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Abstract

Cellular composition prediction, i.e., predicting the pres-
ence and counts of different types of cells in the tumor mi-
croenvironment from a digitized image of a Hematoxylin and
Eosin (H&E) stained tissue section can be used for vari-
ous tasks in computational pathology such as the analy-
sis of cellular topology and interactions, subtype predic-
tion, survival analysis, etc. In this work, we propose an
image-based cellular composition predictor (ALBRT) which
can accurately predict the presence and counts of differ-
ent types of cells in a given image patch. ALBRT, by
its contrastive-learning inspired design, learns a compact
and rotation-invariant feature representation that is then
used for cellular composition prediction of different cell
types. It offers significant improvement over existing state-
of-the-art approaches for cell classification and counting.
The patch-level feature representation learned by ALBRT is
transferrable for cellular composition analysis over novel
datasets and can also be utilized for downstream prediction
tasks in CPath as well. The code and the inference web-
server for the proposed method are available at the URL:
https://github.com/engrodawood/ALBRT.

1. Introduction
Predicting the presence of different types of cells and quan-
tifying their counts in digitized images of Hematoxylin and
Eosin (H&E) stained tissue slides can be useful for vari-
ous downstream prediction tasks in computational pathol-
ogy (CPath) such as survival prediction [24, 31, 16], prog-
nosis [34, 25], recurrence prediction [14], gene expression
and biological process analysis [13, 35]. Cellular compo-
sition can give insights into cellular diversity in the tumor
microenvironment (TME) [9] as well as tissue organization
in the whole slide image (WSI) which can be helpful in
therapeutic decision making [23]. For instance, a high pro-
portion of stromal tumor-infiltrating lymphocytes (sTILs)
are associated with good prognosis [18, 7, 8], whereas ex-
cessive tumor-associated macrophages infiltration signifies

poor prognosis in breast, bladder, and cervix carcinomas
[4, 21]. Similarly, tumors with co-presence of immune cells
and tumor cells in the TME can be considered potential can-
didates for immunotherapy [2, 9]. Despite its usefulness, it
is not feasible for pathologists to perform such a quantitative
analysis on whole slide images and across multiple cases due
to the amount of effort and time required for this purpose.
As a consequence, computational approaches for patch-level
cellular composition analysis in WSIs are needed. However,
computational prediction of the presence and quantification
of different cell types in a WSI patch of H&E stained tis-
sue sections can be challenging due to inter-class phenotype
similarities and intra-class variations. Moreover, presence
of overlapping cells and diffused background complicates
the prediction problem further.
Existing methods for cellular composition prediction can be
divided into two major classes: segmentation-based, and
regression-based methods. Segmentation-based methods
first segment different type of cells in a patch and then obtain
cellular counts through post-processing. For example, wa-
tershed transform has been used for red and white blood cell
segmentation and counting from microscopy images [27].
Similar methods have been used for single cell segmenta-
tion in microscopy images of budding yeast colonies us-
ing immersion simulation based self-organizing transform
[32]. Segmentation-based methods require accurate cellular
boundaries annotation, or in some cases, scribbled annota-
tions [20, 17] during training which can be laborious, error-
prone and time consuming . Moreover, state-of-the-art cell
segmentation methods such as HoVer-Net [12], fail to learn
a compact patch-level representation from images which can
be useful for downstream prediction tasks in CPath.
To overcome the pixel-level annotation bottleneck, several
regression-based methods have been proposed for cellu-
lar composition prediction. Regression-based methods use
patch-level cell-type counts as target labels for cellular com-
position prediction. For instance, recently a convolutional
neural network (CNN) has been proposed for counting cells
in microscopic images [19]. Similarly, Cohen et al. pro-
posed a deep neural network called Count-ception, which
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uses overlapping stride for cell counting [28]. Beside this,
density maps [22], and manifold learning [33] have been
used for counting embryonic, and bacterial cells from light
microscopy images. Recently, a manifold regularized net-
work was proposed for counting and localizing cells in his-
tology and microscopy images [36]. However, these meth-
ods are restricted to predict the counts of a single cell type
having uniform shape.
In this paper, we propose a multi-headed CNN-based
method that uses patch and sub-patch level cellular count
during training, and predicts the presence and counts of dif-
ferent type of cells in a patch. The main contributions of the
proposed work are listed below:

• The proposed method harnesses patch and sub-patch
level cellular count information during training to pre-
dict the presence and counts of different type of cells
in a patch.

• The proposed method explicitly models rotation invari-
ance in its design through a contrastive learning in-
spired learning mechanism.

• We have assessed the generalization performance of
the proposed method on an independent set and demon-
strated the transferability of the learned feature rep-
resentation for cellular composition prediction over a
dataset with different cell types and annotation struc-
ture in comparison to the dataset used for training AL-
BRT.

• The proposed method outperforms state of the art
segmentation-based method for cellular composition
prediction.

• We demonstrate that the learned cellular representation
is compact, rotation invariant, and can capture inter-
and intra-class variations. This representation can be
useful for other downstream prediction tasks in CPath.

• The source code and dataset used in this work
along with a webserver for patch-level cellular
composition analysis are available at the URL:
https://github.com/engrodawood/ALBRT.

2. Materials and Methods
The workflow of the proposed approach for patch level cel-
lular composition prediction is shown in Figure 1. The pro-
posed model takes a patch of size 256×256 pixels from
H&E WSI as input and predicts its cellular composition,
i.e., counts of different type of cells in the input patch. The
counts of different type of cells predicted by the model are
subsequently used for detecting presence or absence of a par-
ticular cell type in a patch. Below we provide details about

the datasets used in the study, preprocessing, and the pro-
posed model for cellular composition prediction.

2.1. Datasets and Preprocessing

We used two publicly available datasets: PanNuke [10, 11]
and NuCLS [3]. For model training and validation, Pan-
Nuke breast cancer data of four major cell types (Neoplastic,
Inflammatory, Connective and Epithelial cells) available in
three pre-defined folds was used. The dataset consisting of
2, 351 patches of size 256×256 pixels at a spatial resolution
of 0.25 microns-per-pixel (MPP). For each patch, nuclear
segmentation masks outlining cellular boundaries of differ-
ent type of cells in a patch are available. In total, there are
50, 063 annotated nuclei (19, 900 neoplastic, 6, 160 inflam-
matory, 10, 266 connective and 13, 737 epithelial cells). We
compute patch and sub-patch level cellular counts from the
nuclear segmentation masks and used those as target labels
for cellular composition prediction.

For assessing model generalization, we used NuCLS
dataset [3] consisting of 1, 744 field of views (FOVs) par-
titioned into 5 pre-defined train and validation folds. FOVs
from the corrected single-rater NuCLS dataset are of vary-
ing sizes with a spatial resolution of 0.20 MPP. To match
the resolution of these patches with PanNuke, we extracted
a fixed patch of size 320×320 pixels from each FOV and re-
sized it to 256×256 pixels. Patches smaller than 320×320
pixels are excluded. The dataset provides bounding box an-
notation of various types of nuclei in a patch. The annotated
nuclei were grouped into 3 super classes (Tumor, Stromal,
and sTILs) and 6 sub-classes (Tumor, Mitotic Figure, Stro-
mal, Macrophages, Lymphocytes, and plasma cells). The
pre-processed dataset consists of 33, 205 annotated nuclei,
which include 12, 581 Tumor, 145 Mitotic Figure, 5, 949
Stromal, 756 Macrophages, 9, 850 Lymphocytes, and 3, 924
plasma cells. We calculated patch-level cellular counts of
sub-class and super-class cell type by counting cells that lie
in a fixed 320×320 window and used the counts as target
labels for model performance evaluation.

For both PanNuke and NuCLS datasets, cells with the ma-
jority of their annotated nuclei outside the image patch are
excluded from the target count. In addition to cellular counts
for each patch, patch-level binary labels indicating the pres-
ence or absence of different cell types are also constructed,
i.e., if the count of a specific cell type in a patch is greater
than zero, the patch would be labelled positive for that cell
type, otherwise, negative. These binary cell type labels are
used to analyze the sensitivity of various predictors to cor-
rectly detect the presence of different types of cells in a given
patch.
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Figure 1. Workflow of the proposed approach for cellular composition prediction. The model accepts original images along with their
rotated variants and predicts cellular counts in different region of the input image. The model has 5-multi-output branches. The first branch
(A) predicts the counts of different type of cells in the whole of the input patch, whereas the remaining branches (L,B,R,T) predict the
cellular counts in the left, bottom, right, and top halves of the input patch, respectively.

2.2. Proposed Model for Cellular Composition Pre-
diction

To model cellular composition prediction as a learning prob-
lem, consider a training dataset 𝐷 = {(𝑥𝑖, 𝑦𝑖)|𝑖 = 1. . .𝑁}
consisting of 𝑁 patches and their associated cellular counts.
Here, 𝑥𝑖 represents an RGB image patch and 𝑦𝑖 ∈ K rep-
resents the corresponding vector of cellular counts of K dif-
ferent cell types, e.g., neoplastic, inflammatory, connective,
and epithelial cells. The objective of the learning task is to
train a predictor with a set of learnable parameters 𝑊 such
that the output of the predictor function 𝑧𝑖 = 𝑓 (𝑥𝑖;𝑊 ) for
K cell types matches their true counts for test images. The
predictor function was subsequently also used as a classifi-
cation score for detecting the presence or absence of a par-
ticular cell type k in a patch.
We propose a mutli-headed convolutional neural network
that uses patch and sub-patch level cellular counts for image
based cellular composition prediction, as shown in Figure 1.
Our hypothesis is that learning sub-patch level features and
invariances can lead to precise prediction at the patch level.
The proposed model builds on this hypothesis and consists
of five multi-output branches with each branch predicting
cellular composition within a specific region of the input im-
age patch. The first branch (A) predicts the counts of differ-
ent type of cells in the whole of the input patch, whereas the
remaining branches (L,B,R,T) predict cellular counts in the
left, bottom, right, and top halves of the input patch, respec-

tively. During training, patch and sub-patch level counts of
different type of cells in each image are compared with other
images and also with their rotated (90°, 180°, 270°) variants
through a pairwise ranking-based loss. The proposed model
uses Xception network [5] pretrained on ImageNet [29] as
a base convolutional network and the flattened output of its
convolutional layers is passed onto a fully connected layer
consisting of 1024 neurons followed by the five branches
for predicting cellular counts in different regions of the in-
put patch. The key motivation behind selecting the Xception
network as a base network is that it uses depthwise separa-
ble convolution. Since raw patches contain cells of different
sizes, depthwise separable convolution with its multiple ker-
nels is expected to capture cell size diversity.
In order to formulate the learning problem, let 𝑓 𝑡

𝑘(𝑅𝜃(𝑥𝑖)) be
the predicted cell counts of branch 𝑡 ∈ {𝐴,𝐿,𝐵,𝑅, 𝑇 } for
cell type k (k=1, .., K) for an input patch 𝑥𝑖 after it has been
rotated by an angle 𝜃 ∈ {0, 𝜋2 , 𝜋,

3𝜋
2 }. Let 𝑦𝑡𝜃𝑖𝑘 be the corre-

sponding target counts. We use pairwise ranking loss func-
tion 𝑙𝑘() as in Equation 1, which compares the predicted cel-
lular composition of images in corresponding branches with
their true counts across multiple rotations and sub-patches.
The overall loss function 𝐿(𝑓 ;𝐷) in Equation 2 performs
pairwise comparison of all patches in the training dataset
across all cell types in a batch. For efficient implementa-
tion, the computation of the loss function is vectorized at
the batch level.
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𝑙𝑘(𝑓 ; (𝑥𝑖, 𝑦𝑖𝑘), (𝑥𝑗 , 𝑦𝑗𝑘)) =
∑

𝑡∈{𝐴,𝐿,𝐵,𝑅,𝑇 }

∑

𝜃

∑

𝜃′

{

max(0, 1 − (𝑦𝑡𝜃𝑖𝑘 − 𝑦𝑡𝜃′𝑗𝑘 )(𝑓
𝑡
𝑘(𝑅𝜃(𝑥𝑖) − 𝑓 𝑡

𝑘(𝑅𝜃′ (𝑥𝑗))) 𝑖𝑓𝑦𝑡𝜃𝑖𝑘 ≠ 𝑦𝑡𝜃′𝑗𝑘
(𝑓 𝑡

𝑘(𝑅𝜃(𝑥𝑖) − 𝑓 𝑡
𝑘(𝑅𝜃′ (𝑥𝑗))2 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(1)

𝐿(𝑓 ;𝐷) =
𝐾
∑

𝑘=1

𝑁
∑

𝑖=1

𝑁
∑

𝑗=1
𝑙𝑘(𝑓 ; (𝑥𝑖, 𝑦𝑖𝑘), (𝑥𝑗 , 𝑦𝑗𝑘)) (2)

Minimization of this loss function penalizes the number of
mis-ranked examples and attempts to rank patches and sub-
patches correctly based on their relative cellular counts. In
line with the concept of contrastive learning, it enables the
network to learn rotational invariance and sub-patch level
translation invariance. Due to the use of a pairwise rank-
ing loss, the predicted cellular counts of the network will
be relative and are converted into absolute counts by simple
curve-fitting over predicted counts using the ground truth
training data.

2.3. Model training and evaluation

We evaluated the performance of the proposed model us-
ing 3-fold cross-validation with pre-defined folds in the Pan-
Nuke dataset, i.e., data of one-fold was held out for test-
ing and training was performed on the remaining two folds.
We assessed the model’s regression performance on the test
fold using mean absolute error (MAE) and Spearman cor-
relation (SCC) as performance metrics. In order to analyze
the model sensitivity in detecting presence of a particular
cell type, the predicted count of that cell type was used as
prediction score and compared with the corresponding ac-
tual binary label (presence or absence) for that patch using
the Area under the Receiver Operating Characteristic Curve
(AUROC). In each cross validation run, the proposed model
was trained for 15 epochs using adaptive momentum-based
optimizer [15] with a batch size of 32 and initial learning
rate of 0.001. However, the learning rate by reduced by a
factor of 10 after five successive epochs. The experiments
were performed using Keras [6] and TensorFlow [1] deep
learning libraries.

2.4. Baseline Method and Comparison

We compared the performance of proposed method with
the state-of-the-art nuclear segmentation and classification
method HoVer-Net [12]. HoVer-Net is a multi-headed CNN
that uses set of residual units as backbone feature extractor
followed by three branches for cells segmentation and clas-
sification. We assessed the performance of HoVer-Net on
PanNuke dataset and used their results as baseline for the
proposed method.

2.5. Transferability of Cellular Feature Represen-
tation

In order to assess whether the 2048-dimensional patch-level
feature representation (see Figure 1) learned by the proposed
model using the PanNuke dataset can be employed for pre-
dicting cellular counts for a different dataset with novel cell
types and annotation structure, we used the NuCLS dataset
which contains cellular count information for multiple cell-
types divided into super and sub-classes. Since cell types
in NuCLS dataset are different from PanNuke, we finetuned
only the fully connected layers of ALBRT main branch (A)
on super-class and sub-class cellular counts. Furthermore,
to assess the ability of the learned feature representation to
inherently model rotational invariance, no additional aug-
mentations were used. As a baseline for comparison, we
used the Xception model pretrained over ImageNet [29] with
both mean-squared error and pairwise ranking losses with-
out any rotational augmentations.
3. Results and discussion
3.1. Quantitative results

Table 1 shows the performance of the proposed approach for
cellular composition prediction in terms of mean MAE and
spearman correlation coefficient. From the table, it can be
seen that the counts of all cell types listed in the table are pre-
dicted with an average MAE of less than 1.78, and a Spear-
man correlation higher than 0.77. Moreover, for counting
epithelial and inflammatory cells, the MAE is around 1.08,
while for neoplastic, and connective cell the MAE is 1.78
and 1.71, respectively. Similarly, neoplastic, inflammatory,
connective and epithelial cells are predicted with a higher
Spearman correlation of 0.94, 0.77, 0.85 and 0.93, respec-
tively. Figure 2 shows model predictions for a set of patches.
The figure visualizes input patches with cellular boundaries
outlined using different colors along with their true and pre-
dicted cellular counts. From the figure, it can be seen that
the difference between the true counts and predicted counts
is minimal for all test images.
3.2. Comparison with HoVer-Net

Table 1 shows HoVer-Net prediction performance on Pan-
Nuke dataset in terms of mean MAE and Spearman corre-
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Table 1. HoVer-Net and ALBRT cellular composition prediction and classification performance comparison for different types of cells
present in PanNuke dataset. We report mean absolute error (MAE), Spearman Correlation coefficient (SCC) and AUROC. The numbers
in parenthesis show the standard deviation across test folds.

Method Metric Neoplastic Inflammatory Connective Epithelial
HoVer-Net MAE 2.34 (0.17) 1.16 (0.06) 1.88 (0.04) 1.55 (0.25)

SCC 0.89 (0.02) 0.72 (0.00) 0.79 (0.03) 0.84 (0.48)
AUROC 0.93 (0.01) 0.82 (0.00) 0.91 (0.00) 0.97 (0.01)

ALBRT MAE 1.78 (0.09) 1.08 (0.03) 1.71 (0.04) 1.08 (0.09)
SCC 0.94 (0.01) 0.77 (0.01) 0.85 (0.01) 0.93 (0.02)
AUROC 0.98 (0.00) 0.88 (0.01) 0.94 (0.00) 0.99 (0.00)

Figure 2. Comparison of ALBRT and HoVer-Net prediction with ground truth for a set of test images. Images are overlaid with annotated
cellular boundaries. Below each image true cellular counts, HoVer-Net and ALBRT predicted cellular counts for different types of cells are
shown.

lation coefficient. From the table, it can be seen that for all
cell types the MAE of HoVer-Net is higher in comparison
to ALBRT. Similarly, the Spearman correlation of ALBRT
for all cell types is also higher than HoVer-Net. It is impor-
tant to mention here that ALBRT uses only cellular count
information and does not need precise cellular boundaries
annotation during training which can be difficult and time
consuming to obtain.

3.3. Saliency Map Analysis

We computed gradient-based saliency maps to visualize re-
gions of an input patch that contribute to cellular composi-
tion prediction. We passed set of test images as input to a
pretrained model and cellular counts of each cell type as a
target and extracted the saliency maps using Grad-CAM [30]
as shown in Figure 3. From the figure, it can be seen that for
each cell type the extracted saliency map correlates with in-
put patch regions where a specific type of cell is present.
This clearly shows that the representation learned by AL-
BRT truly captures the information that contributes to cel-
lular composition.

3.4. Cell Type presence prediction

Figure 4 shows the AUROC comparison of HoVer-Net and
ALBRT. From the figure, it can be seen that the AUROC
of ALBRT is significantly higher compared to HoVer-Net.
This clearly shows that the proposed approach is capable of
detecting the presence of a particular type of cell in a patch
and can be used for both detecting the presence of different
types of cells as well as counting cells of each type in the
patch.

3.5. ALBRT captures interclass and intraclass cel-
lular variability

An interesting feature of ALBRT is that it captures intra-
class phenotype similarities and inter-class phenotype vari-
ations. To illustrate this, we used the 1024-dimensional out-
put of the final fully connected layer in the network for a
given patch as a latent representation and fit an unsupervised
Uniform Manifold Approximation and Projection (UMAP)
[26] as shown in Figure 2. From the figure, it can be seen that
the learned latent representation is capable of classifying
cells into different classes. Additionally, it can also cluster
patches based on their cell count similarity in a given class.
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Figure 3. Saliency maps for two text patches. The first column shows the input images overlayed with annotated cellular boundaries in
different colors. The other four columns show the saliency map of each cell type obtained using Grad-CAM

(a) (b)

(c) (d)
Figure 4. AUROC Comparisons of HoVer-Net and ALBRT for different types of cell present in PanNuke dataset. (a) Neoplastic (b)
Inflammatory (c) Connective (d) Epithelial

This clearly shows that the latent representation learned by
ALBRT truly contribute to cellular composition and cell
type classification. Moreover, the representation can be used
for other downstream classification and regression problems
in CPath.

3.6. Transferability of ALBRT’s Cellular Feature
Representation

Tables 2 and 3 show ALBRT’s generalization performance
comparison with ALBRT using ImageNet weights for base
network, and Xception network pretrained on ImageNet for
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Figure 5. UMAP plots: each blob represents the latent representation of a given input image. The plot on the left shows the latent repre-
sentation of Neoplastic cells, followed by inflammatory cells, and then connective cells and the final one shows representation of Epithelial
cells.
Table 2. Results of cellular composition prediction using an Xception model with different patch-level feature representations over NuCLS
dataset super classes in terms of mean absolute error (MAE), Spearman Correlation coefficient (SCC), and AUROC. The numbers in
parenthesis show the standard deviation across test folds. The patch-level feature representation produced by the Xception network trained
under the proposed ALBRT framework over the PanNuke dataset exhibits better prediction performance over the NuCLS dataset in
comparison to baseline methods indicating transferability of the learned feature representation.

Method Metric Tumor Stromal sTIls

ImageNet based features with MSE Loss (Baseline)
MAE 5.17 (0.47) 3.95 (0.43) 5.37 (0.34)
SCC 0.66 (0.02) 0.50 (0.04) 0.69 (0.07)
AUROC 0.84 (0.02) 0.76 (0.04) 0.81 (0.04)

ImageNet based features with Pairwise-Ranking Loss
MAE 4.95 (0.72) 3.65 (0.48) 4.38 (0.71)
SCC 0.64 (0.03) 0.51 (0.02) 0.75 (0.05)
AUROC 0.84 (0.03) 0.77 (0.03) 0.84 (0.03)

ALBRT features with Pairwise-Ranking Loss
MAE 3.51 (0.65) 3.15 (0.37) 3.54 (0.79)
SCC 0.79 (0.05) 0.64 (0.05) 0.85 (0.05)
AUROC 0.91 (0.03) 0.83 (0.04) 0.92 (0.03)

super-class, and sub-class cell types. From the tables, it can
be seen that for both super-class and sub-class cell types,
ALBRT-based feature representation outperforms the base-
line Xception model (with ImageNet pre-training and MSE
or pairwise-ranking losses) in all performance metrics. For
instance, ALBRT-based feature representation predicts the
cellular counts of Tumor and sTILs with a mean Spearman
correlation of 0.79, and 0.85, whereas ImageNet-based fea-
tures give a correlation of 0.64, and 0.75. This shows that
the feature representation learned by ALBRT is transferable
for cellular composition prediction on other datasets. Fur-
thermore, ALBRT using pretrained ImageNet weights for
base network outperforms Xception network that uses MSE
loss for finetuning. This shows that the loss function used
for model training is a good choice for cellular composition
prediction compared to MSE.

4. Conclusions and Future work
In this work, we have proposed an image-based cellular
composition predictor that accurately predicts the presence

and counts of different types of cells in a given patch. Over-
coming the shortcoming of segmentation-based cellular
composition prediction approaches of using precise pixel-
level cellular boundaries annotation, we proposed a ranking-
based model that learns compact, and rotation-invariant rep-
resentation from patches using patch and sub-patch level
cellular counts information during training. We have as-
sessed the transferability of the learned representation us-
ing the proposed method on an external dataset with novel
cell types and annotation structure. Our analysis show that
the learned representation is transferrable to other dataset
and can be used for various downstream prediction tasks in
CPath. In future, we plan to do more detailed comparative
analysis on any other cellular composition datasets as well
as extending the approach for downstream predictive tasks
such as survival analysis.
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Table 3. Results of cellular composition prediction with different patch-level feature representations over NuCLS dataset sub-classes in
terms of mean absolute error (MAE), Spearman Correlation coefficient (SCC), and AUROC. The numbers in parenthesis show the standard
deviation across test folds. The patch-level feature representation produced by the proposed ALBRT framework trained over the PanNuke
dataset exhibits better prediction performance for the NuCLS dataset in comparison to baseline methods indicating transferability of the
learned feature representation to novel datasets.

Method Metric Tumor Mitotic Stromal Macrophage Lymphocyte Plasma cells
ImageNet based
features with MSE
Loss (Baseline)

MAE 5.05 (0.46) 0.26 (0.01) 3.39 (0.45) 1.17 (0.18) 5.43 (0.87) 5.06 (0.74)
SCC 0.67 (0.02) 0.09 (0.07) 0.54 (0.06) 0.22 (0.05) 0.58 (0.07) 0.21 (0.12)
AUROC 0.84 (0.03) 0.63 (0.11) 0.77 (0.05) 0.71 (0.06) 0.77 (0.04) 0.63 (0.08)

ImageNet based
features with
Pairwise-Ranking
Loss

MAE 4.90 (0.76) 0.16 (0.09) 3.14 (0.57) 0.88 (0.17) 4.83 (1.3) 3.67 (1.25)
SCC 0.64 (0.03) 0.02 (0.04) 0.55 (0.02) 0.16 (0.02) 0.62 (0.07) 0.28 (0.08)
AUROC 0.85 (0.03) 0.54 (0.07) 0.78 (0.02) 0.65 (0.03) 0.79 (0.03) 0.68 (0.05)

ALBRT features with
Pairwise-Ranking
Loss

MAE 3.47 (0.64) 0.15 (0.08) 2.74 (0.48) 0.78 (0.18) 3.81 (1.11) 3.02 (1.05)
SCC 0.79 (0.05) 0.16 (0.04) 0.67 (0.04) 0.33 (0.07) 0.74 (0.07) 0.51 (0.03)
AUROC 0.91 (0.04) 0.70 (0.04) 0.84 (0.03) 0.80 (0.06) 0.88 (0.04) 0.83 (0.02)

PathLAKE digital pathology consortium which is funded
from the Data to Early Diagnosis and Precision Medicine
strand of the government’s Industrial Strategy Challenge
Fund, managed and delivered by UK Research and Innova-
tion (UKRI).

References

[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene
Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado, Andy
Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian
Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,
Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath
Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga,
Sherry Moore, Derek Murray, Chris Olah, Mike Schuster,
Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Tal-
war, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fer-
nanda Viégas, Oriol Vinyals, Pete Warden, Martin Watten-
berg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. Tensor-
Flow: Large-scale machine learning on heterogeneous sys-
tems, 2015. Software available from tensorflow.org. 4

[2] Khalid AbdulJabbar, Shan E Ahmed Raza, Rachel Rosenthal,
Mariam Jamal-Hanjani, Selvaraju Veeriah, Ayse Akarca,
Tom Lund, David A Moore, Roberto Salgado, Maise
Al Bakir, et al. Geospatial immune variability illumi-
nates differential evolution of lung adenocarcinoma. Nature
Medicine, 26(7):1054–1062, 2020. 1

[3] Mohamed Amgad, Lamees A Atteya, Hagar Hussein, Ka-
reem Hosny Mohammed, Ehab Hafiz, Maha AT Elsebaie,
Ahmed M Alhusseiny, Mohamed Atef AlMoslemany, Ab-
delmagid M Elmatboly, Philip A Pappalardo, et al. Nu-
cls: A scalable crowdsourcing, deep learning approach and
dataset for nucleus classification, localization and segmenta-
tion. arXiv preprint arXiv:2102.09099, 2021. 2

[4] L Bingle, NJ Brown, and Claire E Lewis. The role of tumour-
associated macrophages in tumour progression: implications
for new anticancer therapies. The Journal of Pathology: A
Journal of the Pathological Society of Great Britain and Ire-
land, 196(3):254–265, 2002. 1

[5] François Chollet. Xception: Deep learning with depthwise
separable convolutions. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
1251–1258, 2017. 3

[6] Francois Chollet et al. Keras, 2015. 4
[7] Carsten Denkert, Gunter von Minckwitz, Silvia Darb-

Esfahani, Bianca Lederer, Barbara I Heppner, Karsten E We-
ber, Jan Budczies, Jens Huober, Frederick Klauschen, Jenny
Furlanetto, et al. Tumour-infiltrating lymphocytes and prog-
nosis in different subtypes of breast cancer: a pooled analysis
of 3771 patients treated with neoadjuvant therapy. The lancet
oncology, 19(1):40–50, 2018. 1

[8] MV Dieci, P Conte, G Bisagni, AA Brandes, A Frassoldati,
L Cavanna, A Musolino, F Giotta, A Rimanti, O Garrone,
et al. Association of tumor-infiltrating lymphocytes with dis-
tant disease-free survival in the shorther randomized adju-
vant trial for patients with early her2+ breast cancer. Annals
of Oncology, 30(3):418–423, 2019. 1

[9] Filippo Galli, Jesus Vera Aguilera, Belinda Palermo, Sve-
tomir N Markovic, Paola Nisticò, and Alberto Signore. Rele-
vance of immune cell and tumor microenvironment imaging
in the new era of immunotherapy. Journal of Experimental
& Clinical Cancer Research, 39:1–21, 2020. 1

[10] Jevgenij Gamper, Navid Alemi Koohbanani, Ksenija Benet,
Ali Khuram, and Nasir Rajpoot. Pannuke: an open pan-
cancer histology dataset for nuclei instance segmentation and
classification. In European Congress on Digital Pathology,
pages 11–19. Springer, 2019. 2

[11] Jevgenij Gamper, Navid Alemi Koohbanani, Simon Graham,
Mostafa Jahanifar, Syed Ali Khurram, Ayesha Azam, Kather-
ine Hewitt, and Nasir Rajpoot. Pannuke dataset extension, in-

671



sights and baselines. arXiv preprint arXiv:2003.10778, 2020.
2

[12] Simon Graham, Quoc Dang Vu, Shan E Ahmed Raza, Ayesha
Azam, Yee Wah Tsang, Jin Tae Kwak, and Nasir Rajpoot.
Hover-net: Simultaneous segmentation and classification of
nuclei in multi-tissue histology images. Medical Image Anal-
ysis, 58:101563, 2019. 1, 4

[13] Bryan He, Ludvig Bergenstråhle, Linnea Stenbeck,
Abubakar Abid, Alma Andersson, Åke Borg, Jonas
Maaskola, Joakim Lundeberg, and James Zou. Integrating
spatial gene expression and breast tumour morphology via
deep learning. Nature biomedical engineering, 4(8):827–
834, 2020. 1

[14] Meng-Yao Ji, Lei Yuan, Xiao-Da Jiang, Zhi Zeng, Na Zhan,
Ping-Xiao Huang, Cheng Lu, and Wei-Guo Dong. Nuclear
shape, architecture and orientation features from h&e images
are able to predict recurrence in node-negative gastric ade-
nocarcinoma. Journal of translational medicine, 17(1):1–12,
2019. 1

[15] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 4

[16] Sung Min Ko, Janghee Lee, Soong June Bae, Su Jung Baik,
Junghwan Ji, Dooreh Kim, Sung Gwe Ahn, and Joon Jeong.
Body mass index and absolute lymphocyte count predict
disease-free survival in korean breast cancer patients. British
journal of cancer, pages 1–7, 2021. 1

[17] Navid Alemi Koohbanani, Mostafa Jahanifar, Neda Zamani
Tajadin, and Nasir Rajpoot. Nuclick: A deep learning frame-
work for interactive segmentation of microscopic images.
Medical Image Analysis, 65:101771, 2020. 1

[18] Hajime Kuroda, Tsengelmaa Jamiyan, Rin Yamaguchi, Ak-
inari Kakumoto, Akihito Abe, Oi Harada, and Atsuko Ma-
sunaga. Tumor-infiltrating b cells and t cells correlate with
postoperative prognosis in triple-negative carcinoma of the
breast. BMC cancer, 21(1):1–10, 2021. 1

[19] Falko Lavitt, Demi J Rijlaarsdam, Dennet van der Linden,
Ewelina Weglarz-Tomczak, and Jakub M Tomczak. Deep
learning and transfer learning for automatic cell counting in
microscope images of human cancer cell lines. Applied Sci-
ences, 11(11):4912, 2021. 1

[20] Hyeonsoo Lee and Won-Ki Jeong. Scribble2label: Scribble-
supervised cell segmentation via self-generating pseudo-
labels with consistency. In International Conference on Med-
ical Image Computing and Computer-Assisted Intervention,
pages 14–23. Springer, 2020. 1

[21] Russell D Leek, Claire E Lewis, Ruth Whitehouse, Michael
Greenall, Jane Clarke, and Adrian L Harris. Association of
macrophage infiltration with angiogenesis and prognosis in
invasive breast carcinoma. Cancer research, 56(20):4625–
4629, 1996. 1

[22] Victor Lempitsky and Andrew Zisserman. Learning to count
objects in images. Advances in neural information processing
systems, 23:1324–1332, 2010. 2

[23] Yuxin Lin, Jianxin Xu, and Huiyin Lan. Tumor-associated
macrophages in tumor metastasis: biological roles and clini-
cal therapeutic applications. Journal of hematology & oncol-
ogy, 12(1):1–16, 2019. 1

[24] Cheng Lu, David Romo-Bucheli, Xiangxue Wang, An-
drew Janowczyk, Shridar Ganesan, Hannah Gilmore, David
Rimm, and Anant Madabhushi. Nuclear shape and orienta-
tion features from h&e images predict survival in early-stage
estrogen receptor-positive breast cancers. Laboratory inves-
tigation, 98(11):1438–1448, 2018. 1

[25] Alberto Mantovani, Federica Marchesi, Alberto Malesci,
Luigi Laghi, and Paola Allavena. Tumour-associated
macrophages as treatment targets in oncology. Nature re-
views Clinical oncology, 14(7):399–416, 2017. 1

[26] Leland McInnes, John Healy, and James Melville. Umap:
Uniform manifold approximation and projection for dimen-
sion reduction. arXiv preprint arXiv:1802.03426, 2018. 5

[27] Ana Carolina Borges Monteiro, Yuzo Iano, and
Reinaldo Padilha França. Detecting and counting of
blood cells using watershed transform: an improved method-
ology. In Brazilian Technology Symposium, pages 301–310.
Springer, 2017. 1

[28] Joseph Paul Cohen, Genevieve Boucher, Craig A Glaston-
bury, Henry Z Lo, and Yoshua Bengio. Count-ception:
Counting by fully convolutional redundant counting. In Pro-
ceedings of the IEEE International conference on computer
vision workshops, pages 18–26, 2017. 2

[29] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, Alexander C. Berg, and
Li Fei-Fei. ImageNet Large Scale Visual Recognition Chal-
lenge. International Journal of Computer Vision (IJCV),
115(3):211–252, 2015. 3, 4

[30] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das,
Ramakrishna Vedantam, Devi Parikh, and Dhruv Batra.
Grad-cam: Visual explanations from deep networks via
gradient-based localization. In Proceedings of the IEEE in-
ternational conference on computer vision, pages 618–626,
2017. 5

[31] Muhammad Shaban, Syed Ali Khurram, Muham-
mad Moazam Fraz, Najah Alsubaie, Iqra Masood, Sajid
Mushtaq, Mariam Hassan, Asif Loya, and Nasir M Rajpoot.
A novel digital score for abundance of tumour infiltrating
lymphocytes predicts disease free survival in oral squamous
cell carcinoma. Scientific reports, 9(1):1–13, 2019. 1

[32] Quanli Wang. A novel immersion simulation based self-
organizing transform with application to single-cell segmen-
tation from microscopy images, 2016. 1

[33] Yi Wang, Yuexian Zou, and Wenwu Wang. Manifold-based
visual object counting. IEEE Transactions on Image Process-
ing, 27(7):3248–3263, 2018. 2

[34] Haihua Yuan, Chengcheng Qian, Renjie Cai, Wenying
Zhang, Jiongyi Wang, Xiaohua Hu, YANJIE ZHANG, Bin
Jiang, and Feng Liu. Neutrophil-lymphocyte ratio and circu-
lating tumor cells counts predict prognosis in gastrointestinal
cancer patients. Frontiers in Oncology, 11:2586, 2021. 1

[35] Xiaohui Zhan, Jun Cheng, Zhi Huang, Zhi Han, Bryan Helm,
Xiaowen Liu, Jie Zhang, Tian-Fu Wang, Dong Ni, and Kun
Huang. Correlation analysis of histopathology and proteoge-
nomics data for breast cancer. Molecular & Cellular Pro-
teomics, 18(8):S37–S51, 2019. 1

672



[36] Yuxin Zheng, Zhao Chen, Yanfei Zuo, Xiaosong Guan,
Zhaoyu Wang, and Xiao Mu. Manifold-regularized regres-
sion network: A novel end-to-end method for cell counting
and localization. In Proceedings of the 2020 the 4th Inter-
national Conference on Innovation in Artificial Intelligence,
pages 121–124, 2020. 2

673


