 and 7 respec-
tively. For optical flow, we utilize a two-level pyramid with
a 15 x 15 sliding window. The F-B error threshold for se-
lecting the correct key points is set to 1.0. If the average
moving distance of these selected key points for 5 consec-
utive frames is less than 0.5, we consider the background
to be static. A 5 X 5 median filter is used to remove the
tiny foreground noises in the change detection. The weight
w,., for the first stage of re-detection is set to 0.1, hence the
weight for the second re-detection stage is 0.9. The location
score weight w; is set to 5.5. In the global detection phase,
the settings are consistent with SiamR-CNN. As for CDCEF,
we use ARCF [15] as CF tracker.

4.2. Quantitative Evaluation

We compare our SiamSTA with some of the currently
best performing deep trackers, i.e. SiamRCNN [29],
SiamRPN++ [ 18], Globaltrack [14], PrDiMP [ 7], DiMP [2],
ATOM [5], KYS [3], SiamRPN [19] and other recent CF
trackers including AutoTrack [23], ECO [6], ARCF [15],
STRCEF [20], KCF [27], CSRDCF [25]. For a fair com-
parison, these compared algorithms are reproduced on our
platform with their default parameter settings maintained.

The results of the precision plots and success plots which
compare the trackers mentioned above on Ist and 2nd Anti-
UAV test-dev datasets are shown in Figure 4. It is obvi-
ously that the proposed SiamSTA can perform better than
the other trackers. Specifically, on the precision plot of
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Figure 4. Precision and success plots of our SiamSTA and state-of-the-art trackers on the 1st and 2nd Anti-UAV test-dev datasets. We
report the mean precision and AUC scores for each tracker. Best viewed in color.

Table 1. Comparison of average tracking accuracy (%) of our SiamSTA and other state-of-the-art trackers.

highlighted in red, green and blue, respectively.

The top three results are

DiMP-50 PrDiMP Globaltrack SiamR-CNN  SiamSTA (Ours)

| SiamRPN++ SiamRPN ATOM  KYS
st test-dev 4425 4682 5672 56.23
2nd test-dev 41.02 4223 5032 5122

58.14
52.41

62.45
55.52

72.04
62.15

72.95
64.29

74.46
67.30

the 2nd test-dev, our approach provides a mean precision
score of 88.8%, outperforming the second best performing
tracker, SiamR-CNN, 83.7%, by more than 5%, which is a
significant improvement. Notably, the performance gains of
our algorithm in the latest dataset are more impressive. This
is mainly because the 2nd test-dev introduce many small
and weak target videos, while our spatio-temporal attention
and change detection are exactly designed to address such
challenges, thus leading to a higher accuracy.

Table 1 shows the overall performance of top 9 trackers
in terms of the average overlap accuracy metric. Our tracker
wins the first place by scoring 74.46% on the 1st dataset and
67.30% on the 2nd dataset. Moreover, our method exhibits
a considerable progress over the original SiamR-CNN, es-
pecially in the 2nd test-dev, our SiamSTA obtains a gain of
4.68% in score. Moreover, our method shows a significant
improvement over the original SiamR-CNN, especially in
the 2nd test-dev, our SiamSTA obtained a score of 4.68%.
This once again demonstrates that our spatio-temporal at-
tention is quite effective for capturing small targets.

4.3. Qualitative Evaluation

Figure 5 shows qualitative comparisons between
SiamSTA and other state-of-the-art trackers. SiamSTA
shows clear superiority over other trackers in handing chal-
lenging tracking situations, including scale variation, out-
of-view, occlusion, tiny target and clustered background.
Thanks to the proposed spatio-temporal attention mecha-
nism, our SiamSTA can well track tiny targets with com-
plex background (i.e. forest) and recapture targets quickly
upon lost (i.e. out-of-view and full occlusion). In addi-
tion, SiamSTA can obtain favorable motion features based
on change detection to track tiny targets confidently.

4.4. Ablation Study

We perform an ablation study to demonstrate the impact
of each component in the proposed SiamSTA method on
2nd Anti-UAV test-dev. We adopt average tracking accu-
racy defined in Anti-UAV as the evaluation criteria. The
baseline method is the original SiamR-CNN method.
Effects of Lost Estimation. We regard the target state as
lost when the confidence score falls below 0. As shown
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Figure 5. Qualitative comparison of SiamSTA with other state-of-the-art trackers in handling different challenging scenarios.

Table 2. Ablation studies on components of SiamSTA. Lost: lost
estimation, STA: spatio-temporal attention, CD: change detection.

| Lost STA  CD | Score(%)

64.29

v 64.70

Baseline v 65.61
v 66.44

v v v 67.30

ARCF | v v | 5649

in Table 2, integrating lost estimation brings (0.71)% point
improvement over the SiamR-CNN baseline, validating this
simple yet effective operation.

Effects of Spatio-Temporal Attention. We create a variant
which adds spatio-temporal attention (STA) to baseline. Re-
sult in Table 2 shows the effectiveness of Spatio-Temporal
Attention (STA) that leads to 2.05% improvement on av-
erage tracking accuracy. This can be attributed to the pre-
cise switch between global re-detection and nearby track-
ing, which suppresses the disturbance of cluttered back-
ground and thus improves the tracking robust.

Effects of Change Detection. We further explore the effec-
tiveness of Change detection (CD). Through purely adding
CD to the baseline, the tracking result achieves a perfor-
mance lift of 2.15%(from 64.29% to 66.44%), the best
among all three components, which can be mainly credited
to the precise perception ability of tiny and weak target.

To further demonstrate the universality of our approach,
we incorporate CD and STA into CF tracker [15], which
achieves a score of 56.49%, outperforming most deep track-
ers listed in Table 1. This indicates that motion feature used
in CDCEF is generic and applicable for various TIR trackers.

5. Conclusion

In this paper, we propose a novel algorithm called

SiamSTA, which fully exploits the prior knowledge to in-
spire the current tracker to make optimal decisions. We
first employ a spatio-temporal attention mechanism to limit
the candidate proposals focus on the validate regions and
reduce the interference caused by background distractors.
Then we introduce a CDCF re-detection submodule into
SiamSTA to combat the challenges of target occlusion and
out of view. Finally, we achieve high-precision online track-
ing and high-confidence feedback updates by combining lo-
cal search and global detection. Extensive experiments on
Ist & 2nd Anti-UAV have demonstrated the effectiveness
of our SiamSTA, and in future work we will delve into im-
proving the performance of SiamSTA by training on the IR
data of the Anti-UAV benchmarks.
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