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Abstract

The field of computational pathology presents many
challenges for computer vision algorithms due to the sheer
size of pathology images. Histopathology images are large
and need to be split up into image tiles or patches so modern
convolutional neural networks (CNNs) can process them.
In this work, we present a method to generate an inter-
pretable image representation of computational pathology
images using quadtrees and a pipeline to use these rep-
resentations for highly accurate downstream classification.
To the best of our knowledge, this is the first attempt to use
quadtrees for pathology image data. We show it is highly
accurate, able to achieve as good results as the currently
widely adopted tissue mask patch extraction methods all
while using over 38% less data.

1. Introduction

Recent advances in digital pathology and the adoption
of machine learning methods for computer vision have re-
sulted in many efforts to develop deep learning algorithms
for the analysis of information-rich pathology images. The
tissue slides analysed by pathologists are very heteroge-
neous for many reasons including the variety of tissue types,
differences in staining protocols and presence of artifacts
such as smudges or out of focus regions, to name only a
few [21]. Furthermore, the images are scanned at high reso-
lution, frequently containing hundreds of millions of pixels.
Whole Slide Images (WSIs) present a unique challenge in
that most state-of-the-art computer vision systems rely on
convolutional neural networks (CNNs) [14] and are unable
to process images larger than a few hundred pixels square in
size at once. As such, existing supervised learning methods
to analyse large histopathology images typically break them
up into small patches losing contextual, global information
contained in the larger field of view (FoV) of the entire im-
age [8, 10]. Another major limitation of these patch-based

methods is that they feed every tissue patch into a CNN,
whether it is useful or not.

1.1. Representation learning in computational
pathology

There has been comparatively little research into novel
ways of representing pixel data in pathology images. The
vast majority of research has focused on using the patch-
based paradigm for a huge variety of tasks from classifi-
cation through to tumour and tissue segmentation and cell
counting regression problems [15]. Tellez et al. [24] pro-
pose a two-step method to use CNNs for analysis of gi-
gapixel images using only the image level label termed Neu-
ral Image Compression (NIC). They split the input image
into adjacent, non-overlapping patches and train an unsu-
pervised compression network to encode semantic infor-
mation from each patch into a lower-dimensional feature
vector. They arrange the extracted feature vectors with the
same spatial correspondence as in the original WSI and train
a CNN classifier on the extracted feature representation to
predict the image level label. With this they are able to
achieve an image-level performance only 7% different com-
pared to a fully supervised baseline. However, the process
of creating a representation of the WSI still breaks the im-
age up into patches and assumes the patch level encoder
network is able to retain the global information between
patches in the generated feature representation. Further-
more, as it is a deep feature representation, it is not easily
interpretable and there is no way of verifying whether the
extracted feature vectors retain the global information they
share with other feature vectors.

Instead of using a neural network to encode adjacent
regions of a histopathology image, we propose to use
quadtrees built in a top down fashion from the entire im-
age [7]. Quadtrees are tree data structures, historically used
in image compression [23]. They are constructed by recur-
sively partitioning a two-dimensional space into four sub-
regions of equal size and storing the information of each
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Figure 1. Overview of our framework. a A quadtree is constructed from a given input image, image regions are extracted from each node
of the quadtree and down sampled to be of size 244 × 244 pixels and stored as a bag of patches. b Patches are passed through a feature
network. We used a ResNet18 [9] pre-trained on ImageNet [5] for all our experiments to encode the feature vectors. These feature vectors
are then passed through a MIL framework to generate the final output prediction.

region in a node within a tree. Each node contains informa-
tion about its corresponding region and has either exactly
four children or none in the case of leaf nodes. As such,
the tree data structure can be used to represent the infor-
mation contained in the 2D space in a more compressed,
data efficient way. By traversing the tree, the information
from the original space can be extracted. The depth of the
quadtree can depend on the size of the input image and the
distribution of information within the space that is being de-
composed. If there is sufficient relevant information within
a given region, the algorithm will continue adding nodes to
the tree and extending its depth until this no longer holds.
The maximum depth of the tree can be limited by truncating
the growth at a user defined depth.

Quadtrees have not been used extensively within ma-
chine learning. The three-dimensional analogue, octrees,
have been explored for tasks such as shape and scene com-

pletion with voxel arrays [25, 26]. Wang et al. [25] use
an Octree-based Convolutional Neural Network (O-CNN)
for 3D shape analysis. By building an octree representa-
tion of 3D shapes and restricting the computation to the leaf
nodes they are able to more efficiently store the information
and achieve comparable performance with existing methods
while using less memory. Jayaraman et al. [12] applied this
idea with Quadtree Convolutional Neural Network (QCNN)
to sparse two-dimensional handwriting data sets resulting in
more efficient memory usage and computation time com-
pared to a standard CNN.

However, Wang et al.’s [25, 26] and Jayaraman et al.’s
[12] work solely uses binary data. Wang et al’s O-CNN
works with positional data while Jayaraman et al’s QCNN
uses greyscale image data. Histopathology data is 2D RGB
colour data. In this work, we propose to use the quadtree
itself as an image representation while taking advantage of
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the compression benefits of quadtrees by applying them to
RGB data. To our knowledge this is the first time quadtrees
have been used for this purpose.

1.2. Quadtree image representation

We propose a new image representation built with com-
putational pathology in mind using a type of tree data struc-
ture called a quadtree. Unlike existing digital pathology
representation methods our framework uses an image repre-
sentation and is not necessarily a feature representation. We
use this quadtree representation to extract patches at varied
resolutions in different regions of the images. This leads to
greater performance in downstream tasks compared to ex-
isting patch extraction techniques all while using less data
due to the quadtree construction. We show that our method
is able to identify significant regions within an image rele-
vant to clinical diagnosis and generate an interpretable, tree
structure representation.

1.3. Contributions

Our contributions can be summarised as follows:

1. We propose an image representation for computational
pathology images and a pipeline able to predict image
level labels using a single GPU.

2. We compare several methods for constructing the
quadtree representation using different colour spaces
and information quantification functions.

3. We evaluate our pipeline on a histopathology col-
orectal adenocarcinoma (CRA) data set used to train
the system to classify an image as cancerous or non-
cancerous.

4. We generate attention heatmaps to discover which re-
gions of the image the model found significant in pre-
dicting the image level label.

The remainder of the paper is organised as follows: Sec-
tion 2 explains our method in depth; Section 3 details our
experimental results; our discussion and conclusions from
our results are stated in Sections 4 and 5 respectively.

2. The Quadtree Framework
In this section, we present our method for construct-

ing quadtrees from histopathology images and how we use
them for downstream analysis. Our pipeline method con-
sists of two main stages.

For a given image, a quadtree is constructed and patches
extracted from the tree’s nodes. These patches are then
treated as a bag of instances and used in a multiple instance
learning (MIL) paradigm to generate the image level pre-
diction [6].

2.1. Building quadtrees

A quadtree represents a partition of a two-dimensional
space obtained by recursively decomposing the region into
four equal quadrants and sub-quadrants where each node
in the tree contains information corresponding to a given
specific partition of the original space [7]. In our case
the two-dimensional space is that of an RGB image. The
quadtree algorithm works on the intuition that if an image
or a sub-region within an image, represented by a node in
the quadtree, contains sufficient “interesting” information
it should be divided further into four equally sized sub re-
gions. If this occurs, the tree is expanded by adding four
child nodes to the original node being evaluated. However,
if a region does not contain sufficient interesting informa-
tion, then no child nodes are added and the node is made a
leaf node. When all regions have been decomposed down
to leaf nodes, i.e. they do not need to be split any further,
then the quadtree is complete. An example of the quadtree
representation is shown in Figure 1a including an example
of a decomposed image and its quadtree representation.

Algorithm 1: Quadtree construction algorithm
QuadTree

Input : Image: i ∈ Rm×n×3, threshold: t, tree
depth: d, criterion: c, quadtree: Q = null

Output: quadtree Q
add node n to Q at depth d
if n has a parent then

connect parent to n
end
if c(i) ≤ t or depth of Q = d then

return Q
else

split i into 4 subquadrants of equal size
[i1, i2, i3, i4]

for j in [i1, i2, i3, i4] do
QuadTree(j)

end
end

Mathematically, for use with RGB images we represent
this idea with the following components:

1. A function to quantify the information within a given
region which we refer to as the criterion;

2. A threshold value which determines the amount of in-
formation a region needs to contain to justify splitting
the region further.

These components allow us to compute whether the split-
ting process should occur in a region given the criterion and
splitting threshold.
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For example, let us say we have a given region i ∈
Rm×n×3, a splitting threshold t and a criterion function c.
We can compute c(i) and then compare it with the threshold
t. If c(i) > t then this means the given region has enough
information to justify splitting the region further and ex-
panding the overall quadtree. Conversely, if c(i) ≤ t then
the region does not have sufficient information to warrant
expanding the quadtree and the given node of the tree be-
comes a leaf node.

2.1.1 Splitting criteria

We explored several different splitting criterion functions.
We used the entropy [22] and mean pixel value of an im-
age region as a measure of the amount of significant in-
formation in a region. Furthermore, we used these crite-
ria with the images in the native RGB space and two ad-
ditional colour spaces. All images we used were stained
with Haematoxylin and Eosin (H&E). The haematoxylin
dye stains basophilic tissue structures blue, in particular
nuclei are heavily stained while cytoplasmic tissue regions
are lightly stained. We hypothesise that by focusing on the
bluer regions of the image, this will guide the quadtree split-
ting method to focus on the nuclei within the images which
are usually the main feature of interest for most downstream
tasks. As such we explored converting the images into blue
ratio space [16] to highlight the areas dense in nuclei. We
also used colour deconvolution [20] to separate out the dif-
ferent stains as colour channels and used the Haematoxylin
channel as a proxy for the number of cells.

2.1.2 Determining the splitting threshold

The splitting threshold t used in the quadtree algorithm is
a hyperparameter which we determined from the data set.
For a given criterion function and colour space, such as en-
tropy in RGB space, we computed the value of this criterion
for each image in the data set. We then calculated the mean
(µ) and standard deviation (σ) of this distribution and used
these values to determine the splitting threshold. We per-
formed an ablation study for this threshold and how it af-
fects both qualitative and downstream performance, as de-
scribed in Section 3.1.

2.1.3 Learning from quadtrees

In each node of the quadtree we stored a down-sampled
copy of the original image region which corresponds to
that node’s position within the quadtree decomposition. We
used image interpolation to down-sample the image regions
to all be of size 244 × 244 for later processing by a pre-
trained CNN for feature extraction. This allows us to store
patches at different scales from the original image. This in-
corporates the wider FoV present in the patches correspond-

ing to shallow nodes in the tree while the deeper nodes con-
tain the fine grained detail at high magnification.

2.2. MIL framework

Having generated a collection of down-sampled image
regions from the original image using our quadtree method
we treated this collection as a “bag of instances” or patches.
This lends itself to the Multiple Instance Learning (MIL)
paradigm, a weakly supervised learning approach, where
the bag of instances has a single label but instance level
labels are not available [6]. The label of the bag is positive
(Y = 1) if at least one instance within the bag is positive
and conversely the overall bag label is negative (Y = 0) if
no instance within the bag is positive.

Formally, for a given image X ∈ Rm×n×3 with associ-
ated label Y ∈ {0, 1} we create a bag B of instances:

B = {(x1, y1), (x2, y2), ..., (xk, yk)}, (1)

where x ∈ R244×244×3, y ∈ {0, 1}. The instance level
labels yn are hidden to the learner. To classify this bag of
images, we can use the following function

Θ(X) = g(α(f(x1), ..., f(xk))), (2)

where f is a transformation of instances xk to a lower-
dimensional embedding, α is a permutation-invariant ag-
gregation function and g is a transformation to generate the
overall class probabilities for the bag.

There are two main approaches to MIL:

1. Instance-based: Here f classifies each instance indi-
vidually, assigning a class label for each instance and
then α combines these predictions together to generate
an overall prediction for the bag using operations such
as mean, maximum etc [4]. Finally, g is the identity
function in this case.

2. Embedding-based: Instead of classifying each in-
stance individually, here f maps each instance to a
lower-dimensional embedding, α then obtains a bag
representation independent of the number of instances
in the bag and g classifies these bag representations to
obtain the overall prediction [18].

We initially tested the instance-based method but found the
classifier was difficult to train to a sufficient accuracy caus-
ing poor performance. The embedding-based approach has
less bias than the instance-based one and was found to per-
form better, hence was used for our experiments. For a bag
of image patches we used a ResNet-18 pre-trained on Ima-
geNet to encode each image patch as a feature vector turn-
ing the bag of image patches into a bag of feature vectors.
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Figure 2. Example of quadtree decompositions in different colour spaces. a Image decomposed using entropy in RGB space. b Image
decomposed using mean pixel value in blue ratio space. c Image decomposed using mean pixel value of haematoxylin channel. The
splitting threshold was set to the mean (µ) minus one standard deviation (σ) for each case.

2.2.1 MIL methods

We used two different MIL methods based on an at-
tention mechanism [3]. First, we used Attention-based
MIL (AMIL) [11]. Attention-based MIL modifies the
embedding-based MIL approach by changing the MIL
pooling operation, α, where for a bag B = {h1, ..., hk}
with K embeddings the overall prediction is obtained by

z =

K∑
k=1

akhk, (3)

where

ak =
exp{wT tanhV hk

T }∑K
j=1 exp{wT tanhV hT

j }
, (4)

w ∈ RL×1 and V ∈ RL×M are parameters. For full details
we refer the reader to Ilse et al.’s original paper [11].

We also explored a recent expansion of Ilse et al.’s
Attention-based MIL. Lu et al.’s Clustering-constrained At-
tention Multiple Instance Learning (CLAM) was developed
with computational pathology in mind [17]. In CLAM, the
attention network predicts a set of attention scores for each
class in the classification problem. Lu et al. use the same
attention backbone in the first two layers of the network as
Ilse et al. but then split the network into n parallel attention
branches in an n-class classification problem along with an
additional instance-level clustering layer for each class to
obtain the overall prediction. Again, we refer the reader to
Lu et al.’s original paper for full details of the method [17].

3. Experimental Results
To evaluate our proposed method we used the CRAG

data set from Awan et al. [2]. This contains 139 non-
overlapping images extracted from 38 digitised WSIs of
colorectal adenocarcinoma (CRA) at 20× magnification.
The images varied slightly but on average were around
4500 × 7500 pixels in size. Of the 139 images, 71 were
classified as normal tissue, 33 as low grade and 35 as high
grade. We merged the low grade and high grade classes into
a cancerous class to create a binary classification problem

suitable for the MIL paradigm. In total, we had 71 images
in the non-cancerous or negative class and 68 cancerous
or positive images creating a fairly balanced classification
problem. Awan et al. also provided the training/validation
split they used for 3-fold cross validation so a fair compari-
son between our results and theirs could be drawn.

Given the size of the original images, we set the maxi-
mum depth d of our quadtrees to be 4. This was done be-
cause if we allowed the trees to create nodes at a deeper
level then the original image regions each node represents
would be smaller in size than the 244× 244 patch size that
are fed into pre-trained networks. Upsampling would have
been required to fix this and it would have been inconsis-
tent with the process used on the nodes at every other level
within the tree. We kept the trees at depth 4 for all of our
experiments.

During training, we normalised each patch using the
mean and standard deviation of ImageNet, augmented each
extracted patch using random horizontal and vertical flips
with probability 0.5 as well as small, random adjustments
to the brightness, contrast, saturation and hue of the input
images. We used the Adam optimiser [13] with a loss rate
of 5e−4, betas of 0.99 and 0.999 and weight decay of 1e−4.
All experiments were performed on a single Nvidia Quadro
RTX 5000 GPU.

3.1. Quadtree decompositions

To evaluate the different proposed splitting methods for
the quadtrees described in Section 2.1.1 we performed a
qualitative analysis of all 139 images’ quadtree decompo-
sitions under each method. For each method, we tested a
variety of thresholds but kept them consistent in our com-
parisons. For example, we would only compare images
that had been split where the threshold was set to be the
same e.g. mean (µ) minus 1 standard deviation (σ) for each
given colour space and method with images split at the same
threshold, not with decompositions where the threshold had
been set to µ− 1.25σ or any other level.

We found that the mean pixel value in the Haematoxylin
channel gave the best qualitative decomposition of the in-
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Method Accuracy AUROC
All patches AMIL 87.83± 7.97 0.93± 0.06
Blue ratio AMIL 77.01± 6.77 0.94± 0.06
RGB AMIL 90.72± 8.82 0.96± 0.04
Haematoxylin AMIL 94.25± 3.31 0.98± 0.02
All patches CLAM 88.55± 8.60 0.94± 0.06
Blue ratio CLAM 80.54± 5.88 0.93± 0.04
RGB CLAM 92.06± 8.25 0.98± 0.02
Haematoxylin CLAM 97.13 ± 1.21 0.98 ± 0.02

Table 1. Comparison of Attention MIL (AMIL) and CLAM mod-
els trained on extracted patches from the 3 different colour spaces
at a threshold of µ − σ and with all possible non-overlapping
patches from the image. Results reported are mean ± standard
deviation, the variation in performance occurs due to differences
in cross validation performance

put images. Figure 2 shows an example of this. The method
consistently split the image into finer grained detail in the
presence of tissue while ignoring the background or less in-
formative regions such as empty space or large areas of adi-
pose tissue. Furthermore, it would aggressively split regions
in the presence of cancerous tissue while with non cancer-
ous tissue the method would sometimes only split down to
a depth of 2 or 3 in more homogeneous areas such as large
regions of connective tissue. This was not found to be the
case in large regions of cancerous tissue where the method
would consistently split the image down to the maximum
allowed depth. Additionally, the threshold of µ − σ was
empirically found to give the best qualitative splits by con-
sistently following and splitting the tissue regions within the
images.

We trained the Attention MIL [11] and CLAM [17] mod-
els for 20 epochs using the patches extracted with each dif-
ferent method. As a baseline control comparison, we also
divided every image into non-overlapping patches of size
244×244 denoted as the “all patches” baseline. The results
in Table 1 show that our qualitative findings that the Haema-
toxylin channel method produced the best decompositions
of the images also corresponded to the best downstream
model performance with both Attention MIL and CLAM
when compared to the other methods with all other vari-
ables kept constant. Furthermore, two of the three colour
spaces, RGB and Haematoxylin channel, outperformed our
baseline of using every possible patch in an image as a bag
of instances. The third colour space, blue ratio space, per-
formed relatively poorly as it almost always predicted the
positive class giving a very high sensitivity but leading to
overall worse performance than the other methods. Addi-
tionally, it was found that in each respective colour space
and with the all patches baseline the CLAM model outper-
formed the Attention MIL model in terms of average perfor-
mance with a smaller standard deviation for all cases except
the all patches baseline.

Figure 3. Accuracy of a CLAM model trained on data sets ex-
tracted at different thresholds ranging from µ−2σ to µ+2σ in the
Haematoxylin channel using the mean pixel value. Grey area indi-
cates ± one standard deviation in the model’s performance across
3 fold cross validation.

3.2. Ablation study

We performed an ablation study of the splitting thresh-
olds used with the best performing approach, using the
mean pixel value in the Haematoxylin channel. We var-
ied the threshold from µ − 2σ to µ + 2σ in steps of 0.25σ
and trained a CLAM model with 3 fold cross validation at
each of the 17 thresholds, all other hyperparameters were
kept constant. We found the model had the greatest perfor-
mance using the best qualitative threshold of µ−σ as it had
the highest average performance and the smallest standard
deviation across cross validation folds as shown in Figure
3.

3.3. Comparisons with other methods

We performed an additional comparison using the stan-
dard practice for extracting patches in tissue regions in com-
putational pathology. To select only regions with tissue
we thresholded an image’s intensity to separate the tissue
from the background and created a tissue mask with Otsu’s
method [19]. We obtained a set of locations within the tis-
sue area to extract patches from with the super-pixel algo-
rithm such that the locations covered the entire tissue re-
gion [1]. To explore the significance of the non-leaf nodes
with the quadtree structure in downstream tasks we also
compared performance using just the leaf nodes patches ex-
tracted by the Haematoxylin channel method.

Table 2 shows that the patches extracted by our Haema-
toxylin channel quadtree method yield as good performance
as the segmented tissue patches with a smaller standard de-
viation between cross validation folds. In total the seg-
mentation method extracted 52,029 patches, 374 per image,
while the Haematoxylin channel quadtree method extracted
32,099, 231 per image, a 38.31% reduction in data which
still yielded as good if not better final model performance
with all other training hyperparameters the same.
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Method Accuracy AUROC Average Training Time (s) % of pixel data used in training
BAM 1 [2] 95.70± 2.10 − − 100
BAM 2 [2] 97.12± 1.27 − − 100
All patches 88.55± 8.60 0.94± 0.06 2110 100
Segmented patches 97.15± 3.24 1.00 ± 0.01 2097 69
Leaf nodes 95.65± 2.11 0.99± 0.02 1041 32
All nodes 97.13 ± 1.21 0.98± 0.02 1368 43

Table 2. Performance of CLAM model trained on 4 different sets of extracted patches compared to state-of-the-art from original CRAG
paper on two class problem. Haematoxylin channel patches were extracted using the threshold µ− σ. Reported metric values are mean ±
standard deviation on the validation set, the variation is due to the 3-fold cross validation. Training times are averaged across the 3 cross
validation folds for 20 epochs with all hyperparameters kept constant.

4. Discussion

Figure 3 shows that our qualitative finding of setting the
splitting threshold at µ−σ yielded the best results also held
true when compared to a wide range of possible thresholds
in downstream performance. When the splitting threshold
was set too high e.g. t > (µ+ σ) we found that frequently
the non-cancerous class images would not be split at all re-
sulting in a quadtree with one root node only and a corre-
sponding bag containing a single instance. This occurred
because the non-cancerous images had more empty space

Figure 4. a, b, c AUROC curve plots of cross validation average
AUROC for CLAM models trained on all quadtree nodes, the leaf
nodes from the quadtree and all patches respectively. The quadtree
used was the best performing haematoxylin channel method ex-
tracted at a threshold of µ − σ. Grey shaded area indicates ±
one standard deviation across the three folds. d Average AUROC
curve for all three methods

on average than the cancerous images and contained less
regions heavily stained with Haematoxylin. This in turn
led to poor performance as the model was operating on a
single instance which was heavily downsampled and did
not have enough data to learn from and perform well. As
this threshold was decreased the images were split more
effectively by the algorithm resulting in improved perfor-
mance. The performance peaked at the qualitatively best
performing threshold of µ − σ with the smallest standard
deviation between cross validation folds. The performance
then decreased beyond this point with a much higher vari-
ation across cross validation folds. Inspecting the individ-
ual fold performance showed this was driven by one of the
three folds performing much poorer than the others; how-
ever, this was not always the same fold in each case so this
cannot have been occurring due to a difference in the data
distribution between folds.

We found that when t < µ − σ the algorithm started to
split regions that contained a low percentage of tissue where
it was not before. This resulted in one patch containing tis-
sue being generated but potentially two or three containing
majority or all blank space. We believe this is why per-
formance becomes more varied, more instances are being
generated that are not conducive to making an accurate pre-
diction. The threshold of µ−σ appears to be a good middle
ground between decomposing the tissue regions accurately
and not over decomposing the images. While it is logical
that such a middle ground should exist theoretically, we do
not yet know why this is found at µ − σ. We plan to ex-
plore this approach with other data sets in future to see if
this finding holds true in different data distributions.

We found that our quadtree image representation is able
to achieve better performance than the existing state of the
art method for patch extraction in computational pathology.
The CLAM model trained with the patches extracted from
our quadtree method was able to achieve as good average
cross validation performance with a smaller standard devi-
ation compared to a model trained using patches extracted
using a tissue segmentation mask while using 38.31% less
patches.
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Figure 5. Attention heatmap visualisations For a non-cancerous (top) and a cancerous (bottom) image respectively the attention heatmap
from the CLAM model trained using the Haematoxylin channel extracted patches at µ − σ overlaid on the quadtree decomposition of
the original image (right). We smoothed the attention heatmaps for visibility by using 50% overlap between the patches and averaged the
attention weights. The most highly attended regions are denoted in red while the less attended regions are denoted in blue. Regions have
been re-scaled back to their original shape and size for display purposes.

When we excluded the non-leaf nodes’ patches, the final
model performance did degrade slightly but only by 1%
compared to when all patches from the quadtree were in-
cluded. We hypothesise this indicates that the higher level
nodes in the tree (at lower magnifications) only contribute
marginally to the final prediction. To verify this we over-
laid the attention weights from the trained CLAM model
in a heatmap over the original images. If the higher level
non-leaf nodes were weighted highly we would expect to
see large regions of high attention overlaid over regions that
have been split further. However, the example in Figure 5
does not show this. It is representative of many other in-
stances in our results where the leaf nodes are clearly the
most highly weighted.

The attention heatmap in Figure 5 also shows that the
CLAM model trained using our quadtree strategy is able
to assign higher attention values to clinically relevant re-
gions. In the non-cancerous example, almost all of the
highly weighted patches are located in a region of healthy
glands and tissue, highlighted in red and orange, while the
stromal region has been coloured a dark blue indicating very
low attention has been assigned in this region by the model.
This means the model has correctly identified that the pres-
ence of healthy glands indicates a non-cancerous region.

5. Conclusion

We have shown that quadtrees can be used in com-
putational pathology as an efficient image representation
which can be used for fast and highly accurate downstream
performance. Our quadtree method is able to decompose
histopathology images by identifying regions significant to
clinical diagnosis while ignoring less significant regions
such as empty space or connective tissue. We show that
this image representation is able to be leveraged in a MIL
setting to achieve better performance using 38% less data
than the currently widely adopted thresholding based tissue
mask approach used in the field while also providing an in-
terpretable visualisation of which regions within the image
are important for the algorithm in generating its prediction.

In future, we plan to explore this approach with other
computational pathology data sets to further verify our find-
ings and explore how the framework performs for other
tasks and tissue types as well as how sensitive it is to other
staining methods and visual artifacts. If our results here
hold true, the method should be very helpful in WSIs to
reduce the significant data requirement currently present in
processing these large images.
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