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Abstract

The ability to adapt quickly to a new task or data distri-
bution based on only a few examples is a challenge in Al
and highly relevant for various domains. In digital pathol-
0gy, slight variations in the scanning and staining process
can lead to a distribution shift that provokes significant per-
formance degradation of classical neural networks for tasks
like tissue cartography where a reliable classification is es-
sential. To overcome this problem, we propose a few-shot
learning technique, specifically a k-means extension of Pro-
totypical Networks, to train a highly flexible model that
adapts to new, unseen scanner data based on only a few
examples. We evaluate our approach on a multi-scanner
database comprising a total amount of 356 annotated whole
slide images digitized by a base scanner for training and
additional five different scanners for evaluation. We ver-
ify our method’s effectiveness by comparing it to a classi-
cally trained benchmark and Prototypical Networks, both
trained on the same data. A particular focus for us is to
investigate the support set, used for adapting the proto-
types, to provide recommended actions for digital pathol-
0gy. The best results are obtained by employing multiple
prototypes per class, calculated from a distributed support
set, and domain-specific data augmentation. This results
in 86.9 - 88.2% accuracy for a classification task of seven
tissue classes on unseen, shifted data from the automated
scanners, which is almost equal to the accuracy on the in-
distribution data of 89.2%.

1. Introduction

Ongoing progress in artificial intelligence in computer
vision, along with the introduction of digital pathology, has
opened up numerous possibilities for supporting pathologi-
cal examinations. Microscopic tissue sections can be digi-
tized as whole slide images (WSIs), preprocessed, and an-
alyzed. The digitized form makes it possible to apply deep
learning techniques, for example, categorizing different tis-
sue types and cells or predicting medical endpoints [20].
However, the deployment of these methods is challenging:
The digitization process is highly dependent on the micro-
scopic scanner and heterogeneous preprocessing steps (e.g.
staining protocols) that both differ from clinic to clinic. Dif-
ferences between scanners from diverse manufactures im-
pact the image color (such as hue, brightness, and contrast)
and resolution. This variance leads to a shift in the data
distribution and degrades the performance of common deep
learning classifiers, as they depend strongly on the distribu-
tion of the training data [13, 12].

Therefore, our goal is to train a highly flexible model that
can adapt to this distribution shift imposed by new scanner
data. Domain adaptation and specifically few-shot learn-
ing addresses this challenge by permitting fast adaptation
to a new domain, even with only a limited amount of la-
beled data available [19, 5]. Research in this area pro-
poses a wide range of approaches for the task of image
classification. They range from data-driven methods (e.g.
augmentation techniques) to algorithm-driven methods (e.g.
[5,2, 3,21, 26]) that mainly focus on fine-tuning, to model-
driven methods that classify new data by comparison in an
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Figure 1. Training procedure of Multi-ProtoNets. The input for one episode consists of a support set of 20 image patches per class and
a query set of 5 image patches per class. We train with seven classes, three are depicted. The supports and queries are passed through
a ResNet model that transfers all inputs into a 512-dimensional latent space. We use the support set to calculate multiple prototypes per
class based on a k-means clustering algorithm (here depicted with £ = 2 prototypes), where the prototypes are the cluster centers. Next,
we determine the distance of each query to the prototypes (depicted for only one query), calculate the COREL loss and conduct a back

propagation using Adam optimizer.

embedding (or latent) space [25].

Data augmentation is a popular technique, not solely in
the domain of few-shot learning, but applied in many ap-
plications and domains [27, 10]. It enables the inclusion
of a priori knowledge: an exposure of the hue value can
for example resemble data from a different scanner. In dig-
ital pathology, data augmentation techniques such as H&E
color stain augmentation and spatial filters (e.g. rotation and
scaling) have been used to mimic variation in the data and
improve the performance of learning algorithms [ 13, 23].

In our research we focus on model-driven few-shot
methods, specifically embedding learning, which, unlike
algorithm-driven methods, do not require retraining. In-
stead, these methods exploit a lower-dimensional embed-
ding of the data, where samples are clustered based on
their similarity [25]. New samples can also be compared
in this embedding space. Representatives of this method
are Siamese Networks [11], Relation Networks [22] and
Matching Networks [24]. One of the most popular meth-
ods, due to its simplicity, is Prototypical Networks [19],
proposed by Snell et al., which calculates the center (the
prototype) of each class in the embedding space and assigns
the class of the nearest prototype to each new example.

Snell et al. use only one prototype per class and argue
for its sufficiency, opposed by Mensink et al. who suggest
multiple class centroids by applying a k-means algorithm
directly on the input space [15]. We think that it is worth
following up on this idea, however with the application of

k-means on the embedding space of a deep neural network
instead of the input space.

Therefore we propose Multi-ProtoNets, a k-means exten-
sion of Prototypical Networks that uses multiple prototypes
to represent each class and thus learns a more differentiated
embedding space that allows for disconnected class repre-
sentations. Our approach is similar to [ 18], where a density
representation in the embedding space is learned by apply-
ing k-means clustering. However, they do not consider this
approach in the few-shot setting and therefore do not ap-
ply an episodic training procedure. Others have used a soft
k-means [17] and Sinkhorn k-means [8] in few-shot learn-
ing; the former to include unlabelled data in the training
but not for multiple class representatives. The latter only
applies k-means for calculating multiple prototypes during
test time. We, however, show that it is beneficial to already
train with k-means to be able to learn a more sophisticated,
possibly non-connected cluster representation. Similar to
our approach, Infinite Mixture Prototypes [1] also generate
multiple clusters per class, even without having to specify
a fixed number of class clusters, but with the challenge of
estimating the distance threshold parameter. This method
has already been applied for Relation Networks [14] and
showed the positive effect of learning multiple prototypes.
Our method is much simpler to implement and more intu-
itive because we apply the distance metric directly on the
embedding space without the need to train an additional re-
lational layer. Also related to our approach multiple pro-
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totypes have been used in the medical domain, for skin
disease identification [16], where k-means is only used at
the start of an epoch as an initialization of the prototypes,
whereas we use it in every episode. Our work also differs
from the others as we work with the COREL loss which fa-
cilitates clustering. To the best of our knowledge, no other
method in few-shot learning exists at the moment that ex-
tends Prototypical Networks by learning with multiple pro-
totypes based on a k-means approach and COREL loss on
the embedding space of a neural network.

We extensively test our method’s ability to adapt to five
shifted data sets, digitized by different scanners that vary
in the scanning and stitching process. We experimentally
demonstrate the positive effect of a multiple cluster rep-
resentation in the embedding space, as given by Multi-
ProtoNets, compared to Prototypical Networks and a classic
baseline. This effect is also higher if multiple prototypes are
already used during training. We further investigate the in-
fluence of different numbers of clusters (k = {1,...,5})
per class, where we achieve the best results with £ = 3
clusters. Our few-shot approach allows the adaptation of a
model to new data on the basis of a few examples, which
are used to determine new prototypes. However, how much
does the quality of the adapted model depend on the vari-
ance of the data used to recalculate the prototypes? To an-
swer this question, we systematically vary the number of
WSIs and their combinations from which a set of image
patches is chosen to adapt the model and investigate how
many WSIs are needed. Finally, we continue to improve
the performance by applying domain-specific data augmen-
tation.

Overall, this work contributes to providing recommenda-
tions for the design of a robust few-shot approach for dig-
ital pathology, allowing easy adaptability to domain shifts
introduced e.g. by different scanners.

2. Prototypical Networks for Few-Shot Learn-
ing with Multiple Prototypes

We consider a training data set D = (x;,y;), of N
train-label pairs with input data x; € R™ and class label
yi € {1,...,C}. We use a model fp : R® — R?, in our
case a ResNet34 architecture [7], with parameters 6 to ob-
tain a representation R = (fa(x;), ;) of the data in the
latent space.

In few-shot learning an episodic training procedure is
common, referred as N°-way N*-shot: For each episode,
asubsetC C {1,...,C} of N®classes is chosen at random.
For each class ¢ € C we choose a support set S, C R of
size N* and a query set Q. C R \ S, of size N9 where all
examples of both S, and Q.. correspond to class label c. The
support set is used to calculate class representatives or pro-
totypes; the prediction and loss calculation is done on the
query set based on the proximity to the closest prototype in
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Classic baseline eval on

Figure 2. Overview of our training and evaluation procedure.
Based on the training data digitized by scanner A (MIDI) three
different methods are trained: Prototypical Networks, Multi-
ProtoNets with & > 2, and a classic baseline. The test set is
digitized by six different scanners and the resulting WSIs are di-
vided into a set of nine slides, reserved for prototype adaptation
for both few-shot learning methods, and a set of 30 slides to test
their ability to adapt to the introduced data shifts.

the latent space. For a visualization of the training process
we refer to Figure 1.

2.1. Prototype Calculation

In contrast to Prototypical Networks which rely on the
assumption that the data can be translated into an embed-
ding space where each class is represented by a sufficiently
convex and connected cluster to be captured by a single pro-
totype, we follow a more general approach: We calculate
multiple prototypes per class based on a k-means cluster-
ing on the embedding of the corresponding support set and
therefore allow for a more distributed class representation.
Clustering, specifically k-means, is a powerful tool to group
similar examples in a fully unsupervised manner [6], which
we apply within the few-shot training setting. Our goal is
to divide the embedding space into k clusters for each class
¢, so that the distance of each example to the closest cluster
center p;, the representative of cluster j € {1,...,k}, be-
comes minimal. k-means clustering repeatedly assigns the
supports in S, to k clusters, based on the lowest squared
Lo distance, and updates the cluster centers, by taking the
mean of the assigned values, until the prototypes no longer
change. k-means is proven to converge to at least the lo-
cal optimum and usually does so within a small number of
steps [0].
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2.2. Loss Function

As a next step the loss is calculated based on the prox-
imity of the queries (x;,y;) € Q. to their nearest cluster

centers u§-yi) of the corresponding class y; and to the ones

of all classes p§»c), ¢ € C. Both is considered in the COREL
loss [9],

N4
L= A+ (1- AL, (1)

which we adapt to the case of multiple prototypes. This loss
is a weighted composition of an attractive and a repulsive
part,

(Lo ki) - ple

2 2

LM =~ mln
je{

Lrep logZ€ ymingegr k) (11 fo(xi)— H(C)H) 3)
ceC

weighted with hyper-parameters A € (0,1] and v > 0. £
favors a tighter clustering between members of the same
class in the latent space, and L™P causes a drift between the
classes. It naturally leads to a separable representation in
the embedding space [9] and is therefore highly suitable for
our combination with k-means clustering.

The pseudo-code for our Multi-ProtoNets approach is
presented in Algorithm 1.

3. Multiple-Scanner Data

The whole data set (training, validation and test) con-
sists of 356 annotated WSIs from which more than 10 mil-
lion labeled image patches with a dimension of 224 x 224
pixels are derived. The WSIs are obtained from a collec-
tion of 161 H&E stained colon tissue sections from ade-
nocarcinoma resections. All sections are digitized with the
3DHistech MIDI scanner with a resolution of 0.22 um per
pixel at the University Hospital Erlangen. Within the re-
sulting WSIs of the MIDI scanner, areas have been man-
ually annotated distinguishing between seven tissue types:
tumor, muscle tissue, connective combined with adipose tis-
sue, mucosa, mucus, inflammation, and necrosis. Finally,
image patches of pixel size 224 x 224 are extracted from
the WSIs and assigned to a tissue class if a patch intersects
with a manual annotation by at least 85%. The training
database comprises 2,173,515 image patches from 92 tis-
sue sections and the validation database 719,010 patches
from 30 tissue sections, all digitized with the 3DHistech
MIDI scanner. Patches from a single tissue section are
never split across multiple data sets. The number of im-
age patches per class and WSI is limited to 10,000 for these
two databases. Based on the remaining 39 tissue sections
whose WSIs are not used for training and validation a multi-
scanner test database is established. Therefore these tis-
sue sections are additionally digitized with four automated

Algorithm 1 Multi-ProtoNets
Input: data: D = (x;,y;)Y,, network with initial param-
eters 0: fp : R — R?
1: for each episode do
2:  Select classes C C {1,...,C}
33 forceCdo

4: Select support and query sets S. C D and
0.CD\S.

5: Embed supports and queries as
Se = {fo(xi), 4}y and Q= {fo(xi), 4}

6: Select k prototypes {my,..., 1}, 1; € R? at
random out of S,

7: Assign a cluster-label to each instance x; € SC

based on the proximity to the closest prototype:

Loitj=arg _min (o) — )l
rij =

0, otherwise
Vie{l,...,N°},Vje{l,...,k}

8: Create new prototypes:
1 N®
| S8 > iz Tijfo(xi)
9:  end for
10:  Calculate the COREL loss based on the queries ac-
cording to equation 1:

3) A+

L= Z (y min(]| fo (x:) -

logy e min; (|10 () =57 113) (1 — V),
ceC
_ ) (e)
where x; € Q. and u;
corresponding to class ¢
11:  Update 6 using Adam optimizer
12: end for

,7 € {1,...,k} prototypes

scanners (SCube, Precipoint M8, Hamamatsu Nanozoomer
S210, Hamamatsu Nanozoomer S360) and one manual mi-
croscope using a real-time stitching software (iSTIX) result-
ing in a test database of 234 WSIs: six scanner-specific sets
each comprising 39 WSIs. Annotations are transferred au-
tomatically by rigid registration of the corresponding WSIs.
A set of nine WSIs per scanner (corresponding to identi-
cal tissue sections) is set aside for the prototype adapta-
tion. The remaining 30 WSIs of each scanner represent the
multi-scanner test database. Figure 2 gives an overview of
the data sets and what they are used for. The number of
patches within the scanner-specific test databases varies be-
tween 514,397 and 2,123,364 due to differences in scanner
resolution (between 0.17 um/pixel and 0.35 um/pixel) and
in background detection, as image patches from the back-
ground are discarded using a simple threshold approach.
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Figure 3. Cutout of a digitized slide scanned with - from left to
right - top row: MIDI, iSTIX, M8; bottom row: SCube, S210,
$360.

Moreover, there are significant color variations between
WSIs obtained with the different scanners (see Figure 3).

4. Experiments

We train various models: a classic baseline as bench-
mark that does not employ few-shot learning, and five few-
shot models based on k-means, for £ = 1,...,5 respec-
tively. Note that & = 1 is exactly equal to Prototypical
Networks and therefore also works as state of the art com-
parison baseline to our approach. For embedding we choose
ResNet34, a Residual Network architecture with 32 convo-
lutional layers arranged in 16 blocks with skip connections,
average pooling and a fully connected layer. For few-shot
learning we omit the latter as we work directly on the la-
tent space. Prior to our experiments, we investigated dif-
ferent latent space dimensions and obtained the best results
with a dimension of 512, which we use in all subsequent ex-
periments. We use Adam optimizer with a learning rate of
0.001 for the classic approach and 10~ for few-shot learn-
ing with early stopping. The parameters of the COREL loss
are selected by default: A = v = 0.5. Similar to [4], we
choose a 7-way 20-shot scenario with N9 = 5 for training,
i.e. all classes are used in each episode. The implementa-
tion is written in Python with Tensorflow 2.2.0. All models
are trained using the same training and validation database
containing only WSIs of the 3DHistech MIDI scanner (see
Section 3). For the classic approach we average the results
over two training and test runs. The different few-shot mod-
els, on the other hand, are averaged over the extensive test
runs.

In addition, we repeat our training runs, both the few-
shot and the classic approach, with domain-specific data
augmentation. Our augmentation consists of variations in
hue and saturation as well as additional H&E augmentation
[23]. These three augmentations proved to be very effective
on histological data, whereas the influence of deviations in
resolution seemed to be less critical than in color [13].

ftrain 1 1 1 3 5
keval 1 3 5 3 5
Accuracy | 0.602 | 0.630 | 0.633 | 0.705 | 0.705

Table 1. Comparison of the accuracy between models that use mul-
tiple prototypes both during training and evaluation, and models
that are trained with a single prototype and use multiple proto-
types only during evaluation. Trained without augmentation and
evaluated on the M8 data set with adapted prototypes from a set of
nine slides.

4.1. Multiple Prototypes and Variations in Support
Set

The advantage of our few-shot approach is that infor-
mation from other scanners can be easily utilized without
retraining the network: in our experiments nine annotated
slides from each scanner (”adaption pool”, see Figure 2) are
provided to calculate new prototypes adapted to the specific
scanner at inference time. We compare two cases: (a) pro-
totypes are derived from the training set (non-adapted case),
and (b) prototypes are derived individually for each scanner
from the hold-out data set of nine slides (adapted case). In
both cases, 1000 supports per class are used except when
there are not enough supports for this class available in the
data set.

We calculate the prototypes by a k-means clustering and
compare different numbers of prototypes (k = 1,...,5) per
class. Moreover, we investigate the influence of the support
set on the classification performance to answer the follow-
ing questions: Does it make a difference if we select the
same number of supports from different WSIs? Is it bet-
ter to select the supports from a larger number of WSIs and
thus provide more variability in the support set? Hence, we
choose the supports from different numbers of slides from
the hold-out data set: 3,5,7 and 9. Since our hold-out set
contains nine WSIs for each scanner, we evaluate each pos-
sible combination, e.g. choosing three slides out of nine and
selecting the supports randomly from this subset. Only for
the subset size of nine there are no possible permutations. In
this case we repeat the prototype calculation 40 times with
randomly chosen supports from the nine slides. As each
experiment in the testing process is conducted at least 40
times, we also report the standard deviation (see Figure 4).

Firstly, we observe that a scanner-specific adaptation of
the prototypes has a positive effect compared to a prototype
calculation on the original scanner data. This is depicted in
Figure 4 for M8 and Scube. The effect is especially striking
for M8, where the accuracy increases by at least 19.2 per-
centage points. On SCube we observe only a slight increase
of between 0.4 and 8.1 percentage points. We hypothesize
that this is due to the higher similarity between SCube and
the original scanner (MIDI) in terms of color representation.

Comparing different choices of k, we find the methods
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using multiple prototypes (k > 1) to be superior (by up to
10.4 percentage points) compared to using the original Pro-
totypical Networks approach, thus a single prototype per
class (k = 1). Especially k = 3 prototypes yield partic-
ularly good results over all scanners. We hypothesize that
multiple prototypes provide a better class representation in
the embedding space, allowing for a more accurate clus-
tering especially for tissue classes with a strong variance in
appearance like e.g. tumor. We also note a positive effect on
the accuracy when training is done with only one prototype
but testing with multiple, as shown in Table 1. As the ta-
ble indicates, the accuracy increases monotonically with the
number of clusters used for training and for testing for the
MS scanner. At some point the accuracy seems to stagnate
because there is no difference anymore between five proto-
types used for both training and testing and three. Overall,
the best accuracy is achieved when multiple prototypes, ei-
ther three or five, are used for both training and testing.

We further observe that, independent of the number of
clusters, the accuracy increases and standard deviation de-
creases as more WSIs are used for prototype calculation.
For k = 3 the accuracy gradually increases from 69.3 per-
centage points for three slides to 70.5 for nine slides and
standard deviation decreases by 0.015 for M8. Again the
effect is smaller for SCube, where accuracy increases by
0.75 percentage points and standard deviation decreases by
0.007 between three and nine slides for £k = 3. How-
ever, the trend is clearly visible. This is consistent with
our assumptions and suggests that, since more slides cause
a higher variance in the support set, especially distributed
slides make the prototypes more robust.

4.2. Combination of Few-Shot and Data Augmen-
tation

As both few-shot and data augmentation independently
enhance the overall performance [13], we expect a further
improvement from their combination. Therefore, as de-
picted in Figure 5, we compare the models that were trained
with and without data augmentation. We present the results
for a (k = 3)-training setting and a testing scenario where
nine slides from new scanners are available for prototype
adaptation. Notably, augmentation improves the perfor-
mance over all scanners, both for the classic approach and
few-shot learning. For Multi-ProtoNets we register an abso-
lute increase in accuracy of up to 25.1 percentage points and
up to 0.274 for the F1-score (see Table 2). Only for MIDI
and SCube the effect is moderate, since the performance
has already been strong without augmentation. Overall, our
results show that data augmentation generates a more ro-
bust embedding space, which is also beneficial for few-shot
learning. As a final result, for all automated scanners we
achieve an accuracy of between 86.9% and 88.2%, similar
to that obtained on the original scanner (MIDI). Only on the

few-shot k-means | classic training

Accuracy | w/o aug. | w/aug. | w/o aug. | w/ aug.
MIDI 0.892 0.873 0.890 0.890
M8 0.705 0.874 0.410 0.831
iSTIX 0.573 0.718 0.330 0.603
SCube 0.877 0.882 0.693 0.860
S360 0.679 0.880 0.353 0.867
S210 0.618 0.869 0.359 0.827
F1-score

MIDI 0.803 0.751 0.798 0.785
M8 0.568 0.745 0.181 0.661
iSTIX 0.429 0.546 0.167 0.475
SCube 0.745 0.762 0.523 0.743
S360 0.533 0.763 0.094 0.739
S210 0.472 0.746 0.108 0.691

Table 2. Comparison of the accuracy and average Fl-score of
Multi-ProtoNets (k=3 with adapted prototypes based on supports
from a set of nine slides) and the classical approach, both with and
without augmentation over all available scanners.

iSTIX scans the performance drops to 71.8%. This might
be due to the lower quality of the WSIs obtained by the
manual scanning process where blurred regions and stitch-
ing artifacts appear more often.

5. Discussion and Conclusion

Creating a robust and adaptive deep learning application
is a challenging and relevant task in various fields. Few-shot
learning and data augmentation have been powerful tools
to enhance robustness and the possibility to quickly adapt
to unseen data distributions. In this work we introduced
Multi-ProtoNets, specifically a metric based approach that
learns a multiple-cluster representation, and have shown its
ability to adapt to distributional data shifts, based on only a
few examples and without further training. We have experi-
mentally demonstrated the positive effect of our multiple-
cluster representation compared to a single-cluster repre-
sentation, as given by Prototypical Networks, and a clas-
sically trained baseline for the task of tissue classification
under shifted data. The evaluation was performed on six
data sets recorded from different scanners with varying dis-
tributional similarity to the training data.

We extensively investigated the influence of the support
set, used for prototype calculation at inference time, by a
systematic variation in the number of new WSIs from the
unseen scanners from which the support set was chosen
for adaptation. As expected, a support set obtained from
a larger number of slides provided more stable results. This
is most likely due to the higher similarity between sup-
ports from the same WSI than between those from different
WSIs. By introducing higher variance in the support set,
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Figure 5. Accuracy of Multi-ProtoNets (using & = 3 prototypes per class with supports from nine slides) and of the classic baseline
approach, each with and without augmentation during training over all available scanners.

as done by using different WSIs, more robust classification
results were obtained. However, the differences in the re-
sults decreased more and more with increasing number of
slides. This suggests that our model can be adapted to new
scanners, also based on a smaller number of new slides and
samples (e.g. five instead of nine slides) with only mini-
mally lower accuracy.

The combination with domain-specific augmentation has
further improved our results, as augmentation yields a more
robust latent representation. We hypothesize that this latent

space also allows for a more robust prototype selection.

As future work, we suggest experimenting with other,
more complex backbone architectures to learn a more elab-
orate embedding. In addition, we want to investigate
whether our conclusions are transferable on larger distribu-
tional shifts, for example the classification of tissue sections
of other organs such as the bladder instead of the colon,
which were additionally digitized by other scanners.
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