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Abstract

The successful registration of digitized microscopic im-
ages is required for many applications in digital pathology.
In particular, the registration of specimens scanned by dif-
ferent slide scanning systems may be beneficial to trans-
fer expert annotations from one image domain to another
and thereby reduce labeling effort. We present an iterative
approach to register microscopic specimens digitized with
multiple scanning systems, aiming to compute an optimal
global transformation for the images at highest resolution.
For this purpose, an initial registration based on a down-
scaled version of the images is followed by a patch-based
iterative update scheme. We make use of the hierarchical
structure of digitized whole slide images to gradually ap-
proximate the optimal transformation. By using kernel den-
sity estimation to weight local transformation estimates, the

*equal contribution

influence of registration errors can be further mitigated. We
validate our method on five histologic and five cytologic
samples, each scanned with four different scanning sys-
tems. Furthermore, we perform first experiments on sam-
ples stained with different stain combinations. Our experi-
ments demonstrate the potential of the proposed method for
a variety of datasets and application fields.

1. Introduction

Registration of pathological whole slide images (WSIs)
is an essential component of many diagnostic routines in
digital pathology. Registration can be used to transfer
pathologist annotations from one image domain to another
both to fuse information and to reduce labeling effort.
The images to be registered can, for instance, be stained
with different biological markers which highlight different
structural and functional information of the tissue. Com-
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mon stain combinations are hereby Hematoxylin & Eosin
(H&E), which allows for a good differentiation between cell
nuclei and surrounding tissue, and an immunohistochemical
(IHC) stain suitable for highlighting specific tissue compo-
nents. Tellez et al. [10], for instance, used a combination of
H&E-stained and Phosphohistone-H3 (PHH3)-stained sam-
ples to generate annotated training data for mitosis detection
with minimal manual labeling effort. The immunohisto-
chemical marker PHH3 highlights cells that are undergoing
mitosis, making them easier to detect than in H&E-stained
slides. By registering WSIs of the original and washed
and re-stained sections, the authors created a comparatively
large dataset of annotated mitotic figures, which would oth-
erwise have required a considerable amount of time and
human expertise using manual annotations. For registra-
tion, Tellez et al. first determined a global translation vector
by maximizing the 2-D cross-correlation of random image
patches and then registered each mitotic figure separately to
include individual local shifts. A related application for reg-
istration is the alignment of consecutive sections taken from
a tissue block for cross-sectional observation or 3-D recon-
struction. Furthermore, the registration of microscopic sam-
ples digitized with different scanning systems can be useful
to train supervised machine-learning algorithms on images
from multiple scanner domains and thereby make the al-
gorithm independent of scanner-specific features, without
having to re-label the slides for each scanner-domain indi-
vidually. Over the last few years, this scanner-independence
of algorithms has received increasing attention. The Mitosis
Domain Generalization (MIDOG) challenge by Aubreville
et al. [1], for instance, addressed the issue of scanner varia-
tions in the case of assessing the mitotic count.

Recently, several approaches for the registration of his-
tological samples have been proposed which can be cate-
gorized into rigid and non-rigid transformation estimations.
The Non-Rigid Histological Image Registration (ANHIR)
challenge organized by Borovec et al. [2] addressed the is-
sue of registering histologic samples stained with different
dyes. Out of the challenge participants, the method by Lotz
et al. [5] performed particularly well. Their registration
pipeline consisted of three main steps, each of which further
minimized the normalized gradient field (NGF) similarity
metric. The initial rigid pre-alignment was further improved
by an iteratively computed affine transformation. Finally, a
B-Spline transformation estimated a non-rigid registration.
However, the registration was not evaluated on the origi-
nal resolution, but on a down-scaled version of the WSIs.
Due to their large size of up to ten billion pixels, these algo-
rithms are most likely not applicable to WSIs at highest res-
olution. Especially for cytologic samples, however, a cell-
accurate registration is required, which is not guaranteed by
an estimation at lower resolution levels. The methods of the
other participants of the ANHIR challenge were also mostly

based on classical image registration techniques. Only one
team proposed a learning-based approach: For this purpose,
the Volume Tweening Network by Zhao et al. [12], which
was previously developed for 3-D medical image registra-
tion, was adapted to the data at hand. The network was
first trained in an unsupervised manner with low resolution
images and then optimized using the provided landmark po-
sitions of the training data. The advantage of this method is
that it is comparatively fast. However, also in this case, the
registration success was not evaluated on the original reso-
lution. The use of landmarks introduced an additional bias
and reduced the generalization ability [2]. Wodzinski and
Müller [11] did not participate in the ANHIR challenge, but
used the same dataset and achieved results comparable to
the best scoring teams. The proposed deep learning-based,
unsupervised method aimed to find the optimal displace-
ment field in order to obtain a non-rigid registration. How-
ever, their results also indicated that the success of the reg-
istration can be highly dependent on the number of train-
ing samples of each tissue type for these data-driven ap-
proaches. Rossetti et al. [9] proposed a three-stage regis-
tration method to estimate a non-rigid transformation to re-
construct a 3-D tissue volume from serial tissue sections.
An initial pre-alignment was estimated based on the prin-
cipal axes of the contours, followed by a global similarity
transformation and B-spline transformation to compensate
for local tissue deformations. The final transformation was
then propagated to high resolution layers. By only comput-
ing the transformation at a low resolution and then prop-
agating the result to the highest resolution, this approach
is highly dependent on an accurate estimation at the low-
est level and bears the risk of error propagation. Further-
more, the initial pre-alignment using contours is only suited
for histologic samples containing tissue architecture (such
as surgical biopsies) and has limited applicability in the
case of cytologic samples with individual (clusters of) cells.
Mueller et al. [8] proposed a method for the non-rigid reg-
istration of adjacent tissue sections prepared with different
stains. The two-step procedure first computed a B-spline
deformable transform on low resolution images and then
applied the pre-computed transformation to high-resolution
patches. Similar to Rossetti et al., this method bears the risk
of error propagation.

In order to address this risk of error propagation Jiang
et al. [4] recently proposed a hierarchical registration ap-
proach. They registered tissue sections that were stained
with H&E, scanned and afterwards washed out and re-
stained with a different marker. The authors argue that -
due to the re-staining - a rigid transformation was sufficient
to register the two scans. For their hierarchical registra-
tion Jiang et al. initially estimated a transformation using
down-scaled versions of the WSIs. This initial transforma-
tion was used to extract corresponding image patches on all
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resolution levels except for the original resolution. For each
pair of patches, a translation vector was computed using
a Fast Fourier Transform (FFT)-based approach. In order
to minimize the influence of patches where the registration
failed, the authors used kernel density estimation (KDE) to
compute robust weights for the translation results. Finally,
the offset for the original resolution level was estimated us-
ing hierarchical resolution regression. Even though the ap-
proach of Jiang et al. decreases the risk of error propaga-
tion by using hierarchical registration, the patch selection
on each resolution level is only guided by the initial trans-
formation computed at low resolution. We argue that even a
small registration error at low resolution can have a high im-
pact on the error during patch selection and, depending on
the down-scaling factor for the initial registration, could for
higher resolutions at worst magnify to a registration error
larger than the patch size. This would result in patches that
are completely disjoint and are not suited to perform a local
registration. For this scenario even the KDE would not suf-
fice to down-weight the influence of outliers as all selected
patches will be affected by this phenomenon. In order to
address this limitation, we alter the method by Jiang et al.
to an iterative registration approach where we directly use
the transformation estimated on a lower resolution level for
the subsequent level estimate. Furthermore, we extend the
method by incorporating rotation, anisotropic scaling and
shear into the transformation estimation. Thereby, we en-
able the applicability to WSIs from varying scanning sys-
tems which do not necessarily use the same resolutions and
magnification for digitization. We evaluated our approach
using five histologic and five cytologic samples, each digi-
tized with four different scanning systems, resulting in 40
WSIs. Furthermore, we conducted first experiments on
five WSI-pairs prepared with different stain combinations.
Overall, we showed a significant decrease of registration er-
ror compared to the original approach by Jiang et al. which
is the only method natively applicable to WSIs where the
code is publicly available. We provide access to our imple-
mentation on GitHub1 and can provide access to the WSIs
upon reasonable request.

2. Material
For our experiments we used three datasets for two dif-

ferent application fields. For the application of scanner
invariance we used one histology dataset and one cytol-
ogy dataset scanned with four different slide scanning sys-
tems: The Aperio ScanScope CS2 (resolution: 0.25 µm

px ),
the Hamamatsu NanoZoomer S210 (resolution: 0.22 µm

px ),
the Hamamatsu NanoZoomer 2.0 HT (resolution: 0.23 µm

px )
and the ZEISS Axio Scan.Z1 (resolution: 0.22 µm

px ). The
histology dataset comprised five tissue-sections from canine

1https://github.com/DeepPathology/CrossScannerRegistration.git

cutaneous mast cell tumors stained with H&E and the cytol-
ogy dataset five equine bronchoalveolar lavage fluid sam-
ples stained with Prussian Blue. Although registering im-
ages from different scanning systems was the focus of our
work, we also evaluated the applicability to images with
different stainings. Our third dataset contained five H&E-
stained colorectal cancer tissue samples. These samples
were digitized using the Roche Ventana iScan HT scanner.
After digitization, the H&E-stained slides were washed and
re-stained with IHC and Hematoxylin counter stain.

2.1. Ground truth definition

Both registration scenarios, the registration of the same
sample digitized with different scanning systems and the
registration of the same sample stained with different dyes,
in principal allow for a cell-accurate registration as the same
cellular structure is shown on the fixed an the moving im-
age. To quantitatively evaluate the registration results, we
semi-automatically annotated landmarks on all images: We
first used a regular 5 × 5 grid to equally distribute 25 land-
marks on all WSIs. This equal distribution, however, can
lead to landmarks being placed on ambiguous regions, e.g.
background. Therefore, we used the online annotation soft-
ware EXACT [7] to manually re-position these landmarks
to descriptive image components in the immediate vicinity,
e.g. tissue border components or cells. Using these land-
marks, the registration error can be quantified by applying
the estimated transformation to the landmarks of the trans-
formed image and computing the mean euclidean distance
to the landmarks of the fixed image.

3. Methods
For the main focus of our work, the registration of WSIs

scanned with different slide scanning systems, we assume
that an affine transformation is sufficient to register the im-
ages. Therefore, our method aims to find an optimal global
transformation for the original image at highest resolution.
We refer to this affine transformation matrix with six de-
grees of freedom as T . We adopted the hierarchical regis-
tration approach by Jiang et al. where the initial registration
is estimated at a low resolution level and then followed by
a patch-based registration to further refine the results. This
procedure is illustrated in Figure 1.

By introducing an iterative approach and weighting the
results using KDE, we enable a robust method to determine
the final transformation parameters. More explicitly, our
approach deviates from and extends the work of Jiang et al.
as follows:

• adaptive matching of resolution levels to enable
scanner-independence

• adaptive foreground detection to enable applicability
to cytologic samples
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0. Inital alignment of down-scaled WSIs

T

a b tx

c d ty

0 0 1




1. Local transformation of 20 patches

xj yj θj sj

2. KDE

3. Weighted translation update

T ′

a b t′x

c d t′y

0 0 1




next resolution
level

Figure 1: Illustration of overall registration pipeline. The initial registration is followed by an iterative update of the trans-
lation component. This is computed through a weighted sum of local translation updates. The corresponding weights are
calculated using kernel density estimation (KDE) on all locally computed transformation parameters (translation xj and
yj , rotation angle θj and scaling factor sj). T: transformation matrix with components a, b, c, d as linear combinations of
anisotropic scaling, rotation, and shearing and translation components tx and ty .

• incorporation of four additional degrees of freedom
(due to rotation, anisotropic scaling and shearing) into
the transformation matrix

• iterative update of the transformation matrix to en-
hance robustness of patch-selection

In the following sections, we will further elaborate on
these contributions.

3.1. Registration process

To estimate the initial transformation, down-scaled
thumbnails of the WSIs were used. For the results pre-
sented in this work, we used a down-scaling factor of 50
for all datasets. To allow pixel-level accuracy, the effec-
tive down-scaling factor in each dimension was chosen as
integer division of the slide dimensions closest to the de-
sired factor. An initial affine transformation matrix was de-
termined by aligning landmarks computed with the Scale
Invariant Feature Transform (SIFT) key-point extractor [6].
Due to the linear relationship across the WSI levels, an es-
timation of the translation vector at the original resolution

can be calculated by multiplying the result with the corre-
sponding down-sampling factors. The scaling factors and
the rotation angle, on the other hand, are independent of the
resolution and can therefore be directly applied to higher
resolution levels.

The initial global registration was followed by a patch-
based local registration to further refine the parameters. For
this purpose, 20 random image patches from the fixed WSI
were sampled over several image levels. We used Otsu’s
adaptive thresholding method to separate tissue components
from non-informative background and constrained the patch
selection to patches containing a certain percentage of tis-
sue to ensure an adequate amount of tissue on the patch
for a successful registration. This percentage threshold was
initialized with 85% and successively lowered by 5% if
no adequate patch was found for 25 iterations. Thereby,
the method is also applicable to cytologic WSIs, which can
contain a high amount of background pixels. For each patch
from the fixed image, the corresponding patch in the mov-
ing image was computed using the initial transformation
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(a) (b)

Figure 2: Visualization of the transformation process from
the fixed WSI to the moving WSI: The black frame in (a)
shows the patch in the fixed WSI. The gray frame in (b) de-
picts the same patch before the transformation in the mov-
ing WSI. By applying the transformation matrix T to the
coordinates of the corner points, the resulting patch with
the black frame in (b) can be determined. The surround-
ing dotted black frame is the bounding box and was used to
extract the patch.

matrix. Since we limit our method to affine transformations,
this can be achieved by applying the inverse transformation
matrix to the coordinates of the vertices of the patch in the
fixed slide. As the python OpenSlide2 library does not al-
low the extraction of rotated patches, the bounding box of
the transformed vertices was calculated and extracted. To
obtain the final patch, the extracted region was then rotated
in the opposite direction and cropped. This procedure is vi-
sualized in Figure 2. The resulting patches from both WSIs
were registered once again using the FFT to optimize the
final registration.

3.2. Iterative transformation estimation and KDE-
weighting

As discussed previously, small errors of the translation
vector are amplified as the resolution increases and can re-
sult in extracted patches with little or no overlap. For this
reason, we propose an iterative procedure to increase the
accuracy of the translation vector with each level. Starting
at the lowest resolution level, 20 patches were extracted as
described in Section 3.1 and registered using an FFT-based
registration3. Registrations that resulted in rotation angles
larger than 1° were excluded, as a large rotation angle indi-
cates a failure of the local registration. The resulting local
transformation parameters were used to compute an update
of the initial registration.

To minimize the influence of patches where the registra-
tion failed, the results were weighted using KDE. KDE is

2https://openslide.org
3https://imreg-dft.readthedocs.io

a non-parametric density estimator for modeling the under-
lying probability density function of a dataset. For an inde-
pendent, identically distributed random sample x⃗1, ..., x⃗n ∈
Rd, KDE can be formally expressed as

f̂h(x⃗) =
1

nhd

n∑
i=1

K

(
x⃗− x⃗i

h

)
with h = n

−1
d+4 (Scott’s Rule)

(1)

where K : Rd 7→ R is a non-negative kernel function
and h > 0 is a smoothing parameter, the so-called band-
width [3]. Like Jiang et al. we used a Gaussian kernel and
defined the bandwidth by applying Scott’s Rule. The re-
sulting density estimates can be considered as a measure
of confidence to weight the translation vectors. Thereby,
the effect of registration errors can be mitigated by down-
weighting their contribution to the final estimation.

We included all transformation parameters (translation,
rotation and scaling) in the KDE estimation as they affect
each other. We assume that using all parameters increases
the robustness of the weight estimation. Let xj , yj , θj , sj
be the x-offset, y-offset, rotation angle and scaling factor
of registering patch j at resolution level r, then the corre-
sponding weight can be computed as:

wr
j = f̂h(xj , yj , θj , sj). (2)

Even though we obtained local parameters for translation,
rotation and scaling, the affine representation does now
allow an individual update of the latter two parameters.
Therefore, whereas all of them were used during KDE to
compute the update weights, only the translation compo-
nent of the estimated transformation was updated before re-
peating the procedure at the next higher resolution level. To
reduce the influence of patches where the registration failed,
we only used the translation vectors of the ten patches with
the highest KDE weights:

xr+1 =

10∑
j=1

wr
jx

r
j yr+1 =

10∑
j=1

wr
jy

r
j , (3)

where wr
j is the patch-weight normalized by the sum of the

ten highest KDE-results. Following this iterative procedure,
we gradually approached the final transformation.

4. Evaluation and results
A series of experiments were conducted to evaluate the

proposed method. As described in Section 2.1 we semi-
automatically annotated landmarks on all images. By ap-
plying the estimated transformation to the landmarks of the
moving image and computing the mean euclidean distance
to the landmarks of the fixed image, we could quantitatively
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evaluate the accuracy of the registration. The registration
process was repeated three times per slide and registration
errors were averaged across repetitions to verify the repro-
ducibility of the results. Mean and standard deviation were
then calculated across all five slides for each scanner combi-
nation. These results are summarized in Table 1 for the his-
tology dataset in Table 2 for the cytology dataset. While the
mean reflects the accuracy of the registration, the standard
deviation indicates the robustness of our method to inter-
slide variations such as slide quality and artifacts.

The proposed method performed well on both datasets
for scanner invariance. For the histology dataset the results
ranged between 1.23 µm and 7.99 µm (Table 1). On the cy-
tology dataset the proposed method performed well for all
scanner combinations. The mean registration error varied
between 2.36 µm and 4.65 µm (Table 2). For comparison:
The average radius of neoplastic mast cells is approximately
6 µm, which indicates a cell-accurate registration for most
cases. The checkerboard overlay in Figure 3 of two exem-
plary patches allows the direct visual evaluation and demon-
strates the success of the registration.

The first column of Tables 1 and 2 states the optimal
transformation error when using the annotated landmarks
to compute an affine transformation. The third column sum-
marizes the registration error when directly applying the ini-
tial transformation computed at down-scaled thumbnails of
the WSIs. The results show that for both datasets, the itera-
tive update of the translation vector generally led to an im-
provement of the registration. For the histology dataset, we
additionally compared our approach to the original method
by Jiang et al. In order to allow a fair comparison, we
adapted the method by Jiang et al. to take into account scal-
ing differences between the fixed and moving image as we
used slides from varying scanning systems which do not
necessarily use the same resolutions and magnification fac-
tors for digitization. The results in Table 1 clearly show that
our approach is able to outperform this method. In their
publication, Jiang et al. argued that re-stained tissue has a
relatively fixed position on the slide and thus the transfor-
mation can be estimated as a rigid transformation. Since we
have a similar scenario where the same slides are scanned
by different slide scanning systems, one could assume that
this also holds for our samples. We explain the large dis-
crepancies between the method of Jiang et al. and our ap-
proach by different stitching behaviors of the slide scanners
which can introduce non-isotropic scaling factors as well
as minor differences in slide placement between repeated
scans which can cause rotation angles that are not negligi-
ble. Therefore an affine matrix is better suited to estimate
these transformations.

Due to an intensity-based tissue detection method, the
approach of Jiang et al. failed for the registration of slides
from the cytology dataset. By using an adaptive thresh-

olding for tissue detection as described in Section 3.1, our
method is applicable to this dataset and performed excep-
tionally well for all scanner pairs.

The proposed method did not perform as well for the
task of registering slides with different stainings. Table 3
summarizes the results when applying the methods to the
re-stained slides. For two of the slides, the approach by
Jiang et al. failed, even though it was designed for this
application. For one of these slides (row 4) our iterative
update scheme failed because all local patch registrations
resulted in rotation angles significantly larger than 1° and
were excluded from KDE-estimation leaving no parameters
to compute the update. In these rare cases our implemen-
tation returned the initial transformation estimate. Figure 4
visualizes the slides corresponding to the third row in Ta-
ble 3, which resulted in the highest registration error. It can
be seen that the tissue was significantly affected by the re-
staining process resulting in large tissue folds or detached
tissue. These artifacts significantly influence the initial reg-
istration, which cannot be compensated by merely updating
the translation. Nevertheless, for all examples, our method
results in smaller registration errors than the approach by
Jiang et al.

5. Discussion and outlook
In this work, we presented a method for registering WSIs

scanned by different slide scanning systems. For this pur-
pose, we have adapted the method by Jiang et al., which
only estimates translation offsets, by including rotation and
scaling parameters. Using an iterative method to update the
translation vector and incorporating KDE directly in each
update, we were able to outperform the results by Jiang et
al.

Our experiments have shown that the initial registration
was generally improved by iteratively updating the transla-
tion vector using local patch registration results on increas-
ingly higher resolution levels. In future work, we plan to
increase the accuracy of estimating rotation and scaling pa-
rameters in a similar fashion. By assuming an affine trans-
formation, however, it is difficult to directly incorporate
these values in the transformation matrix due to interactions
between rotation, scaling and shearing. Furthermore, the
FFT-based registration implementation that we used only
results in an isotropic scaling factor, which might lead to in-
accurate approximations. In future work, a similar approach
to KDE has to be found to directly interpolate between local
transformation matrices.

In this work we focused on the registration of slides dig-
itized by different slide scanning systems. We were able to
obtain reliable results for both the cytology and the histol-
ogy dataset. Many works in the research area of WSI regis-
tration are based on elastic transformations. This is mainly
attributed to the use of consecutive and re-stained slides.
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(a) Histologic Sample (b) Cytologic Sample

Figure 3: Two examples for the visual evaluation of the registration result. For visualization, the checkerboard technique was
used which alternately stitches together a segment of the fixed image and the transformed moving image.

Mean registration error ± standard deviation [µm]
Scanner pair Optimal Jiang et al. Initial Ours
CS2 / S210 0.79± 0.19 418.50± 592.70 3.54± 0.70 2.04± 0.31
CS2 / 2.0HT 0.92± 0.25 105.08± 97.26 3.71± 0.87 2.39± 0.63
CS2 / Z1 3.82± 6.50 206.34± 166.27 8.08± 11.09 8.25± 11.26
2.0HT / S210 0.83± 0.11 79.81± 79.60 1.20± 0.24 1.43± 0.20
Z1 / S210 3.81± 6.47 71.31± 64.82 9.51± 11.58 7.19± 11.59
Z1 / 2.0HT 3.90± 6.47 54.03± 28.47 8.93± 10.39 7.12± 11.88

Table 1: Mean registration errors and standard deviations [µm] of the histology dataset over three runs for slides from different
scanner origins (fixed domain / moving domain). The result of our approach is compared to the optimal transformation, the
method by Jiang et al. and our initial registration.

Both can result in severe changes of the tissue sample from
slide to slide, making a non-rigid transformation necessary.
In our case, however, one can assume the tissue sample is
not manipulated by the re-scanning and the varying scanner
properties mostly lead to affine transformations. We were
only able to directly compare our results to the method of
Jiang et al. as no other group provides an open source im-
plementation of their method or only supports registration
of down-sampled versions of the full-resolution WSIs. By
providing access to our implementation on GitHub, we al-
low other researches to use the registration method for their
own data and experiment with further refinement strategies
for the final transformation estimation. Through an adap-
tive matching of resolution levels, our code is directly ap-
plicable to all combinations of slide scanning systems that
are supported by the OpenSlide library. Furthermore, this
work also incorporates cytologic samples in the registration
evaluation. We assume that many approaches fail to regis-
ter these images as they contain a high percentage of back-

ground pixels which can lead to failures of intensity-based
pre-processing steps as could be seen for the approach of
Jiang et al. By using an iterative adaptation of tissue detec-
tion, our method performs well on these images.

Moreover, we have already successfully applied our reg-
istration approach for the development of a segmentation al-
gorithm that is robust across WSIs from different slide scan-
ning systems. In this use case, the goal is to use an adver-
sarial learning-based approach to constrain a segmentation
network to learn a feature representation that is scanner-
invariant. For this, the same tissue samples were scanned
by two different slide scanning systems. However, only one
dataset was annotated by a pathologist. Our registration ap-
proach allows us to transfer the annotations from one do-
main to another and thus obtain a labeled dataset for both
domains.

The task of registering slides with different stainings
highlights limitations of our approach. Due to detached tis-
sue on re-stained slides, the initial estimation did not pro-
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Mean registration error ± standard deviation [µm]
Scanner pair Optimal Jiang et al. Initial Ours
CS2 / S210 1.10± 0.38 - 4.20± 2.92 3.61± 2.17
CS2 / 2.0HT 0.91± 0.64 - 5.25± 7.70 4.55± 6.38
CS2 / Z1 1.09± 0.82 - 3.19± 1.01 3.14± 0.94
2.0HT / S210 1.16± 0.40 - 2.14± 0.37 2.30± 0.65
CS2 / S210 1.46± 0.90 - 3.86± 2.05 3.68± 1.54
CS2 / 2.0HT 1.40± 0.92 - 2.41± 0.68 2.75± 0.55

Table 2: Mean registration errors and standard deviations [µm] of the cytology dataset over three runs for slides from different
scanner origins (fixed domain / moving domain). The result of our approach is compared to the optimal transformation and
our initial registration. The method of Jiang et al. failed to register the cytology samples.

(a) H&E-stained Sample (b) IHC-stained Sample

Figure 4: Sample pair heavily affected by detached tissue due to re-staining procedure.

Registration error [µm]
Slide Optimal Jiang et al. Initial Ours
1 2.69 68.39 18.96 13.33
2 3.37 17.89 17.07 12.58
3 22.86 - 46.55 47.46
4 2.73 - 10.47 10.47
5 2.02 37.28 31.62 14.29

Table 3: Mean registration error [µm] for re-stained slides.
The result of our approach is compared to the optimal trans-
formation, the method by Jiang et al. and our initial regis-
tration. The method of Jiang et al. failed for two slides.

vide a robust estimate and local patch registrations failed. In
future work, strategies to adequately compensate for these
registration failures have to be implemented. Furthermore,
alternatives to the intensity-based FFT registration might in-
crease the robustness of local transformations.
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