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Abstract

Cell classification in human bone marrow microscopy
images is a challenging image analysis task due to the
number and inter-connection of cell types. While ma-
chine learning techniques have vastly higher throughput
and could thus be more reliable, humans are intrinsically
capable of understanding relations between cell types. In
this paper, we propose methods to incorporate such intrinsic
model knowledge based on representation learning. To this
end, we construct a manually defined, two-dimensional ref-
erence embedding, coined embedding guide, which we use
together with inverse dimensionality reduction, a distance-
based loss and a growing embedding technique. Results
show improved classification scores as well as a visually
interpretable and clearly defined embedding space.

1. Introduction

Automated classification of hematopoietic cells in bone
marrow microscopy images is a challenging task. This is
due to a large number of visually similar cell types, which
also occur in varying stages of maturity. A first approach
on high resolution whole slide images was presented in [3]
with good results on a subset of cell types. However, a wider
range of classes needs to be considered in a clinical setting.
Accurate prediction of the distribution of various cell types
in a given bone marrow sample would then enable a much
faster, more reliable and objective diagnosis.

Since cell types across different cell lineages and matu-
rity stages are biologically and visually related, we not only
investigate classification networks but also focus on repre-
sentation learning [1] techniques: the high-dimensional fea-
ture space should ideally show the relation between differ-
ent classes and preferably also take their dependencies into
account during training. An embedding feature space would
further allow more detailed analyses, such as better inter-
pretability of results by visualization and confidence esti-
mation (as for example proposed in [8]).

Established representation learning techniques for ex-
tracting such embeddings often focus on selecting appro-
priate triplets of data (mining) and then minimizing an
distance-based loss (e.g. with triplet loss as described
in [9]). Recently, a class-centered triplet loss [5] was pro-
posed that uses the means of all representation vectors of a
single class as anchor points instead of a single sample rep-
resentation. Apart from the separability of classes, however,
these techniques provide no suitable means of control over
the embedding space.

We propose to leverage expert knowledge by providing
a manually defined embedding guide to steer the network
towards a sensible embedding. An embedding guide is a
simple two-dimensional representation with one 2D point
per class, making it easy to define. We further propose two
methods to utilize the embedding guide in higher dimen-
sions, which are required in most representation learning
scenarios. Lastly, we propose to use a growing embedding.
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Figure 1. Image samples for each cell type (15 classes). The cells are arranged in the same way as the proposed embedding guide in
Figure 2 and the predicted embeddings in Figure 4. The color-coding follows the same notation with a blast in the center (gray) and

different lineages in different angles.

2. Image Data

Our dataset contains high resolution whole slide mi-
croscopy images of human bone marrow samples. Each
whole slide is digitized with 63x magnification and auto-
mated immersion oiling. The samples are stained using the
standardized Pappenheim [2] staining procedure, which is
commonly used by expert hematologists to make cells bet-
ter distinguishable. From each whole slide image, represen-
tative and appropriate regions are selected for annotation by
expert hematologist similar to clinical diagnostic. The re-
gions and slides were selected to capture high visual vari-
ance (e.g. in terms of staining variability) between them
instead of focusing on easy-to-process regions.

As this work focuses on individual cells, we automat-
ically extract patches of size 244 x 244 px around each
cell. While this yields only a single cell in the center of
each patch, adjacent cells might appear at the border of
the batch. Each cell patch is manually labelled by ex-
pert hematologists with the corresponding cell type. In this
work, we distinguish between the following 15 different cell
types: proerythroblast and three types of erythroblast (ba-
sophilic, orthochromatic, polychromatic), promonocyte and
monocyte, basophilic and eosinophilic granulocytes, five
types of neutrophilic granulocytes (promyelocyte, myelo-
cyte, metamyelocyte, band and segmented granulocyte) as
well as blast and lymphocyte. As the cell distribution varies
between those cell types, class-imbalance can be observed
in the dataset with a factor of 30 : 1 in the most extreme
case of neutrophilic segmented granulocytes compared to
proerythroblasts. In total, the dataset contains 7020 patches
from 13 regions of six patients. Figure 1 shows one exam-

ple per cell arranged in sensible pattern, which is required
for the proposed methods.

3. Methods
3.1. 2D Embedding Guide and 2D Loss

Based on expert knowledge, we construct a reference by
assigning a 2D embedding to each cell type. As it needs to
incorporate human expert knowledge and is therefore man-
ually defined, higher dimensions are infeasible. We propose
the biologically inspired reference presented in Figure 2,
further referred to as embedding guide ep.

If only a two dimensional embedding is to be learnt, this
guide can be employed directly in a loss function L,
using the distance (e.g. L;-distance) between predicted
embedding and embedding guide for the ground truth cell
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Figure 2. Our proposed embedding guide. Cell types are radially
distributed with related cell types (such as basophilic, eosinophilic
and neutrophilic granulocytes) being located next to each other.
Along the axis defined by each cell type, immature cells (such as
blasts) are in the center and the most mature cells further outward.
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types. However, it is often necessary to use considerably
larger embeddings to capture the required complexity. One
straight-forward approach is applying L., only on the
first two elements of the embedding vector, ignoring the
other elements. Since training commonly uses a norm-
minimization for the entire embedding vector, the additional
components should be optimized towards zero while still
being capable of capture some amount of information.

As the embedding guide is only defined once, prior to
training, no actual interaction between human and machine-
learning algorithm takes place. The approach consequently
falls in between the categories of automatic and interactive
machine learning [4].

3.2. nD Guide Loss using Inverse UMAP

Dimensionality reduction methods such as UMAP [6] or
t-SNE [10] create sensible lower-dimensional embeddings
that focus on maintaining the distance between training
samples. UMAP has the additional advantage of providing
an inverse transform to map from lower-dimensional em-
bedding space to the higher-dimensional embedding space.
While this is not a well-defined transform, learning from
training samples makes an adequate inverse transform pos-
sible.

In this work, we leverage the inverse UMAP transform
to convert the 2D embedding guide e;p into a higher-
dimensional embedding e,p. After every training epoch,
we initialize the UMAP fitter with the e,p, fit it to the pre-
dicted training data embeddings and ground truth labels (su-
pervised UMAP) and apply the inverse transform to e;p to
obtain e,p. As this can easily result in overfitting, we pro-
pose using a temporally low-pass filtered version with em-
pirically determined weights.

enD,epoch =06 enD,epoch—l + 0.4- UMAP?I(BZD) (1)

This is initialized with a zero-padded 2D embedding guide
in the first epoch. For the UMAP guide 1088 L,iqcumap, this n-
dimensional embedding guide is compared to the predicted
embeddings using the L; distance.

3.3. Growing Embedding

To further stabilize the training in higher dimensions, we
propose to use a growing embedding, where the embedding
length is n = min(max(epoch, 2), nmax)). In this way, the
first three epochs use L, directly and then continuously
grow towards the desired embedding length n.,,x With a loss
working on higher dimensions. A slowly growing embed-
ding initialized with the original 2D embedding guide can
further increase the training stability of nD-guided training.

3.4. Distance Loss

As a more stable but less direct training loss for incor-
porating the 2D guide without altering the dimensionality
of the guide, we propose to keep the distance between two
points in the guide constant — independent of dimension.
A higher-dimensional embedding with the same distances
between all point pairs should result in an embedding with
similar characteristics as the 2D guide in terms of relative
positions of embedding guide points. This can be exploited
to define the following distance loss, which is defined as the
average difference of distances between all point pairs of
the prediction and the corresponding embeddings from the
2D guide.

b—11i-1
£dlsl =

(L1 pip;), L1 (e, €any) ) ,

2
where e;p; denotes the embedding from the 2D guide cor-
responding to the ground truth cell type of the i-th sample
in the batch, b refers to the batch size and p; denotes the i-th
prediction.

z:O 7=0

4. Evaluation
4.1. Experimental Setup

We utilize a DenseNet-121 from PyTorch [7] as feature
extractor and train using the Adam optimizer with default
parameters. All methods that create triplets employ triplet-
based hard sample mining.

We perform evaluation in five-fold cross-validation.
Folds are generated such that cells from a similar region
are in the same fold and that the general distribution of cell
types is similar between folds. 12.5 % of the training data
are used for validation after each epoch. The epoch with
the highest F1-score on the validation set is kept for the fi-
nal evaluation. We further apply early stopping based on
the validation score (stop if there was no improvement in
the last 256 epochs).

Classification results for validation and evaluation are
obtained using either a linear SVM, a kNN or a multi-layer
perceptron (MLP). The type of classifier hyper-parameter
values is chosen by grid search on the training data. The
hyper-parameters are the regularization parameter C' for
SVM, the number of neighbors and the type of weights for
kNN as well as the number of neurons and hidden layers for
MLP.

Each experiment is carried out with embedding lengths
64, 256, and 1024. If sensible, we further train a 2D embed-
ding. In the case of embedding length 1024 with growing
embedding, the embedding grows with a factor of 4 (instead
of 1) per epoch.
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Figure 3. Classification results as bar plot for the classification comparison (left) and the representation learning comparison (right). Colors
denote embedding length (red = 2, green = 64, blue = 256, orange = 1024). The gray lines indicate the best results from the corresponding

baseline experiment.

4.1.1 Classification

To evaluate the classification performance, we compare
a network trained with cross-entropy (CE) loss (baseline)
against the same network with growing embeddings (ours).
The latter network utilizes the two-dimensional embedding
guide in the first three epochs. In both cases, the cross-
entropy loss is applied on an additional fully connected
layer after the embedding layer.

4.1.2 Representation Learning

To evaluate the representation learning techniques, we an-
alyze the embedding space in addition to the classification
scores. As a baseline, we train a network using triplet loss
and compare it against our proposed methods: Triplet loss
with growing embeddings, L,uop, Leiseomar With growing
embeddings and L, with growing embeddings. Each loss
additionally minimizes the norm of the embedding vector
with a factor of 0.001, which is particularly important in
the guide2D case.

4.2. Results

Table 1 and Figure 3 show the results of each experi-
ment for different embedding lengths as macro-averaged F1
scores.

4.2.1 Classification

In terms of classification performance, the best perform-
ing network trained with the cross-entropy loss (embedding
length 256) achieves a macro-average F1-Score of 0.717.
There is not much difference between different embedding

lengths, though both extreme cases of embedding lengths
2 and 1024 yield worse results. Particularly using a two-
dimensional embedding results in much worse results (cf.
Table 1). With growing embeddings, which initialize the
network in the first three epochs with the embedding guide,
results are improved by up to 0.021.

4.2.2 Representation Learning

Figure 4 shows the resulting embedding for the most impor-
tant representation learning methods in the two-dimensional
case. All representation learning techniques utilize the em-
bedding space more efficiently compared to training with
cross-entropy loss (not shown). For some classes (particu-
larly the neutrophilic granulocytes) the biological progres-
sion can be observed in embedding space. In the case of
triplet loss, this progression follows a zig-zag pattern, while
the distance loss and the guide loss enforce a straight line.
The distance loss and guided embedding follow the desired
guide in principle, although the distance loss only encodes
relative positions, not absolute positions as the embedding
guide loss. This results in differences between repeated ex-
periments: while the guided loss enforces the same encod-
ing every time, the distance loss might yield a rotated ver-
sion. Embeddings from triplet loss (and even more so with
cross-entropy) show much larger differences. Furthermore,
the variance between sample embeddings of the same class
(indicated by the ellipsis) is drastically smaller with embed-
ding guides. This is particularly noticeable for classes with
a lower amount of data (e.g., cells of the erythropoiesis,
monopoiesis, and lymphopoiesis).

In terms of classification accuracy, the results vary
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Figure 4. Sample embeddings from one test set of three different 2D, non-growing methods. Each figure shows decision boundaries
(background color), predicted embeddings per sample(points) and corresponding class confidence ellipses. The colors correspond to the
classes (see (e) and Figure 2). Note the learnt relation between different maturity stages of neutrophilic granulocytes (white to purple).

per method. Simply using growing embeddings together
with the triplet loss, actually reduces the classification re-
sult compared to just using triplet loss (baseline). The
guided learning technique using UMAP also yields less
suitable results in all embedding lengths. Applying the two-
dimensional embedding guide loss directly yields better re-
sults and is, for larger embeddings (lengths 256 and 1024),
slightly more accurate than the baseline. Surprisingly, even
an embedding length of only 2 yields acceptable results
with guided learning and has much higher scores than two-
dimensional embeddings with triplet or cross-entropy loss.
For two out of three embedding lengths (64 and 1024), the
distance loss yields better results than the baseline with an
improvement of up to 0.013.

5. Discussion

The results support two findings regarding guided learn-
ing. Firstly, using a growing embedding with an embed-
ding guide result in an improved classification performance
using the cross-entropy loss. Secondly, embedding guides
yield more defined embedding spaces that are easily in-
terpretable, are stable across repeated training and have a
lower inter-class variance.

The success of growing embeddings, even when not ap-
plied to representation learning, can be explained by a more
suitable initialization with the embedding guide. This can
also be interpreted as manually providing domain knowl-
edge to the initial training phase. For the presented guided
learning techniques, the growing embedding is an essen-
tial part to stabilize the learning process, particularly for the
UMAP method. However, it did not improve the triplet loss.

In general, representation learning techniques which do
not simultaneously train classifier and feature (embedding)
extractor network, yield slightly worse classification scores
compared to cross-entropy loss on an additional, simultane-

ously trained fully connected layer. Both guided learning
without UMAP and distance loss surpass the triplet loss,
which serves as a baseline, for most embedding lengths.
Guided learning with UMAP has slightly worse results,
which might be caused by overfitting due to the learnt
dimensionality reduction. The superiority of the simple
guide2D loss might lie in its simplicity: by focusing di-
rectly on the embedding guide without any transformation,
no overfitting can happen. The minimization of the em-
bedding vector norm simultaneously keeps the other vector
elements small. This approach also yields the most advan-
tageous embedding, with clearly defined positions for cell
clusters and lower intra-class variance. This is most notice-
able with under-represented classes, which have a very high
intra-class variance with overlapping clusters even for non-
related cell types. When using an embedding guide, this
variance is strongly reduced leading to a better separabil-
ity for under-represented classes. It further should be noted
that for guided learning methods, a shorter training (earlier
early stop) could be observed (the best models was found
after 149-222 epochs for triplet loss, 60-222 for guide2D,
60-142 for guideUMAP and 131-207 for the distance loss).

Depending on the application, wusing just two-
dimensional embeddings might be beneficial: they are
capable of acceptable score while being directly visually
interpretable. Longer embeddings require dimensionality
reduction, preferably with UMAP initialized in the same
way as described in Section 3.2 to obtain an embedding
space as defined by the 2D embedding guide. In the case of
L 420, €mbeddings can simply be truncated.

While not shown in the experiments, the performance of
the UMAP-based guided learning method without growing
methods was also evaluated but yielded expectedly insuf-
ficient results due to overfitting of the dimensionality re-
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| [ 2 64 256_| 1024
CE (baseline) 0.597 £0.012 | 0.716+0.016 | 0.717£0.026 | 0.704%0.013
CE (growing) 0.722+£0.017 | 0.725+£0.017 | 0.72540.018
iplet (baseline) | 0.684£0.017 | 0.706£0.013 | 0.707 £0.013 | 0.703 £ 0.012
triplet (growing) 0.699 £0.018 | 0.699£0.028 | 0.704 % 0.012
guide2D 0.696 £0.013 | 0.701£0.014 | 0.709+0.017 | 0.71140.013
guideUMAP 0.694 +0.030 | 0.700+0.018 | 0.696 % 0.016
distance 0.709 +£0.014 | 0.704£0.016 | 0.716 +0.007

Table 1. Classification performance in terms of F1-Score over all cross-validation test sets and the corresponding standard deviation. Each
row denotes a different method, the columns correspond to different embedding lengths.

duction method. We further evaluated the Centered-class
Triplet Loss (CTL), which yielded slightly worse results
than normal triplet loss.

An advantage of most of the presented methods is a
clearly defined embedding space, which opens new possi-
bilities with respect to visual interpretation and confidence
estimation. This, of course, needs to be investigated in more
detail. Furthermore, this embedding allows more detailed
predictions, for example of maturity stages in between the
ordinal classes. Additional research should also cover dif-
ferent distance measures (e.g., MSE instead of L1), more
complex training curricula for growing embeddings and dif-
ferent embedding guides. Finally, the capability of this
method for solving other problems should be investigated.
While it should be applicable to any classification problem
with a complex set of classes, it needs to be evaluated for
each use-case with a dedicated embedding guide.

6. Conclusion

In this work, we presented a novel method to incorpo-
rate an embedding guide into the training loss for cell clas-
sification training. This guided learning procedure outper-
forms classical representation learning algorithms. Addi-
tionally, the learnt representation in the embedding space
is visually interpretable. Furthermore, even higher scores
can be achieved by initializing standard classification net-
works with a growing embedding learnt from the two-
dimensional embedding guide. These advantages and the
straight-forward application, make Guided Learning tech-
niques useful for tasks with complex class structures, as is
the case in hematopoietic cell classification.
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