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Abstract

With complex camera and object movement, the tracked
object often suffers camera motion, out of view, dramatic
scale variation, etc., which severely influence tracking per-
formance. Due to the fast speed and tiny size of unmanned
aerial vehicles(UAV), it is crucial to design a robust frame-
work for tracking UAVs. This paper carefully designs a
unified framework, including a local tracker, camera mo-
tion estimation module, bounding box refinement module,
re-detection module and model updater. The camera motion
estimation module achieves motion compensation for the lo-
cal tracker. Then, the bounding box refinement module aims
to measure an accurate bounding box. If the target is miss-
ing, we switch to the re-detection module to re-localize the
target when it reappears. We also adopt a model updater to
control the updating process and filter out unreliable sam-
ples. Numerous experimental results on 9 visual/thermal
datasets show the effectiveness and generalization of our
framework.

1. Introduction

Object tracking is an important task in computer vision,
which has drawn the great attention of many researchers in
the past few decades. Given one video sequence and the
initial state of an arbitrary target, object tracking aims to
predict the position and scale of the target in each frame.
Tracking has made great progress recently, where many
outstanding trackers are proposed. SuperDiMP combines
the bounding-box regressor of PrDiMP [10] with the stan-
dard classifier of DiMP [3] equipping tracker with better ro-
bustness and scale estimation. LTMU [7] proposed a meta
updater to control the update of online-updated short-term
trackers. It avoids polluting useful appearance information
in long-term videos with frequent target disappearance. JM-

*Equal contribution. Author ordering determined by names.
†Corresponding author.

Ground Truth Ours  SuperDiMP

Figure 1. Examples of our framework on three different tracking
benchmarks. ’Ours’ means our framework, ’SuperDiMP’ means
competing method. The frames of three rows are from LSOTB-
TIR [29], LaSOT [12] and OTB [41] benchmarks.

MAC [46] jointly models motion and appearance modules
to overcome the sudden shaking in videos. All the above
methods try to overcome the challenges in video sequences
from different aspects.

Motivated by the above analysis, we find that the tracked
objects often suffer various challenges such as camera mo-
tion, out of view, dramatic scale variation, especially for
tracking UAVs. In this work, we design a unified frame-
work shown in Figure2 to handle the above problems. To
achieve this goal, we firstly design a camera motion es-
timation module, which reset the search region of the lo-
cal tracker to solve the sudden camera motion. Secondly,
we adopt a bounding box refinement module, which refines
the local tracker’s outputs, to estimate the target scale effi-
ciently. Then, we introduce a re-detection module into the
unified object tracking framework to settle the problem of
the target disappearance. Finally, we adopt a model updater
to control the tracker’s online update. Numerous experi-
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ments on nine different benchmarks illustrate the effective-
ness and generalization of our framework.

The main contributions of this work can be summarized
as follows:

• We ensemble the local tracker, the camera motion esti-
mation module, the bounding box refinement module,
the re-detection module and the model updater into
a unified framework to solve camera motion, out-of-
view and dramatic scale variation in complicated sce-
narios.

• Numerous experiments on ICCV2021 Anti-UAV
Challenge test-dev subset, LSOTB-TIR, OTB2015,
GOT-10k, TrackingNet, NFS, UAV123, LaSOT,
VOT2019LT benchmarks show the effectiveness of the
proposed framework.

2. Related Work
2.1. Single Object Tracking

Although the traditional correlation filter object track-
ing methods [4, 16, 17, 11] were widely used in previous
tracking frameworks, most of them were not very accu-
rate comparatively due to the lack of robust feature repre-
sentation. Recent methods based on Siamese network had
drawn great attention in the domain of single object track-
ing. The pioneering work, namely SiamFC [2], exposed the
advantage of the Siamese network by introducing similar-
ity learning into tracking. The Siamese network trained a
network with pairs comprising exemplar images and search
images in the offline phase. During tracking, the features
extracted from the template image and the search image
were correlated to compute the similarity score map. Many
improvements based on Siamese network had been made.
SiamRPN [24] introduced the Region Proposal Network
(RPN) [36] into Siamese network to obtain accurate bound-
ing boxes. DaSiamRPN [48] introduced a training sampling
strategy and designed a distractor-aware module to improve
the discrimination power of SiamRPN. SiamRPN++ [23]
proposed a deeper Siamese tracker by applying an effective
spatial-aware sampling strategy. SiamFC++ [42] proposed
an anchor-free tracker with significant performance gain
since the traditional tracking method based on pre-defined
anchors seriously suffered from the hyperparameters. A key
limitation of Siamese network was ignoring the background
appearance information during inference. DiMP [3] ex-
ploited the appearance information of both target and back-
ground by introducing a discriminative tracking architec-
ture. PrDiMP [10] modeled the label noises and introduced
a probabilistic representation into DiMP. SuperDiMP intro-
duced the PrDiMP bounding-box regressor into DiMP to
obtain a more reliable classification and regression output.

Unlike general tracking, various special challenges (e.g.,
severe occlusion, fast motion) are involved in tracking

UAVs [5]. The study of tracking UAVs advanced rapidly
in recent years. Recent works [39, 40, 22, 5] attempted
to improve the tracking framework according to the char-
acteristics of UAVs. S-Siam [39] aimed to deal with the
problem of small targets and fast motion by adjusting the
camera adaptively. A framework [40] proposed a feature at-
tention module and a target searching strategy for tracking
drones. ADTrack [22] proposed an anti-dark UAV tracker
by integrating a low-light image enhancer into a CF-based
tracker. [5] proposed a real-time attentional Siamese tracker
for tracking UAVs. Furthermore, various benchmarks (e.g.,
AntiUAV 1, UAVDark [22]) for tracking UAVs have been
published.

2.2. Thermal infrared object tracking

Comparing with cameras for the visual spectrum, cam-
eras for thermal are capable of operating complex situa-
tions including darkness, shadow and illumination changes
[13]. Thus, tracking based on thermal infrared (TIR) is also
important when the visual spectrum information is miss-
ing. Different from ray-scale visual imagery tracking, the
blooming and lower resolution problems are much more
frequent in thermal infrared tracking [1]. HSSNet [26] pro-
poses a hierarchical spatial-aware siamese network for TIR
tracking. MLSSNet [28] develops a multi-level similarity
model for handling distractors in TIR tracking. MMNet
[27] proposes a multi-task matching framework that inte-
grates the TIR-specific features and the fine-grained cor-
relation features. ABCD [1] proposed an adaptive object
region and background weighted scaled channel coded dis-
tribution field method for short-term single-object thermal
infrared tracking. Recently, a robust and real-time tracking
algorithm for infrared drones is proposed by [40]. Further-
more, many large-scale benchmarks (e.g., VOT-TIR2015
[13], LSOTB-TIR [29]) for thermal infrared tracking have
been published.

2.3. Re-Detection in Visual Tracking

Due to the common problem of target frequent disap-
pearances and reappearances, the re-detection module is
widely used in long-term tracking frameworks. The pio-
neering work Tracking-Learning-Detection (TLD) [20] was
designed as two parts: a local tracker and a re-detection
module. By exploiting the core idea of re-detection,
some further improvements [32, 47, 44, 18, 7] were made.
MBMD [47] proposed a SiamPRN-based long-term frame-
work, which re-detect the target with a sliding window
when the verification network distrusted the candidates gen-
erated by the local tracker. SPLT [44] used a skimming
module to choose possible regions among many sliding
windows so that the re-detection module could achieve a
good speed-accuracy trade-off. Global Track [18], which

1Provided by https://anti-uav.github.io/ .
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was designed based on the two-stage detector, was devel-
oped to perform pure global instance searching without any
trajectory refinement. LTMU [7] proposed a meta-updater
module and designed a long-term framework that applied
the Global Track as the re-detection module.

2.4. Camera Motion Model

Since the development of the neural network, the field
of object tracking has grown rapidly. However, camera mo-
tion estimation has not been paid enough attention in re-
cent researches. Kernel-based object tracking [6] proposed
a new approach for target representation and localization. It
successfully coped with camera motion situations by inte-
grating with motion filters and data association techniques.
A camera motion estimation method [25] is proposed for
drone tracking by applying geometric transformation based
on background SURF feature points. The camera motion
estimation is used to guide the search area for tracking
roughly, and it is very effective for handling fast camera mo-
tion in drone tracking. JMMAC [46] proposed an RGB-T
tracking framework based on ECO [8]. It comprehensively
considered the result from ECO tracker and the result pre-
dicted by target and camera motion cues to give the final
result. TrackletNet Tracker (TNT) [37] compensated cam-
era movement between adjacent frames by proposing the
EG-IOU module based on Epipolar Geometry.

3. Method
In this section, we describe the proposed framework for

tracking. Our framework consists of five modules: Cam-
era Motion Estimation (CME) module, Local Tracker (LT),
Bounding Box Refinement (BBR) module, Re-Detection
(RD), Model Updater (MU). The SuperDiMP 2 method is
adopted as the local tracker due to its effectiveness. The
overall framework is presented in Figure 2.

The CME models camera movement in each frame and
gives a reliable search region by comparing the current
frame with the reference frame selected from the past.
The local tracker exports the target bounding box from the
search region. The BBR takes the result of the local tracker
as input and outputs a more accurate bounding box. The RD
module detects the target when the local tracker misses the
tracked object. Additionally, we use the MU module to con-
trol the update of trackers. Our framework can improve the
robustness of the base tracker under complicated conditions
in various modalities and scenes by such careful design.

3.1. Camera Motion Estimation Module

As for sudden camera motion, it is difficult to predict the
location of the target. Therefore, we propose the CME to

2The pre-trained model of SuperDiMP is provided by
https://github.com/visionml/pytracking.

reset the search region of the local tracker based on image
registration, where the search region of the reference frame
is mapped into the current frame. Since the modeling of 3D
solid is difficult, we assume the depth difference can be ig-
nored and all objects are in a 2D plane. In CME, we firstly
extract the scale-invariant feature transform (SIFT) [31] key
points of the reference and current frames. In our experi-
ment, we select the latest reliable image from the latest 10
frames, which is measured by a verifier motioned later as
the reference frame. Note that, since the re-detection mod-
ule outputs a discontinuous target trajectory, we remove the
previous frames which utilize the global tracker’s results as
final results. Then, we match their key points followed by
an outlier removal method (RANSAC) and obtain a trans-
formation matrix O to model camera movement. Finally,
the search region of the reference frame Rtr is mapped into
the current frame by the obtained transformation matrix O
as shown in Figure 3, which provides a sketch map of search
region mapping based on CME. The search region of the
current frame Rt can be obtained by

Rt = T (Rtr ;O) (1)

where T (.;O) denotes the transformation function with the
parameter transformation matrix O. In the experiment. We
adopt affine transformation as T .

In this way, the proposed CME introduces the stable
search region into the local tracker and leads to a robust
object tracking.

3.2. Bounding Box Refinement Module

In our framework, We adopt SuperDiMP as the local
tracker, which combines the classifier of DiMP [3] and
the bounding box regressor of PrDiMP [10]. However,
the bounding box regressor cannot give accurate bounding
boxes with low resolution and low contrast frames. Inspired
by the multiple-stage tracking strategy, we attempt to ad-
dress this dilemma in two steps: rough positioning by the
local tracker and location refinement by the bounding box
refinement module. AlphaRefine [43] is a plug-and-play
module with a strong regression capability to refine the local
tracker’s output efficiently. We adopt Alpha-Refine Module
as BBR in our framework due to its flexibility and effective-
ness.

As shown in Figure 4, the BBR can be divided into four
steps: (i) Extend the coarse result of the local tracker into a
concentric search region. (ii) Extract the features from the
obtained search region of the search frame and the template
region of the first frame with a parameter-shared backbone.
(iii) Fuse the obtained features with the feature fusion layer.
(iv) Regress the box coordinate with the fused feature map
by the bounding box regressor. Specifically, the pixel-wise
correlation is adopted as the feature fusion layer, and the
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Figure 2. Overall framework of our method. Better viewed in color with zoom-in.
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corner head is adopted as the bounding box regressor to pre-
dict the top-left corner and the bottom-right corner directly.
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Figure 4. The architecture of bounding box refinement module
(AlphaRefine [43]). Better viewed in color with zoom-in.

In this way, the proposed BBR introduces the strong re-
gression capability into the framework and leads to accurate
object tracking.

3.3. Re-Detection module

When the target is out of view or suffers background
cluttering, the local tracker is fragile to detect the target. To
solve this issue, we adopt the RD to locate the target when
the target reappears.

However, the inappropriate re-detection always leads to
the distractor problem. It is essential to re-detect the target
only if the local tracker losses it. We borrow the re-detection
scheme from long-term tracking. We adopt MDNet [35] as
the verifier in our work. The verifier evaluates the correct-
ness of the local tracker’s result in each frame and gives
a confidence score. A switcher is applied to monitor the
obtained confidence score: if the confidence score is lower
than the threshold for continuous five frames, the RD will
be activated.

As the RD is activated, we adopt the Global Track [18]
method to give the possible candidates. The Global Track
method is a global instance searching method without any
locality assumption or temporal consistency assumption.
Specifically, the features are extracted from the query frame
(the first frame) and the search frame (the whole image of
the current frame) by the backbone, and the convolution op-
erator is applied to generate the query-specific object can-
didates. Then the Query-Guided RCNN network classifies
and refines the obtained candidates. The top-K candidates,
which are sorted by the classification scores, are retained.
K is set to 5 in our experiment.

We weed out the inappropriate candidates by imposing
prior information(e.g., area, aspect ratio). Then, every can-
didate is given a confidence score by the verifier. The can-
didate with the highest confidence score is regarded as the
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final output. Incidentally, once the RD gives a result, we
will reset the search region of the local tracker. The pro-
posed RD is listed in Algorithm 1.

Algorithm 1: Re-Detection module
Input: The ground truth of query frame gq , the

image of query frame Iq , the image of search
frame Is, the threshold tAu , t

A
l , t

R
u , t

R
l , t

S

Output: Bounding Box b
1 Calculate the area aq ∈ R1 of gq;
2 Calculate the aspect ratio rq ∈ R1 of gq;
3 Generate K candidates {Ci}Ki=1 via Is, Iq , gq using

Global Track [18];
4 for i = 1, 2, 3, ...,K do
5 Calculate the area ac of Ci;
6 if ac/aq > tAu or ac/aq < tAl then
7 C ← C\Ci;
8 end
9 Calculate the aspect ratio rc of Ci;

10 if rc/rq > tRu or rc/rq < tRl then
11 C ← C\Ci;
12 end
13 Evaluate the confidence score si of Ci by

verifier;
14 if si < tS then
15 C ← C\Ci;
16 end
17 end
18 if C 6= ∅ then
19 idx← argmini si;
20 b← Cidx;
21 else
22 b← ∅;
23 end
24 return b

3.4. Model Updater

In our framework, the local tracker and the verifier
need to be updated throughout the tracking process. How-
ever, an inappropriate update may lead to unstable track-
ing. We adopt MU (borrowed from Meta-Updater [7]) to
tell whether the trackers need to be updated in each frame.
It takes into account discriminative, geometric and appear-
ance cues and gives an effective marker for the determina-
tion of update with an offline trained cascaded LSTM mod-
ule. This section introduces the update details in three parts:
Meta-Updater, update details for local tracker and update
details for verifier.
Meta-Updater. It is essential to encode the important cues
into vectors for the cascaded LSTM module. For geomet-
ric cues, MU utilizes the temporal variation of the bounding

box to represent the motion information regarding the tar-
get. The bounding box at t-th frame is denoted as bt. For
discriminative cues, MU use the response map Mt of the
local tracker (at t-th frame) to represent the discriminative
information. A confidence score and a response vector is
defined to represent the Mt. To be specific, the confidence
score sCt can be obtained by

sCt = max(Mt) (2)

and the response vector vR
t can be obtained by

vR
t = fR(Mt;W

R) (3)

where fR(.;WR) denotes the CNN model with the param-
eter WR. For appearance cues, the appearance score is
applied in MU which measures the difference between the
template region at the first frame I0 and tracked result at the
t-th frame It. The appearance score sAt can be obtained by

sAt = ||fA(It,WA)− fA(I0,WA)||F (4)

where fR(.;WR) denotes the CNN model based on
ResNet-50 [15] with the parameter WR.

…
…

…

…
…

…
…

…

…
…

… …

Update Control

Figure 5. The architecture of model update (Meta-updater [7]).
Better viewed in color with zoom-in.

As shown in Figure 5, in each frame, the obtained bt,
sCt , vR

t , sAt are contacted into a vector, denotes as xt. The
obtained sequential vectors xt−ts+1, ...,xt−1,xt are sent
into the three-stage cascade LSTM network. The output
of the cascade LSTM h3

t is further processed by two fully
connected layers to obtain the binary update flag.
Update details for local tracker. According to the original
update strategy of DiMP[3], the local tracker generates a set
of samples by data augmentation in the first frame to ini-
tialize the classifier. During tracking, the training samples
are collected when the local tracker gives a high confidence
score, and the classifier is updated every 20 frames and ev-
ery distractor. However, the MU is applied to decide if we
should update the classifier. During tracking, whenever MU
gives an update score higher than the threshold, the training
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samples are collected and the classifier is updated. Inciden-
tally, the limit of the size of training samples set is set to
50.
Update details for the verifier. MDNet [35] is adopted as
the verifier. The original update strategy of MDNet is di-
vided into two parts: short-term update whenever the confi-
dence score is less than the threshold and long-term update
at every fixed interval. By applying MU , the positive fea-
tures and the negative features of a frame will be collected
when a high update score is given so that the verifier can be
updated at every fixed interval with the collected features.

4. Experiments

4.1. Evaluation on thermal infrared benchmarks.

We evaluate the tracker on ICCV2021 Anti-UAV Chal-
lenge test-dev, LSOTB-TIR [29] and other 7 long/short term
datasets, which show the effectiveness and generalization of
our framework in different scenarios.
ICCV2021 Anti-UAV Challenge test-dev subset. The
ICCV2021 Anti-UAV Challenge dataset, containing test-
dev subset and test-challenge subset, covers multiple oc-
currences of multi-scale UAVs. The test-dev subset con-
tains 140 thermal infrared video sequences, which involve
fast motion, target disappearance, and many other challeng-
ing scenarios. We follow its metrics to calculate the track-
ing accuracy of our tracker and some other influential al-
gorithms, which include LTMU [7], SiamRPN++ [23] and
SuperDiMP. Table 1 shows the performance of these meth-
ods.

Table 1. Evaluation of our tracker and other algorithms on the
ICCV2021 Anti-UAV Challeng test-dev subset.

Tracker Ours LTMU SuperDiMP SiamRPN++
Acc 0.670 0.605 0.559 0.403

Results on LSOTB-TIR Benchmark. The LSOTB-TIR
dataset [29] contains 1400 sequences (1280 for training and
120 for evaluation) with 47 object classes and more than
600K frames. It is a recently more diverse thermal infrared
tracking dataset. We follow the one-pass evaluation rules
and use success and precision plots to evaluate our tracker
on the evaluation dataset. The evaluation dataset includes
12 challenges such as fast motion, scale change, out of view,
deformation, etc., figure 6 shows the success and precision
plots of our tracker and some competitive RGB or ther-
mal infrared algorithms [11, 26, 30, 28, 38, 8, 45, 7] in the
LSOTB-TIR toolkit. In Figure 6, our tracker achieves the
best result which illustrates the effectiveness of our method.
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Figure 6. The success and precision plots of different trackers on
LSOTB-TIR evaluation dataset. Better viewed in color with zoom-
in.

4.2. Evaluation on short-term benchmarks.

In this section, we also evaluate our tracker in visual
tracking dataset to show its generalization. We compare
our method with other outstanding RGB trackers in 5 popu-
lar datasets, including NFS, OTB2015, UAV123, GOT-10k,
TrackingNet.
Results on NFS Benchmark. Figure 7 reports represen-
tative tracking results on the NFS benchmark. The NFS
dataset [14] contains 100 sequences with an average length
of 479 frames. We follow the one-pass evaluation rules and
use success and precision scores to evaluate our tracker on
the 30fps version. Our method achieves a success score of
66.1%, which is comparable to recent state-of-the-art track-
ers.
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Figure 7. Success and precision plots of different methods on the
NFS dataset. Better viewed in color with zoom-in.

Results on OTB2015 Benchmark. We compare our
tracker with other state-of-the-art algorithms on the
OTB2015 dataset [41], which contains 100 videos with an
average length of 590 frames, and calculate the success and
precision scores over varying overlap thresholds. Table 2
reports the performance of different methods, it shows that
our framework achieves comparable results with other state-
of-the-art short-term trackers.
Results on UAV123 Benchmark. The UAV123 dataset
[33] contains 123 sequences with an average length of 915
frames. We follow the one-pass evaluation rules and use
success and precision plots to evaluate our tracker with Su-
perDiMP, PrDiMP [10], DiMP [3], ATOM [9] and etc., our

1218



Table 2. Comparison of our tracker with other algorithms on
OTB2015. The best three methods are shown in red, green and
blue, respectively. The table is arranged from top to bottom ac-
cording to Success score.

Method Success Precision
Ours 0.709 0.913

SuperDiMP 0.701 0.910
SiamRPN++ 0.696 0.915

ECO 0.691 0.910
DiMP-50 0.687 0.899
MDNet 0.678 0.909

Ocean-online 0.684 0.920
ATOM 0.671 0.882

DaSiamRPN 0.658 0.878

method achieves the best success score of 69.7% among the
above outstanding trackers, details shown in Figure 8.
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Figure 8. Success and precision plots of different methods on the
UAV123 dataset. Better viewed in color with zoom-in.

Results on GOT-10k Benchmark. As a large-scale track-
ing dataset, the GOT-10k [19] dataset contains 10k videos
for training and 180 videos for testing. There is no class
intersection between them. We follow the protocol of GOT-
10k and submit the tracking results to the official evaluation
server. Then, we compare our tracker with some outstand-
ing trackers. Table 3 shows that our method reaches an AO
of 69.2% surpassing SuperDiMP by 1.9%.
Results on TrackingNet Benchmark. The test set of
the TrackingNet dataset [34] contains 511 challenging se-
quences with an average length of 442 frames. we submit
our tracking results to the official evaluation server and re-
port the tracker’s Success, Normalized Precision(PNorm)
and Precision scores with other competitive methods, de-
tails shown in Figure 4.

4.3. Evaluation on long-term benchmarks.

We also evaluate the proposed method on long-
term tracking benchmarks, including LaSOT [12] and
VOT2019LT [21] datasets.
Results on LaSOT Benchmark. The LaSOT dataset is one

Table 3. Comparison of our tracker with some outstanding algo-
rithms on Got-10k benchmark. The best three methods are shown
in red, green and blue, respectively. The table is arranged from top
to bottom according to AO.

Tracker AO SR0.5 SR0.75

Ours 0.692 0.797 0.601
SuperDiMP 0.673 0.787 0.592

PrDiMP 0.634 0.738 0.543
Ocean 0.611 0.721 0.473

DiMP-50 0.611 0.717 0.492
siamFC++ 0.595 0.695 0.479

ATOM 0.556 0.634 0.402
siamRPN++ 0.517 0.616 0.325

SiamFC 0.348 0.353 0.098
ECO 0.316 0.309 0.111

MDNet 0.299 0.303 0.099

Table 4. Comparison of our tracker with some competitive meth-
ods on the TrackingNet dataset. The best three methods are shown
in red, green and blue, respectively. The table is arranged from top
to bottom according to Success score.

Tracker Success PNorm Precision
Ours 79.3 84.4 76.2

SuperDiMP 77.9 83.4 73.2
PrDiMP 75.8 81.6 70.4
MAML 75.7 82.2 72.5

SiamFC++ 75.4 80.0 70.5
KYS 74.0 80.0 68.8
DiMP 74.0 80.1 68.7

SiamRPN++ 73.3 80.0 69.4
D3S 72.8 76.8 66.4

ATOM 70.3 77.1 64.8
MDNet 60.6 70.5 56.5
SiamFC 57.1 66.3 53.3

ECO 55.4 61.8 49.2

of the most recent large-scale dataset with high-quality an-
notations. It consists of 1400 challenging sequences which
include 1120 training sequences and 280 testing sequences.
The average length of every sequence is about 2500 frames.
We follow the one-pass evaluation rules and use success
and precision scores to compare our tracker with other out-
standing algorithms. Our tracker achieves a success score
of 0.659 surpassing SuperDiMP by 2.1%, Figure 9 shows
the performance of some representative algorithms.
Attribute-based evaluation on LaSOT Benchmark. Fig-
ure 10 reports the attribute-based evaluation of some com-
petitive trackers which contain SuperDiMP, Ocean, ATOM,
DiMP, SiamRPN++, RTMDNet, and SiamFC. It shows that
in out-of-view, fast motion, scale variation, camera motion,
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Figure 9. Success and precision plots of different methods on the
LaSOT dataset. Better viewed in color with zoom-in.

and partial occlusion situations, our tracker performs better
than the base tracker SuperDiMP.

Ours SuperDiMP DiMP50 Ocean ATOM SiamRPNpp RTMDNet SiamFC Ours SuperDiMP DiMP50 Ocean ATOM SiamRPNpp RTMDNet SiamFC

Figure 10. Success and Precision scores of different attributes on
the LaSOT test dataset. Better viewed in color with zoom-in.

Results on VOT2019LT benchmark. As a long-term
dataset, the VOT2019LT dataset contains 50 sequences with
an average length of 4305 frames. There are more chal-
lenges since some uncommon objects and more out of view
conditions in it. We follow the evaluation protocol and re-
port the Precision, Recall, and F1 scores of some compet-
itive algorithms. The performance of trackers is shown in
Table 5.

4.4. Ablation Study

In this section, we conduct ablation analysis of our
framework on the ICCV2021 Anti-UAV Challenge test-dev
dataset.
Effectiveness of different parts of our framework.
We evaluate Camera Motion Estimation Module (CME),
Bounding box Refinement Module (BBR), Re-Detection
Module (RD) and Model Updater (MU), each module of our
framework acts an important role. The results are shown in
Table 6, showing the contribution of different modules to
our framework.
Impact of different numbers of global detection boxes.
As an important hyperparameter, different numbers of
global detection boxes may affect the overall performance.
We investigate the appropriate number of it. Table 7 shows
that the effect of different sets is small. Therefore, in this
work, we set the number of proposals to be 5.

Table 5. Comparison of our tracker with competitive algorithms
on VOT2019LT benchmark. The best three methods are shown in
red, green and blue, respectively. The table is arranged from top
to bottom according to F1 score.

Tracker F1 Precision Recall
Ours 0.708 0.726 0.691

LTMU 0.697 0.721 0.674
CLGS 0.674 0.739 0.619

SiamDW LT 0.665 0.697 0.636
SuperDiMP 0.663 0.671 0.656

mbdet 0.567 0.609 0.530
SiamRPNsLT 0.556 0.749 0.443
Siamfcos-LT 0.520 0.493 0.549

CooSiam 0.508 0.482 0.537
ASINT 0.505 0.517 0.494

FuCoLoT 0.411 0.507 0.346

Table 6. The contribution of every module in our framework.

Tracker +MU +RD +BBR +CME Acc (%)

SuperDiMP

55.9
X 57.0 (+1.1)
X X 59.3 (+2.3)
X X X 64.6 (+5.3)
X X X X 67.0 (+2.4)

Table 7. The impact of different numbers of global detection
boxes.

Num. Boxes 5 10 20 30 40
Acc 0.670 0.662 0.662 0.663 0.662

5. Conclusion

To solve the challenging issues in anti-UAV tracking, in-
cluding camera motion, out of view and scale variation, we
propose a unified tracking framework for visual, thermal in-
frared, and long-term tracking. First, we apply motion com-
pensation caused by camera movement via the camera mo-
tion estimation module. Then, we utilize the re-detection
mechanism to detect and handle the case, when the target
moves out of view. Finally, we adopt an accurate box re-
gression module to obtain a precise scale estimation. Nu-
merous experiments on Anti-UAV challenge, LSOTB-TIR,
OTB2015, GOT10k, NFS, UAV123, TrackingNet, LaSOT
and VOT2019LT shows strong potential of our framework
in handling visual/thermal, short-term and long-term track-
ing scenes, which can be widely used in real world applica-
tions.
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