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Abstract

From the simple measurement of tissue attributes in

pathology workflow to designing an explainable diagnos-

tic/prognostic AI tool, access to accurate semantic segmen-

tation of tissue regions in histology images is a prerequi-

site. However, delineating different tissue regions manually

is a laborious, time-consuming and costly task that requires

expert knowledge. On the other hand, the state-of-the-art

automatic deep learning models for semantic segmentation

require lots of annotated training data and there are only a

limited number of tissue region annotated images publicly

available. To obviate this issue in computational pathol-

ogy projects and collect large-scale region annotations ef-

ficiently, we propose an efficient interactive segmentation

network that requires minimum input from the user to ac-

curately annotate different tissue types in the histology im-

age. The user is only required to draw a simple squiggle

inside each region of interest so it will be used as the guid-

ing signal for the model. To deal with the complex appear-

ance and amorph geometry of different tissue regions we in-

troduce several automatic and minimalistic guiding signal

generation techniques that help the model to become robust

against the variation in the user input. By experimenting

on a dataset of breast cancer images, we show that not only

does our proposed method speed up the interactive annota-

tion process, it can also outperform the existing automatic

and interactive region segmentation models.

1. Introduction

Annotated data in computational pathology (CPath)

plays an important role in developing algorithms for cancer

diagnosis [1] and prognosis [2]. Measurement of tissue at-

tributes can also help make the diagnostic process more ob-

jective and reproducible. Furthermore, annotations in digi-

tal pathology can be leveraged to extract hidden information

embedded in images which cannot be perceived by the hu-

man eye but may be of significant diagnostic value [3].

In digital pathology with the rise of utilizing digital scan-

ners in hospitals and cancer diagnosis centres, digital im-

ages are generated at an unprecedented pace. However,

providing accurate and reliable labels for these large data

repositories is not feasible because it requires expert knowl-

edge, is very time consuming and labour-intensive. Pixel-

wise (dense) annotation of tissue regions, which is neces-

sary for quantification and increasing the explainability of

models [4], is one of the hardest type of annotations to

obtain in digital pathology due to the large size of digital

whole slide images (WSIs) that increases the search area

for the annotator. Besides, it has been shown that pixel-wise

concordance between tissue type annotations from different

human annotators in the same region is not very high [5],

which portend the challenging nature of the task.

CPath can facilitate this procedure by identifying and

segmenting different tissue elements such as cells [6], nu-

clei [7, 8, 9], glands [10], cancer regions [11], etc, for down-

stream analysis tasks [12]. However, deep learning (DL)

models at the forefront of CPath algorithms require a large

amount of annotated data to be trained effectively, other-

wise, they cannot generalize well on unseen data [13]. Re-

cently, human-in-the-loop annotation approaches have been

proposed in the literature [14] where a DL model generates

initial annotations and then the results are reviewed and re-

fined by pathologists. The DL model is then tuned on the

refined data and applied to the images to propose a new and

presumably better set of annotations [14]. Nonetheless, im-

plementing this approach for tissue region annotation task

would not be feasible yet as there is no large publicly avail-

able dataset with tissue regions annotated, consequently, the

initial DL model may not work well and the need for results

refinement will increase. Therefore, the overall human-in-

the-loop annotation process might take more time than man-

ual annotation.

One way of facilitating and expediting the process of

providing dense annotation is developing platforms and

software for interactive segmentation of digital images
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which demand minimum human effort and time [15, 16].

Utilizing such software can help us to save time and also

generate a large number of annotations for downstream

analysis or quantification [17]. Benefiting from human in-

put as guiding signals before segmentation, makes interac-

tive models very accurate and robust in segmenting objects

in images from new datasets or domains [15].

In this paper, we propose an interactive segmentation

model, in which the user provided squiggles guide the

model toward semantic segmentation of tissue regions. Par-

ticularly, our main contributions in this work are listed here:

• Efficient-UNet: a light-weight, scaleable, and efficient

network architecture that benefits from a novel Resid-

ual Multi-Scale (RMS) block to better recognize re-

gions with various sizes.

• Minimalistic guiding signals: four novel techniques

are proposed to allow automatic generation of human-

drawn-like guiding signal for training of interactive se-

mantic segmentation model. These methods help the

model to become robust against the variations in user

input.

• State-of-the-art performance on the largest publicly

available dataset [18] for semantic tissue region seg-

mentation.

2. Related work

In various works interactive object segmentation is for-

mulated as energy minimization on a graph defined over the

objects [19, 20]. However, it has been shown in [15] that

these kinds of methods cannot handle the complexity that

might appear in histology primitives (glands or tissue re-

gions) and their performance in comparison to supervised

and DL-based methods is relatively poor.

Deep learning models have also been extensively used

for interactive segmentation [19, 21, 22, 23, 24] among

which DEXTRE [22] is a powerful approach that utilizes

extreme points as an auxiliary input to the network. First,

the annotator clicks four points on the extreme positions of

objects then a heat map (Gaussian map for each point where

points are at the centres of Gaussian maps) channel is cre-

ated from these clicks which are attached to the input and

serve as guiding signals. Although DEXTRE performs very

well on natural images [22], this kind of approach does not

segment different tissue types in histology images for sev-

eral reasons. First, there may be several separate regions

belonging to the same region type, where selecting extreme

points for all of them together is not feasible. Furthermore,

tissue regions from different tissue types are usually entan-

gled or nested (see Fig. 4 Ground Truth column). Therefore,

the extreme points for different regions may overlap with or

fall close to (within) each other which may confuse DEX-

TRE in recognizing different regions.

There are other methods in the literature that require the

user to draw a bounding box around the desired object as

a guiding signal for the model. Wang et al. [25] applied

a deep network on a cropped image based on a bounding

box to obtain segmentation. In a correction phase, this ap-

proach also takes squiggles from the user to indicate the

foreground and background. However, this model is not

practical for segmentation of multiple objects (like nuclei)

or amorphous objects (like glands or tissue region) in the

histology domain. Some methods combine bounding box

annotations with Graph Convolutional Network (GCN) to

achieve image segmentation [23, 24] where the selected

bounding box is cropped from the image and fed to a GCN

to predict polygon/spline around the object. Again, similar

to extreme point-based signals, methods relying on bound-

ing box signals cannot address the shape complexity, nested

objects and entangled regions challenges that are present in

histology images.

To the best of our knowledge, NuClick [15] is the only

interactive segmentation approach for extracting objects in

histology images in the literature that deals with these chal-

lenges by introducing the use of squiggle based guiding sig-

nals. In the original NuClick [15], a random point inside the

GT mask and morphological skeleton of the GT mask was

used for nucleus and gland segmentation tasks, respectively.

Although the morphological skeleton of the original

mask may work well in the case of gland instance segmen-

tation [15], for semantic region segmentation task the skele-

ton based on the original mask may get complicated due to

the noise and variations in the boundaries of the original

mask. This effect can be seen in Fig. 2(a), where the mor-

phological skeleton of the original mask is extracted using

Lee et al. method [26] and it has many small branches that

are over-fitted to the GT mask. We have addressed this issue

in this work by introducing minimalistic guiding signals.

3. The proposed method

The pipeline of the proposed interactive semantic seg-

mentation framework is illustrated in Fig. 1. Our segmen-

tation network follows an encoder-decoder paradigm where

two auxiliary maps termed as the “guiding signals” are con-

catenated to the input image. One of these maps point to the

desired object in the image (inclusion map) and another one

refers to the other objects that are present in the same field

of view (FOV) but are not of interest (exclusion map). Dur-

ing the training phase of the network, these guiding signals

are automatically generated based on the ground truth mask

whereas in the inference phase we expect the user to draw

the guiding signals interactively. In either case, we expect

a fine segmentation of the desired object, which is marked

by the inclusion signal, in the model output. Outputs re-

lated to all guiding signals are then assembled to form the

final semantic segmentation map. In the current work, we
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Figure 1. Overview of the proposed interactive segmentation framework. Squiggles in different colours specify different region types,

based on which inclusion and exclusion guiding signals are generated to be fed into the network and generate segmentation map.

propose four techniques to make the model more robust

against the variation in the guiding signals by modifying the

extracted morphological skeleton during the training (Sec-

tion 3.1) and introduce an efficient network architecture that

is fast and accurate in segmentation task (Section 3.2).

3.1. Minimalistic guiding signals

3.1.1 Mask approximating

One way to reduce the noise on the mask boundaries is to

approximate the mask polygon to a similar but more sim-

plistic polygon. For this goal, we extract the boundary co-

ordinates of the binary mask to form its polygon, then ap-

ply Douglas–Peucker algorithm [27] to iteratively decimate

the original polygon to a similar polygon with fewer points.

Then, we convert the approximated polygon back to a bi-

nary mask. Doing so, we filter out small changes (noise

or details) on the mask boundary to obtain a much more

simple skeleton, as depicted in Fig. 2(b). To better follow

the changes related to mask approximation in Fig. 2, the

original mask, the approximated (modified) mask, and their

intersection are showed in green, red, and yellow colours,

respectively, while the blue line segments depict the gener-

ated guiding signal (skeleton) based on the modified mask.

During the training, we randomly change the approxima-

tion accuracy (the maximum distance between the original

polygon and its approximation) to obtain a different guiding

signal in each epoch.

3.1.2 Mask smoothing

The idea of image smoothing prior to the medial axis (skele-

ton) extraction has been investigated before [28] as it would

result in less noisy skeletons. In this research, we adopt the

same idea and apply smoothing filters on the original mask

to reduce the noise in the boundaries and then attain a better

morphological skeleton. In our implementation, Gaussian

and Median filters with variable scales are incorporated. By

changing the filter scale (kernel size and sigma) during the

training phase, the resulted modified mask (and the gener-

ated skeleton) would be different in each epoch. The result

of applying a Gaussian filter with kernel size of 25×25 and

σ = 15 is shown in Fig. 2(c).

3.1.3 Mask partitioning

Due to the approach used for morphological skeleton gen-

eration [26], the resulted guiding signal usually align with

the major axis of the source mask or falls on the centre-line

of it (see Fig. 2(a)-(c)). In real-world applications, however,

the user may draw the guiding signals perpendicular to the

main axis or even in segmented lines that do not follow the

same orientation. To mimic this behaviour during the guid-

ing signal generation, we propose to partition the mask into

smaller parts and calculate the morphological skeleton for

each part separately. In our design, each connected compo-

nent in the mask is treated separately and partitioned adap-

tively i.e., partitioning direction (horizontal or vertical or

both directions) and the number of partitioning lines is de-

cided based on the sizes of that connected component in

each axis. Partitioned regions do not necessarily follow the

same orientation as the main mask, hence, different parts

would result in different skeleton representations. You can

see the mask partitioning effect on the generated skeletons

in Fig. 2(d) where the biggest object (connected component)

in the original mask has been partitioned using a grid pattern

(both horizontal and vertical partitioning). The generated

guiding signals via this method are not only minimalistic

but also vary significantly which will make the network ro-

bust against the vast variation in the user input during the

inference.

3.1.4 Mask distance transform thresholding

Calculating the distance transformation map of the in-

put mask, randomly thresholding it, and then extracting

the guiding signal is the only technique proposed in the

NuClick [15]. This method proved to be very effective as

not only does it smooth the original mask to obtain a more

simple and real guiding signal, but also it shortens the length
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 2. Minimalistic guiding signal generation techniques. (a) shows the original (GT) tissue mask in green and its corresponding skeleton

in blue colour. Images (b)-(e) illustrate the effect of mask approximation, mask smoothing, mask partitioning, and distance transformation

thresholding on the output guiding signal, respectively. In all these images red and yellow regions indicate the modified mask (used for

skeleton extraction) and its intersection with the ground truth, respectively. (f)-(e) are five examples of random combination of mask

modification techniques and their resulting skeleton.

of the generated skeleton which is a valid variation in real-

world guiding signals. Having said that, in NuClick [15],

the distance map was thresholded based on the statistics of

all connected components in the mask which was only one

gland whereas in tissue region segmentation we have mul-

tiple connected components (regions) with various sizes re-

lated to the same class and therefore presented in the same

mask. If we estimate the threshold based on the statistics

of all objects together, that might result in eliminating some

objects from the deformed mask and hence no guiding sig-

nal would be generated for those objects. Therefore, we

proposed to apply distance transformation and thresholding

in an adaptive manner to each connected component in the

mask, separately. A sample of applying this method to a

multi-object mask is depicted in Fig. 2(e).

3.1.5 On-the-fly signal generation

Our implementation of the above-mentioned techniques al-

lows us to incorporate a combination of them for automatic

guiding signals generation (both inclusion and exclusion

maps) during the training phase. In particular, we apply this

ordered sequence of mask approximating, smoothing, par-

titioning, and distance transform thresholding techniques

with probabilities of 0.75, 0.75, 0.5, and 0.5, respectively,

and after all, we generate the morphological skeleton [26]

of the modified mask as the guiding signal. The combi-

nation of these mask modification techniques will guaran-

tee the generation of unique minimalistic guiding signals in

each epoch, as illustrated in Fig. 2(f)-(j). It is important to

note that although a copy of the original mask is modified

to generate the guiding signal, the original mask is used for

network training as the expected output.

3.2. Model and loss function

Inspired by EfficientNet [29], we propose an encoder-

decoder network architecture for end-to-end segmentation

in which skip connections between the encoder and decoder

part have been utilized, similar to UNet [30]. We keep

the idea of network scalability as suggested in EfficientNet

[29] and mainly used the same convolutional blocks pro-

posed in that work. However, to make our model robust

against variation in object scales, we propose a novel Resid-

ual Multi-scale (RMS) block inspired by multi-scale blocks

introduced in [31]. In the following, we explain in detail

how these network constructing blocks work, and how we

use them to build a scalable segmentation network architec-

ture.

3.2.1 Network constructing blocks

Mobile Inverted Residual block with Squeeze and Exci-

tation (MIRSE): These blocks as the main part of the net-

work are directly taken from EfficientNet [29]. This block is

constructed by embedding a squeeze-and-excitation (S&E)

mechanism [32] into a residual block from MobileNetsV2

[33]. As depicted in Fig. 3(a), our implementation of

MIRSE blocks requires setting three parameters K, F , and

S that are convolution kernel size, the number of feature

maps, and squeeze ratio for the S&E (Fig. 3(b)), respec-

tively. Note that in each block and after convolution layers,

we use Batch Normalization [34] (BN) and self-gated ac-
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Figure 3. Constructing blocks of the Efficient-UNet segmentation model.

tivation function [35] (Swish) layers. Also, note that the

squeeze parameter for all MIRSE blocks in our network has

been set to S = 0.25.

Upscaling block: This block consists of a 2D transposed

convolution layer with a kernel size of 3 and stride of 2 to

increase the resolution of feature maps in each stage of the

decoding path. This block is also responsible for concate-

nating the feature maps from the encoder part of the net-

work and creating skip connections.

Residual Multi-Scale block (RMS): This block con-

sists of 4 convolution layers (followed by BN and Swish

layers) at different scales. Each layer is a atrous convolution

[36] with different kernel size (K) and dilation rate (D). In

comparison to MSC block [31], the proposed RMS block

combines the output feature maps from different scales us-

ing a 1× 1 convolution and incorporates a residual connec-

tion from its input to both keep the effect of original input

and ease the flow of gradient during backpropagation [37].

3.2.2 Efficient-UNet Architecture

Similar to [29], we first introduce a baseline model architec-

ture and then scale its width (number of channels or feature

maps in constructing blocks) and depth (number of block

repetition in each stage of network) uniformly using w and

d scaling factors, respectively. These factors are calculated

using a compound scaling method and are directly adopted

from [29]. Note that unlike [29] we did not scale the net-

work for resolution because the concept of resolution in

digital pathology depends on the optical magnification and

changing image size or FOV will affect the problem dra-

matically.

The architecture of our baseline segmentation model,

Efficient-UNet-B0, is described in Table 1, in which op-

erations and their configurations in the encoding and de-

coding paths of the network are outlined. The encoder

part contains only MIRSE blocks with different configu-

rations and numbers of repetition, on the other hand, the

proposed decoder part encompasses upscaling and RMS

blocks as well. As we have four layers of atrous convo-

lution in RMS block, this block is configured using ker-

nel size vector K = [K1,K2,K3,K4] and dilation rate

Encoder Decoder

Conv2D (K=3, F=32, Stride=2)
Upscale (F=320)

MIRSE (K=5, F=192, R=3)

MIRSE ((K=3, F=16, R=1)
RMS (K=[3,5,5,7], D=[3,3,5,7], F=192)

MIRSE (K=5, F=112, R=3)

MIRSE (K=3, F=24, R=2)* Upscale (F=112)

MIRSE (K=3, F=80, R=3)

MIRSE (K=5, F=40, R=2)* RMS (K=[3,3,5,5], D=[1,3,3,5], F=80)

MIRSE (K=3, F=80, R=3)* Upscale (F=80)

MIRSE (K=5, F=40, R=2)

MIRSE (K=5, F=112, R=3)
Upscale (F=40)

MIRSE (K=3, F=24, R=2)

MIRSE (K=5, F=192, R=5)* Upscale (F=24)

MIRSE (K=3, F=16, R=1)

MIRSE (K=3, F=320, R=1) Conv2D (K=1, F=1)

Table 1. Architecture of the baseline network Efficient-UNet-B0.

For each operation, its parameters are outlined in the parenthesis.

D = [D1, D2, D3, D4]. From Table 1 note that in stages

with *-marked MIRSE block, the first convolution layer

would be applied with a stride of 2 to decrease the spa-

tial resolution of feature maps by a factor of 2, similar to

max-pooling operation.

During the network scaling, the number of feature maps

(F network width) in all blocks (except for the last Conv2D

which is responsible for segmentation map generation) and

the number of MIRSE block repetitions in each stage (R

network depth) will be scaled by w and d factors whereas

the size of all kernels and number of Upscale and RMS

blocks stay the same.

3.2.3 Loss function

We use a hybrid loss function which consists of soft Dice

and binary cross entropy (BCE) parts [38]:

L = 1−

2
∑
i,j

pijgij + ε

∑
i,j

p2ij +
∑
i,j

g2ij + ε
−

1

N

∑

i,j

gij log(pij), (1)

where pij and gij are the values of every (i,j) pixel in the

prediction and GT mask, respectively, ε = 1 is used to avoid

division by zero, and N is the total number of pixels. The
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Dice part of the loss function is robust against the pixels im-

balanced class population whereas BCE penalizes the loss

for even small pixel-wise errors [38].

4. Experiments and results

4.1. Dataset, preprocessing, and metrics

The dataset used for model training and validation is

from the work of Amgad et al. [18] which contains 151

H&E stained tissue image regions extracted from WSIs of

the same number of triple-negative breast cancer cases ac-

quired from the Cancer Genome Atlas. Tissue regions in

this dataset have been annotated with the help of 25 annota-

tors. In total, there are 20340 regions annotated in 20 cate-

gories that are merged into 5 classes: tumour, lymphocytic

regions, stroma, necrosis or debris, and others (blood, fat,

vessel, etc.) [18]. In this work, we followed the same re-

gion labelling paradigm and used the same image regions

and rendered masks in Amgad et al. [18] which are split

into 82 slides for training and 43 slides for validation.

Following [18], images are stain normalized using Rein-

hard’s method [39]. The original images are captured at

0.25 micron per pixel (MPP) resolution (which is equal to

40x magnification) with various scanners. However, to keep

enough context during the training of our interactive seg-

mentation model, we extract 512× 512 patches from image

regions and their corresponding masks at 10x magnification

(1 MPP resolution). Having guiding signals in the input of

the interactive segmentation model, we can use lower reso-

lution images to speed up the region marking and process-

ing time. However, extracted patches were confirmed by a

pathologist to show enough contextual and detailed infor-

mation for tissue region annotation.

For the evaluation of the segmentation performance, we

calculate the DICE similarity coefficient, accuracy, and

Area Under ROC curve (AUC) of pixel-wise classification.

These metrics are reported for each region type separately

as well as the overall performance for all tissue types.

4.2. Validation experiments

In this section, we report the results of applying the pro-

posed method and other state-of-the-art (SOTA) interactive

or automatic segmentation models on the validation set of

the Amgad dataset [18] in Table 2, where the first column

indicates the segmentation model, the second column des-

ignate the guiding signal used for that model training, and

the rest six columns report the evaluation metrics on overall

performance or each tissue category. Please note that dur-

ing the tests on the validation set, for all interactive models,

similar guiding signals are provided to make fair compar-

isons.

Results in Table 2 suggest that interactive segmentation

models like NuClick [15] and the proposed method can out-

perform SOTA automatic segmentation models like UNet

[30], DeepLab v3 [36], and the baseline method [18] by a

large margin as they are provided with guiding signals in the

input. Particularly, our best performing model, Efficient-

Unet-B3, achieves overall Dice, accuracy, and AUC of

0.875, 0.984, 0.995, respectively. In comparison to the

SOTA automatic segmentation models, our proposed ap-

proach performs about 14% and 11% better than UNet [30]

and DeepLab v3 [36] in terms of overall Dice score, respec-

tively. The same trend can be seen not only for overall ac-

curacy and AUC metrics but also for all the metrics reported

for different tissue types in Table 2. Note that the lower per-

formance for some region types in comparison to the over-

all (average) performance can be associated with the higher

noise in GT annotations of those regions. Higher noise in

GT arises from ambiguity in the boundaries of these regions

which makes it hard to separate them from other regions as

reported in [18]. Although the original NuClick [15] per-

forms better than all other automatic segmentation models

(overall Dice score 0.773), it still shows lower performance

metrics than the proposed method i.e., Efficient-Unet-B3

segmenting 10% better in terms of Dice score. Neverthe-

less, it can be seen that when we train the NuClick model

with the proposed minimalistic signals (Section 3.1), over-

all Dice scores rises to 0.835, which shows the effectiveness

of the proposed minimalistic guiding signal generation.

The four last rows of Table 2 are reporting the effect of

increasing the scale of the proposed Efficient-UNet model

architecture. In each row, number of features maps F and

repetition of MIRSE blocks R (see Table 1) are multiplied

by the introduced w and d factors. Scaling up the net-

work from Efficient-Unet-B0 variant to the B3 variant does

elevate the performance level of interactive segmentation,

however, this raise is not significant. Specifically, the largest

model (Efficient-Unet-B3) performs only 0.8% better than

the baseline model (Efficient-Unet-B0) in overall Dice.

4.3. Experiment with human­drawn guiding signals

To test the robustness of the proposed method against the

variations in human-provided guiding signals, we presented

a subset of validation set (25 images) to 2 non-expert anno-

tators and asked them to draw guiding signals on images.

To make the process consistent between the two annota-

tors, for each image and each region type we overlaid the

ground truth annotation on images and asked the annotators

to draw their squiggle markers (guiding signals) inside the

annotated region. By doing this, we are able to compare the

performance of the same model using minimalistic (auto-

generated) signals (Section 3.1) versus using human-drawn

guiding signals as reported in Table 3.

The trained Efficient-Unet-B0 performs accurately

whether the input guiding signals are automatically gen-

erated or provided by a human annotator. In Table 2, the
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Model Guiding Signal
Overall Tumour Stroma Inflamatory Necrosis Others

DICE Acc. AUC DICE Acc. AUC DICE Acc. AUC DICE Acc. AUC DICE Acc. AUC DICE Acc. AUC

Amgad et al. [18] - 0.750 0.783 0.898 0.851 0.804 0.941 0.8 0.824 0.881 0.712 0.743 0.917 0.723 0.872 0.864 0.666 0.67 0.885

UNet [30] - 0.733 0.756 0.880 0.833 0.772 0.913 0.788 0.798 0.873 0.701 0.722 0.907 0.713 0.856 0.842 0.629 0.634 0.866

DeepLab v3 [36] - 0.760 0.794 0.904 0.862 0.822 0.956 0.812 0.841 0.893 0.725 0.76 0.921 0.729 0.875 0.865 0.671 0.673 0.887

NuClick [15] NuClick 0.773 0.957 0.968 0.855 0.941 0.972 0.793 0.926 0.957 0.724 0.958 0.960 0.810 0.974 0.983 0.681 0.986 0.967

NuClick Minimalistic 0.835 0.967 0.991 0.895 0.951 0.989 0.839 0.944 0.981 0.824 0.970 0.991 0.851 0.979 0.996 0.768 0.990 0.995

Efficient-Unet-B0 (w = 1, d = 1) Minimalistic 0.867 0.978 0.994 0.931 0.973 0.995 0.877 0.961 0.987 0.854 0.978 0.995 0.883 0.986 0.997 0.790 0.991 0.996

Efficient-Unet-B1 (w = 1, d = 1.1) Minimalistic 0.869 0.980 0.994 0.933 0.973 0.996 0.875 0.961 0.987 0.855 0.980 0.995 0.889 0.991 0.997 0.792 0.993 0.996

Efficient-Unet-B2 (w = 1.1, d = 1.2) Minimalistic 0.871 0.981 0.994 0.935 0.977 0.996 0.878 0.962 0.987 0.853 0.977 0.995 0.888 0.992 0.997 0.801 0.995 0.997

Efficient-Unet-B3 (w = 1.2, d = 1.4) Minimalistic 0.875 0.984 0.995 0.935 0.978 0.996 0.881 0.969 0.990 0.859 0.982 0.996 0.891 0.993 0.997 0.809 0.996 0.997

Table 2. Evaluation results on validation set of Amgad et al. [18] dataset using different automatic and interactive segmentation methods.

Model Guiding Signal
Overall

DICE Acc. AUC

Efficient-Unet-B0 Minimalistic 0.874 0.982 0.994

Efficient-Unet-B0 Human #1 0.887 0.986 0.995

Efficient-Unet-B0 Human #2 0.870 0.981 0.994

Table 3. Comparison of proposed model performance on a subset

of 25 validation images when used with auto-generated minimal-

istic guiding signals versus human-provided guiding signals.

model provided with guiding signals drawn by annotator

“Human #2” interestingly performs better than the same

model with auto-generated signals, achieving an overall

Dice score of 0.887 over 0.874. Qualitative results for three

different samples in Fig. 4 (where each region type has been

coloured differently and guiding signals for tissue region

are depicted with dark blue lines) also show that the trained

models can handle variations in the guiding signals and seg-

ment tissue regions quite perfectly even if provided with

overly simplified guiding signals.

5. Discussion

Evaluation results in Table 2 show that our proposed seg-

mentation models, Efficient-UNet B0-B3, perform consid-

erably better than SOTA interactive segmentation model,

NuClick [15], using the same minimalistic guiding signal

(Section 3.1) and increase the overall Dice metric by 3%–

4% as the network scale grows. One may argue that de-

spite the increase of network scale, its performance does

not elevate considerably i.e., less than 1% increase in all

performance metrics throughout all tissue types when in-

creasing the Efficient-UNet scale from B0 to B3. With the

growth of network scale, our models capacity for learning

feature representations also expands [13], however, bigger

networks usually need more training data to be trained op-

timally whereas we only used a limited number of train-

ing images in this work. Therefore, we believe that one of

the main reasons for not having a considerable performance

boost while increasing network scale is the lack of training

data. Nevertheless, we kept the design of the network as

scaleable as possible so it can be used in future experiments

or other applications with more data.

The efficiency of the proposed segmentation network is

not only related to its accuracy but also its speed. The

baseline network Efficient-UNet-B0 is twice faster as com-

pared to NuClick while gaining 3% higher overall Dice met-

ric. Particularly, our network can generate the annotation

map for each guiding signal in about 0.1 seconds (using an

Nvidia Tesla V100 GPU). This means that the proposed net-

work fits in an interactive annotation setup where it can re-

spond to the annotator’s markers in real-time and make the

interactive process more user friendly.

The positive effect of introducing proposed minimalis-

tic signal generation techniques during the training phase

is visible in validation results of Table 2 and Table 3. In

Table 2, one can see that by only using the proposed mini-

malistic guiding signal generation method, overall NuClick

performance (Dice metric) increases by more than 6% that

is more prominent than the effect of improving network

architecture discussed in the previous paragraphs (3% im-

provement when using Efficient-Unet instead of NuClick).

Results in Table 3 also testify to the effectiveness of the pro-

posed method for guiding signal generation, where a given

model performs at the same level or even better when it is

provided human-drawn guiding signals instead of GT-based

extracted ones. This shows that the proposed techniques

in Section 3.1 can generate guiding signals that resemble

human-drawn markers and capture the variations they might

show. This claim is supported by the qualitative results

illustrated in Fig. 4, where even overly-simplified squig-

gles as guiding signals can lead to high quality segmenta-

tion outputs. This also implies that the proposed interactive

segmentation model is insensitive to variations in the user

input. This experiment expresses the adaptiveness of the

proposed interactive segmentation method, where the more

carefully and detailed guiding signals are drawn, the more

accurate the segmentation output will be. Having near per-

fect initial annotations by only providing a simple guiding

signal in the beginning will save a considerable amount of

annotator time during the annotation review and correction

[5].

Although we have trained and tested our interactive seg-

mentation models on image-level information, it is only a

matter of implementation to extend this idea to work on

WSIs. Coupled with WSI viewer and annotation tools like
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Ground Truth Minimalistic (auto) Signal Human #1 signal Human #2 signal

Tumour Stroma Lymphocytic Necrosis/Debris Blood Fat Plasma cells Vessel

Figure 4. Results of applying proposed baseline interactive segmentation model, Efficient-UNet-B0, on three samples using minimalistic

guiding signals (described in Section 3.1), and guiding signals provided by two human annotators.

ASAP [40], the proposed interactive method can speed up

the annotation curation process considerably. Annotators

only need to view the WSI at low-level magnification and

draw squiggles with different indices (colours) inside differ-

ent tissue types, then we only need to extract patches based

on the drawn markers and feed them into the proposed in-

teractive segmentation model to get the initial segmentation

map for each path. Results of the patches are then stitched

and overlaid on the WSI in the form of polygons so they can

be edited by the annotators.

6. Conclusions and future directions

In this work, we proposed an interactive semantic seg-

mentation model for robust tissue region annotation in a

semi-automated manner. Our approach follows the work

of [15] in which for segmentation of each object in the

image, two guiding signal maps (inclusion and exclusion

maps) are concatenated to the image in the input of the net-

work. Here, we improved the network architecture by in-

troducing Efficient-UNet which is 2 times faster and 4%

more accurate in terms of overall Dice metric than the orig-

inal NuClick. We have also proposed four novel techniques

to automatically extract minimalistic and human-drawn-like

guiding signals from GT masks, so they can be used during

the training of the model. We showed that using the pro-

posed minimalistic guiding signals makes the models ro-

bust against variations in the user input and can improve the

overall Dice metric by another 6%. We believe this AI tool

can be embedded in a whole slide image viewer/annotation

software efficiently to effectively accelerate large-scale re-

gion annotation acquisition projects.

There are several ideas that can be pursued to extend

this work. Testing with the generalizability of the proposed

method to new unseen datasets (e.g. samples from other or-

gans) or checking the adaptability of the trained model to

new domains (like IHC stained samples) can be of inter-

est as an extension of this work. In that case, we would

like to investigate the effect of incorporating unsupervised

pre-training methods, such as SelfPath [41], on the perfor-

mance of the proposed interactive method for tissue region

segmentation in new domains. Furthermore, it is possible

to add a classification head to the proposed network archi-

tecture to enable proposing a category label for each region

which may also improve the segmentation quality synergis-

tically.
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