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Abstract

Analysis of whole-slide-images (WSIs) of histopathology
tissue sections remains challenging due to the gigapixel
scale of these images, which often necessitates their divi-
sion into smaller image tiles. Recently, attention mecha-
nisms have been successfully applied to alleviate the tile-
to-slide challenges for classification tasks based on WSIs.
In this study, we explore the potential of attention mecha-
nisms in regression settings, by comparing four modelling
approaches, two of which use attention mechanisms. We
evaluate these models both in a simulated experiment using
the MNIST data set, and in real histopathology data sets fo-
cused on prediction of gene expression levels from WSIs, in-
cluding an analysis of the local prediction performance us-
ing spatial transcriptomics. The MNIST simulation demon-
strates that if only a small proportion of instances in a set
of images contribute to the set-level regression label, atten-
tion mechanisms may be preferable to commonly applied
weakly supervised models. When predicting gene expres-
sion from WSIs, the differences in performance between
the models that we investigated were small. Nevertheless,
we found some evidence that attention mechanisms may be
more sensitive to domain shifts. In the regression-based task
of gene expression prediction, the prediction performance
in the present study appears to be limited by other factors
rather than by the choice of modelling approach. Neverthe-
less, attention mechanisms appear promising for regression
objectives and warrant further investigation.

1. Introduction

The emergence and application of deep learning mod-
els such as convolutional neural networks (CNNs) as well
as the increasing availability of digital whole-slide-images
(WSIs) of histopathological tissue sections has lead to re-
markable advances in computational pathology in recent
time. However, the application of deep learning models
in computational pathology at scale remains challenging,

since current computer hardware and especially graphical
processing units (GPUs) are not yet equipped to operate on
entire WSIs due to their gigapixel scale. To circumvent
these challenges, WSIs are typically divided into smaller
image patches(tiles) to fit into GPU memory. For some la-
bels, such as pixel-level annotations, e.g. the location and
type of cells, or semantic segmentations, e.g. the distinction
between benign and cancer regions, this division into image
patches does not affect the relationship between image and
label. However, in cases with slide-level labels only, e.g.
histological grade, treatment response or survival time, the
relationship between tile level and slide level labels is more
complex.

A common naı̈ve solution to this is to assign the slide-
level label to all image tiles, which is often referred to
as weakly supervised learning in computational pathology.
Despite the surprisingly good performance of this approach
in many studies, it is desirable to find a solution that bet-
ter models the relationship between WSI-level label and
the individual tiles. For example, if a large proportion of
tiles does not contribute to the WSI-level label, this method
may result in poor prediction performance, since the non-
contributing tiles essentially add noise to the WSI-level pre-
dictions.

Different methods have been proposed to alleviate this
by aiming to directly predict on the WSI. Tellez et al. [19]
suggested to compress WSIs by extracting a feature repre-
sentation for each tile using a pretrained CNN and subse-
quently training a secondary CNN on an image that is com-
posed of these feature vectors, such that each pixel has one
channel for each extracted feature. More recently, Pinck-
aers et al. [15] introduced streaming neural networks (NNs)
to histopathology image analysis. Both of these methods
have the advantage of preserving spatial information. For
classification tasks, it has been proposed to formulate the re-
lationship between tile-level and slide-level label as a multi-
ple instance learning (MIL) problem, where for binary clas-
sification, a set or bag of instances is positive if the bag
contains at least one positive instance. Campanella et al.
[4] demonstrated that a hybrid of MIL and weakly super-
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vised learning, in which the top K tiles of a WSI are con-
sidered, can yield promising results. However, this method
appears to require an exceptionally large data set. Ilse et al.
[8] proposed an attention mechanism for end-to-end MIL
model optimization and applied it in the histopathology set-
ting. This attention mechanism generates a slide-level rep-
resentation, which is then classified by a fully connected
neural network. Lu et al. [11, 12] recently expanded this
approach to multi-class classification and demonstrated that
the attention attribution corresponds well to the relevant im-
age regions if these are known, e.g. in metastases detection
in lymph nodes. Although these attention-based models do
not account for spatial organisation of tiles or the interde-
pendence of different image regions, they nevertheless have
increased prediction performance and data efficiency.

While there is a natural interpretation between bag la-
bels and instance labels for many classification tasks in
histopathology that is well described by the MIL approach,
regression tasks cannot be posed analogously. However, the
attention mechanisms that bridge tile- and slide-level labels
may also prove useful in this setting if different tiles have
different contributions to the slide-level label. While some
regression tasks use whole-tumor-averages as the slide-level
label, i.e. the percentage of Ki67-positive cells for Ki67
scoring, other labels are based on hotspots, such as the mi-
totic counts in breast cancer. For other regression tasks,
such as gene expression prediction, the relationship be-
tween tile- and slide-level labels is currently unknown, al-
though several recent studies have demonstrated that gene
expression can be predicted from WSIs by using bulk RNA-
sequencing expression estimates as a weak label for image
tiles [6, 18, 21, 22]. The nature of intra-tumor heterogene-
ity of gene expression is currently an active area of research,
and it is at this point in time unknown if the bulk average ex-
pression profile that is measured by RNA-seq is driven by
hotspots of high expression, or driven by global tumour ex-
pression changes. Different types of variability could mean
that different modelling approaches are effective in differ-
ent scenarios and for different genes, particularly consid-
ering the large dynamic range of gene expression values.
Challenges for model-based predictions of expression could
occur if there are substantial saturation effects with respect
to morphology changes in high expression hotspots, or for
transcripts that only have a weak association between mor-
phology and expression levels, even if the expression is rel-
atively homogeneous across the WSI.

Even though adaptively weighting tiles appears promis-
ing for regression objectives as well because of the potential
of different contributions of tiles to the slide-level label, to
the best of our knowledge, attention mechanisms have not
yet been applied to regression objectives in the histopathol-
ogy domain. In this study, we therefore investigate four dif-
ferent modelling approaches that assume different relation-

ships between tile-level labels and slide-level label, two of
which use attention mechanisms. We evaluate these models
both with a simulated example using MNIST data, as well
as through predicting gene expression levels from WSIs of
H&E stained breast cancer tumor sections. We validate our
findings using both an independent cohort of patients as ex-
ternal test data, as well as with spatial transcriptomics.

2. Materials & methods
In this study, we compare four different modelling ap-

proaches that differ in their assumptions regarding the rela-
tionship between individual tile-level labels and slide-level
labels. We compare these models both with a simulated
MNIST experiment, as well as through predicting gene ex-
pression levels from H&E stained WSIs.

2.1. Models

All four models compared here share the same fully con-
nected NN structure that predicts a regression output. The
first two layers of this structure are two fully connected lay-
ers that each reduce the number of input features by half.
Model predictions are generated by a final fully connected
layer that expects inputs with the size of a quarter of the ini-
tial input to the fully connected NN. The input of this final
layer differs between the four investigated models.

The two models with an attention mechanisms use the
same attention network structure as described in [8, 11, 12]
for models with a single output. The purpose of the atten-
tion network is to adaptively obtain an attention weight for
each instance in a set of images or their corresponding fea-
ture representations. This set of feature representations is
denoted by h ∈ Rn×k. This number is held constant dur-
ing training (see Table 1) to allow for batches encompass-
ing multiple sets, which for WSIs is accomplished through
oversampling if a WSI has fewer than k tiles. During pre-
diction, k corresponds to the total number of tiles in the
respective WSI. The attention network itself consists of two
fully connected layers with parameters U, V ∈ Rn

2 ×n and
an independent set of weights W ∈ R1×n

2 . Here, n cor-
responds to the number of input features to the attention
network. With ⊙ as the element-wise product, the vector of
attention weights a ∈ Rk is

a =
exp(W tanh(V h)⊙ sigmoid(Uh)∑k

j=1 exp(W tanh(V hj)⊙ sigmoid(Uhj)
, (1)

where hj ∈ Rn×1 is the feature representation of the j-th
image patch. The exponential functions and sum in Equa-
tion 1 correspond to the softmax function. Multiplying ei-
ther a vector of predictions or a matrix of features repre-
sentations with a therefore results in an attention-weighted
set-wide average. With this attention mechanism, we com-
pared the following four model structures:
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1. Attention-weighted average of features (AF). As pro-
posed in [8, 12], a slide-level feature representation is
generated by obtaining an attention-weighted average
of tile-level feature representations. A fully connected
NN is then trained to predict the slide-level label from
this slide-level aggregate.

2. Attention-weighted average of predictions (AP).
While the AF model generates a slide-level represen-
tation by aggregating feature vectors, this model pre-
dicts the slide-level label from each tile and uses an
attention-weighted average of individual tile-level pre-
dictions to generate the slide-level prediction.

3. Mean of features (MF). This model uses the mean
of all feature vectors as a slide-level representation,
which is used to train a NN to predict slide-level la-
bels. This model is equivalent to the AF model if all
attention weights of the AF model were equivalent.

4. Mean of predictions (MP). This approach corresponds
to the naı̈ve, weakly supervised approach in which the
slide-level label is assigned to each tile. Slide-level
predictions are the mean of all tile-level predictions.
This approach is equivalent to the AP model if all at-
tention weights of the AP model were equivalent.

Models that use the mean of either all instance-level fea-
tures (MF) or predictions (MP) assume that all instances
contribute equivalently to the set-level label, whereas the
models that use an attention mechanism (AF, AP) allow
for different contributions of instances. Models that aggre-
gate features (AF, MF) generate a set-level feature repre-
sentation, whereas models that aggregate predictions (AP,
MP) generate predictions based on instance-level features
and aggregate instance-level predictions to set-level predic-
tions. We obtained instance-level predictions for the AF,
MF models through regarding each image as a set of a sin-
gle instance.

Between the MNIST simulation and the histopathology
application, the networks differ in the number of neurons
per layer, depending on the number of CNN-extracted fea-
tures. The MNIST models furthermore have a CNN fea-
ture extractor network that is optimized end-to-end along-
side the fully connected NN components. The structure of
the MNIST feature extractor corresponds to examples on
the PyTorch website [16] and yields 320 features. To re-
duce the computational cost, the histopathology models use
512 features that were extracted with a ResNet18 model [7]
with ImageNet [17] weights and are not trained end-to-end.

2.2. MNIST simulation

In order to investigate the four models in a controlled
experiment, we devised a simulation based on the MNIST

data set [10]. The purpose of this simulation is to com-
pare how well the four described models are able to learn
instance and set-level labels from set-level labels in a re-
gression setting. We investigate this under varying fractions
of instances per set that contribute to the set label. To this
end, MNIST images were randomly grouped into sets of
images whose labels are defined as the mean of all indi-
vidual MNIST image labels ∈ [0, 9] in that set. We then
randomly generated noise images whose pixel values were
randomly drawn from a uniform distribution U(0, 255) and
added these to the image sets, such that each set size is 32,
which we chose to obtain a reasonably large number of sets.
These noise images do not contribute to the set label. We
compared four different proportions of noise images per set,
0, 0.25, 0.5 and 0.75. Using MNIST images and noise to
generate image sets has the advantage that the true label of
each contributing instance is known. It is therefore possible
to not only compare the predictions of the four models on a
set level, but also on an instance level.

For model training, the MNIST training data (60,000 im-
ages) was split into a training set (48,000 images) and a val-
idation set (12,000 images). The validation set was used
for parameter tuning and early stopping based on the vali-
dation loss. Models were trained using the Adam optimizer
for up to 100 epochs with an early stopping patience of 10
epochs, a learning rate of 0.0001 and a batch size of one set,
using the mean-absolute-error (MAE) as the cost function.
Model performance was then assessed on analogously gen-
erated sets of images based on the MNIST test set (10,000
images). We repeated this experiment 100 times per model
and proportion of noise, iterating over 100 random seeds
per configuration. The random seeds determine the split
into training and validation data and the generation of im-
age sets and noise images. The CNN feature extractor and
model parameters were initialized with the same random
seed for each of the experiment configurations and repeti-
tions where applicable to reduce random effects and allow
pair-wise comparisons between models with the same seed
and configuration. To make the analysis and interpretation
of results comparable between the MNIST simulation and
the WSI application, we used Spearman correlation as the
primary performance metric to evaluate the set and instance
level prediction performances of the models at the different
noise proportions.

2.3. Histopathology application

In the histopathology domain we investigate prediction
of gene expression, which is a regression problem, and
evaluate predication performance of the four modelling ap-
proaches on both slide-level and on instance (tile) level,
with local prediction performance evaluated by spatial tran-
scriptomics.
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2.3.1 Data

This study includes WSIs from four different cohorts of fe-
male breast cancer patients, two of which were exclusively
used for model validation. The first cohort, Clinseq [20],
consists of 270 patients. We furthermore selected 721 pa-
tients from the publicly available TCGA BRCA [5] data set
based on the availability of additional clinical information.
We randomly selected 697 patients from Clinseq and TCGA
for model training, 122 for validation and 172 as an inter-
nal test set. As an external test set, we used 350 patients
from the ABiM study [3]. The fourth data set consists of 22
patients for which spatial transcriptomics data is available.
For all patients from Clinseq, TCGA and ABiM, bulk RNA-
sequencing estimates of gene expression values for at least
the majority of currently known protein coding genes are
available. TCGA and Clinseq data was pre-processed using
an identical protocol. To reduce remaining batch effects,
each of these datasets were also median centered (gene-
wise). We randomly selected 125 transcripts (100 for val-
idation, 25 for hyperparameter tuning) out of 1011 genes
that have previously been shown [21] to be predictable from
WSIs of H&E stained breast cancer sections for analysis in
this study.

In order to investigate whether any of the modelling ap-
proaches is superior in learning local information based
on slide-level labels, we also evaluated the models with a
data set that has local gene expression values from spa-
tial transcriptomics (ST) available. This ST data set con-
sists of 22 WSIs of H&E stained tissue sections of breast
tumors. For each of these sections, a consecutive tissue
section was used for spatial transcriptomics analysis of 84
expression levels with the GeoMx DSP platform and the
NanoString nCounter® instrument (GeoMx Immune Path-
ways Panel, NanoString Technologies, Seattle, WA). For
each tissue section, 12 ROIs of 600µm×600µm were ex-
pression profiled (264 ROIs in total). The ST tissue sec-
tions were stained with fluorescent stains targeting PANCK,
SMA, CD45 and DNA and manually registered to the WSIs
of the H&E stained sections. Out of the 84 expression
values per ROI that were obtained, 6 were used as neg-
ative controls. The remaining 78 gene expressions were
normalized based on the average expression value of these
6 transcripts. The remaining transcripts were then log2-
transformed. Two transcripts were subsequently excluded
due to low variance (< 0.001), and two expression features
were excluded as they correspond to the average expression
of several genes. Further 74 genes were included in our
analysis, resulting in 174 for analysis and 25 for hyperpa-
rameter tuning.

Hyperparameter Evaluated
CNN feature extractor InceptionV3, ResNet18
Learning rate 1e-3, 1e-4
Training set size k 100, 250, 500, 1000, 2000
Number of sets per batch 1, 2, 4, 8, 16, 32, 64

Table 1. Hyperparameters that were evaluated on a set of 25 ran-
domly selected transcripts, with selected hyperparameters in bold.
The 25 transcripts used to identify the optimal hyperparameters
were not part of the further analysis. Optimal hyperparameters did
not vary for any of the four models.

2.3.2 Image preprocessing

For each WSI, tissue regions were detected by applying
Otsu thresholding [14] to the HSV saturation channel and
a threshold of 0.75 to the hue channel. All WSIs were tiled
into image patches of 598×598 pixels (271µm×271µm) at
20X resolution. Tiles with a variance of less than 500 af-
ter Laplacian filtering were assumed to be out of focus and
excluded. All image tiles were then normalized with the
method described by Macenko et al. [13]. Subsequently,
regions of invasive cancer were detected with a cancer de-
tection CNN. Further details of the WSI scanners used, the
image preprocessing and the cancer detection model can
be found in [21], which uses the same WSI data sets as
this study. For each tile that belongs to a predicted can-
cer region, we extracted a feature representation that com-
prises 512 features with a ResNet18 model with ImageNet
weights.

2.3.3 Model optimization

Models were optimized with tiles from WSIs of the 697
patients in the training set, again using Adam as the opti-
mizer and MAE as the loss function. The validation set was
used for hyperparameter tuning and early stopping based
on the validation loss, with an early stopping patience of 10
epochs and a maximum of 100 epochs. Hyperparameters
were tuned with a randomly selected set of 25 transcripts
that was not included into the further analysis. The explored
and selected hyperparameters are provided in Table 1. For
each of the 174 transcripts that we planned to evaluate in
the test data, we fitted each of the four models, resulting in
696 fitted models.

2.3.4 Model validation

Slide-level predictions were validated with an internal test
set of 172 patients consisting of patients from Clinseq and
TCGA, as well as the external ABiM data set. Since the
gene expression data of the ABiM cohort was preprocessed
differently than Clinseq and TCGA, we used Spearman cor-
relations between slide-level predictions and bulk gene ex-
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Figure 1. MNIST simulation results with boxplots of the distributions of Spearman correlations over 100 random seeds for each model
and proportion of noise. The Spearman correlation for each random seed is overlaid as a blue rectangle for the set-level evaluation and
in red for the instance-level. Boxes indicate interquartile ranges with the median marked as a horizontal line inside the respective box.
Whiskers indicate 1.5 interquartile ranges, circles denote outliers. Table 2 provides the corresponding FDR-adjusted p-values for pairwise
comparisons with Wilcoxon tests.

0% noise instances 25% noise instances 50% noise instances 75% noise instances
AF AP MF MP AF AP MF MP AF AP MF MP AF AP MF MP

AF-s 0.988 1 1 0.986 1 1 0.999 0.077 0.018 0.503 <0.01 <0.01
AP-s 0.847 1 1 0.85 1 1 0.373 0.011 0.011 1 <0.01 <0.01
MF-s <0.01 <0.01 0.172 <0.01 <0.01 0.015 0.999 0.999 0.257 1 1 <0.01
MP-s <0.01 <0.01 1 0.032 0.07 1 0.999 0.999 0.999 1 1 1
AF-i 0.895 1 1 0.918 1 1 0.999 0.026 0.01 0.67 <0.01 <0.01
AP-i 0.895 1 1 0.928 1 1 0.505 <0.01 <0.01 1 <0.01 <0.01
MF-i <0.01 <0.01 <0.01 <0.01 <0.01 0.014 0.999 0.999 0.143 1 1 <0.01
MP-i <0.01 <0.01 1 0.032 0.062 1 0.999 0.999 0.999 1 1 1

Table 2. MNIST simulation results. FDR-adjusted p-values from one-sided Wilcoxon signed-rank tests for Figure 1. Set-level comparisons
are marked with -s, instance-level comparisons with -i. The Wilcoxon tests evaluate whether the null hypothesis that the distribution of
models marked with -i or -s is not larger than the distribution of the models without specifier can be rejected.

pression estimates as the primary performance metric to
avoid sensitivity to offsets and scaling. All Spearman cor-
relation associated p-values were adjusted for multiple test-
ing using the method described by Benjamini and Hochberg
(BH) [2].

The local prediction performance in the ST data set was
assessed with linear mixed effect (LME) models, in order
to account for variations between individual slides. A sin-
gle prediction for each of the 12 ST ROIs of each WSI
was obtained through considering all tiles of a ROI as a
set of instances. One LME model was fitted for each pre-
diction model and transcript, with the model predictions as
the fixed effect, the WSI ID as the random effect and the
log2-transformed expression value as the response. In or-
der to obtain a metric that is comparable across LME model
fits, we computed the proportion of variance explained by
the fixed effect as the primary performance metric for the

ST analysis. LME models were fitted with the lme4 [1] R
package, respective proportions of variance explained were
computed with the r2glmm R package using the method de-
scribed by Johnson [9]. As a secondary metric, we again
computed Spearman correlations between model predic-
tions and expression values. In this analysis, we computed
one Spearman correlation for each transcript, model and
WSI in the ST data set as the correlation between the pre-
dictions for the 12 ROIs and the corresponding expression
values, which results in a distribution of Spearman correla-
tions for each transcript and model. We only evaluated tran-
scripts in the ST data for which at least one of the models
had a Spearman correlation with an FDR-adjusted p-value
below 0.01 in both the internal test set and the ABiM data
set.
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Internal test set External test set
Spearman correlation Wilcoxon p-value Spearman correlation Wilcoxon p-value
Median p <0.01 AF-2 AP-2 MF-2 MP-2 Median p <0.01 AF-2 AP-2 MF-2 MP-2

AF-1 0.38 152 1 <0.01 0.909 0.351 153 0.042 < 0.01 0.906
AP-1 0.387 147 0.132 <0.01 0.862 0.35 152 1 0.019 1
MF-1 0.359 151 1 1 1 0.347 152 1 1 1
MP-1 0.369 147 0.862 0.909 <0.01 0.357 156 0.906 0.751 0.042

Table 3. Results for the internal and external test set. Statistics and p-values for the four models and 174 evaluated transcripts in the internal
test set and the external ABiM data set. For each data set, the median and number of transcripts with an FDR-adjusted Spearman correlation
associated p-value below 0.01 per model are provided, along the FDR-adjusted p-values from one-sided Wilcoxon signed-rank tests that
evaluate whether the median Spearman correlation of the models along the rows, denoted with 1, is larger than of the models listed in the
columns, denoted with 2.

AF AP MF MP
Model

0.0

0.2

0.4

0.6

0.8

M
od

el
 p

er
fo

rm
an

ce
 

 [S
pe

ar
m

an
 c

or
re

la
tio

n]

Internal External

Figure 2. Model performances for the internal and external test set
as distributions of Spearman correlations between predicted ex-
pression values and RNA-seq for 174 transcripts. Boxplots with
the distribution of Spearman correlations for the internal test set
are overlaid in blue, red indicates the external test set. Boxplots
were generated analogously to those in Figure 1. Corresponding
statistics are provided in Table 3.

3. Results

3.1. MNIST simulation

The the model performances (Spearman correlations) on
a set and instance-level for the 100 random seeds per model
and proportion of noise are depicted in Figure 1. The me-
dian Spearman correlation of all models increases with the
proportion of noise, or put differently, a lower number of
instances that contributes to the set-level label. Within
each proportion of noise, we performed one-sided Wilcoxon
signed-rank tests between all possible pairs of distributions
both for the set level and the instance level. The Wilcoxon
tests test the null hypothesis that the distribution of the pair-
wise differences paired on the random seeds is not lower
than zero. The FDR-adjusted p-values from the Wilcoxon
tests in Table 2 indicate that the mean models MF and MP
outperform their attention counterparts both with regards to
the set-level as well as the instance-level predictions. For

proportions of noise ≥ 0.5, this is reversed and the mod-
els with attention mechanisms outperform the mean mod-
els. For the highest proportion of noise, the Wilcoxon tests
indicate that the MP model may result in lower model per-
formance than the other three models.

3.2. WSI-level gene expression predictions

We evaluated the association between predicted and
RNA-seq estimated expression of 174 transcripts in the in-
ternal and the external test sets (Figure 2, Table 3) of the
four models, analogously to the MNIST simulation. The
null hypothesis of the Wilcoxon tests can be rejected with
an FDR-adjusted p-value <0.05 for all models when com-
paring their distributions to the distribution of the MF model
both in the internal test set as well as the external ABiM test
set. Otherwise, the Wilcoxon tests give no apparent indica-
tion of a difference between the model performances. The
median of all models is marginally higher in the internal
test data compared to the respective median in the external
test set, with a drop in median of 0.029 for the AF model,
0.037 for the AP model, 0.012 for the MF model and 0.012
for the MP model. Performing one-sided Wilcoxon signed-
rank tests between the distribution of Spearman correlations
of each model in the internal test set and the external test
set results in FDR-adjusted p-values of <0.01 for the AF
model, <0.01 for AP, 0.019 for MF and <0.01 for MP.

3.3. Spatial expression predictions

Spatial predictions were significant for 42 transcripts for
the AF model, 42 for AP, 44 for MF and 39 for MP (FDR-
adjusted LME coefficient p< 0.01). Figure 3a) shows the
proportions of variance explained by the fixed effect in the
LME models for the ten transcripts with the highest propor-
tion of variance predicted among the four compared mod-
els. Figure 3b) depicts the corresponding distributions of
Spearman correlations. The transcript with the highest pro-
portion of variance predicted for all models corresponds
to the immune-related gene MS4A1, which encodes a B-
lymphocyte surface molecule. The difference in proportion
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Figure 3. Spatial transcriptomics results for the ten transcripts with the highest proportion of variance explained. a) proportion of variance
predicted (as modelled by the fixed effects in the LME model with transcripts as dots and bars that indicate the 95% confidence intervals).
b) distribution of Spearman correlations between model predictions and spatially estimated gene expression values for each model and
transcript. Boxplots were generated analogously to Figure 1.

of variance predicted between the prediction models is gen-
erally small compared to the difference between transcripts.

4. Discussion

In this study, we compared four models that directly pre-
dict set-level regression labels for a set of images, both in
an MNIST simulation as well as with the prediction of gene
expression from WSIs of H&E stained breast tumor sec-
tions. All of these models differ in their assumptions re-
garding the relationship between the set-level label and the
individual instances. Two of the models that we investi-
gated use attention mechanisms to generate slide-level pre-
dictions based on a set of tile representations. To the best of
our knowledge, this is the first application of these attention
mechanisms to regression objectives in the histopathology
domain, where they can be used to allow for varying contri-
butions of individual WSI tiles to the WSI-level label.

The MNIST simulation experiment indicates that in
some scenarios, where relatively few images contribute to
the set-level label, the flexibility of allowing for varying
contributions of instances to the set-level label allows mod-
els with attention mechanisms to better capture the relation-
ship between set and instance labels. For a high propor-
tion of noise labels, the weak label model MP is inferior
to the other three models. This is plausible because this
model weights all predictions equally, including predictions
of noise images which dominate the predictions of the MP
model for high proportions of noise.

However, when predicting gene expression from WSIs,

our results indicate that using an attention mechanisms
leads to a similar model performance as the common ap-
proach of using slide-level labels as a weak label for in-
dividual tiles. This could be the case for several reasons.
If the MNIST simulation is a somewhat reasonable model
of predicting gene expression from WSIs with regards to
the contributions of image tiles to the WSI-level label, the
percentage of image tiles that does not contribute to the
WSI label may be in the range between 25% and 50% for
our histopathology application. Another possibility is that
the MNIST simulation is not a sufficiently realistic model
for the histopathology application and that the observations
from this experiment are therefore not or only poorly trans-
ferable. It is indeed unlikely that some tiles do not con-
tribute to the WSI-level gene expression label at all, it ap-
pears more plausible that the difference of contributions of
different WSI regions is more gradual. While the MF model
performance is comparable to the MP model in the MNIST
simulation, we find it to be inferior to the other models in
the histopathology setting. This may be due to the large
difference in set sizes between the MNIST experiment and
WSIs. While the mean of features on a relatively small
MNIST set of 32 images may not result in a loss of in-
formation, this may not translate well to averaging the fea-
tures of thousands of tiles of a WSI. Nevertheless, the dif-
ference in prediction performance (median Spearman cor-
relations) is quite small, albeit statistically significant with
p < 0.05. The prediction performance (median Spearman
correlation) of the 174 transcripts investigated is lower in
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the external test set as compared to the internal set for all
models. This may be due to differences in sample prepara-
tion between the tissue material in the data sets that leads
to diminished generalization. The decrease in prediction
performance (median Spearman correlation) is statistically
significant and larger for models with an attention mecha-
nism. This may be because slightly worse generalisation
to external data could potentiate itself through the attention
mechanism. Nevertheless, we conclude that all models gen-
eralize relatively well to the external test set, as the value of
the differences in correlation is rather small.

We applied spatial transcriptomics profiling to evaluate
the performance in spatial expression predictions by the
four different models, which did not reveal apparent dif-
ferences in the ability to predict local expression. While
the LME model analysis accounts for slide level differences
(modelled as a random effect) there are other sources of
variability that are not accounted for here, including noise
due to image registration. There is also an expected up-
per bound on how well expression can be predicted since
there has to be a morphological phenotype associated with
each transcript. While the ST analysis does unfortunately
not allow to draw any new conclusions, the findings also do
not contradict the findings from the MNIST simulation or
bulk RNA-seq analysis. While the prediction performance
(Spearman correlation) for some slides are relatively high
across transcripts and models, the proportions of variance
predicted (as modelled by the LME model) is only rela-
tively high for a few transcripts. Both a larger sample size
than 22 WSIs, as well as potentially improved registration
may be necessary to observe differences between the in-
vestigated models, if they exist. This could be due to rel-
atively poor local prediction performance or limitations of
the analysis that we conducted. Spatial transcriptomics un-
fortunately remains costly and challenging to implement at
scale. However, it is to be expected that the availability will
increase widely, which may provide opportunity to revisit
the research questions that we investigated in this study.

This study has several limitations. The MNIST exam-
ple may oversimplify the histopathology setting, and it is
therefore difficult to ultimately assess its usefulness beyond
a proof of concept. Furthermore, predicting gene expres-
sion from WSIs is a challenging task. The upper limits
to the Spearman correlations and numbers of genes that
are statistically significantly predictable are similar in in
several studies that all use different modelling approaches
[6, 18, 21, 22]. This upper limit may be due to differences
in tissue used for RNA sequencing and scanning, as well as
limits of the association between morphologies in WSIs of
H&E stained tissue sections and gene expression. This limit
in the currently reported prediction performances may ob-
fuscate differences between the modelling approaches that
we investigated. This applies especially to the spatial tran-

scriptomics data, where the correlation is further limited by
the accuracy of the registration between the sequenced and
scanned tissue sections.

5. Conclusion
This study indicates that while there is some evidence

that the MF model is inferior compared to the other three
models investigated, the performance differences are rela-
tively minor. This may also be seen as encouraging, as it
could indicate that researchers are not at a large risk of poor
model performance due to a specific model choice. This
may also be supported by the similarity of results between
prior studies that predicted gene expression from WSIs de-
spite their differences in modelling choices. As opposed to
recent studies focusing on MIL classification objectives in
computational pathology, the attention mechanism that we
investigated does not seem to provide a strong benefit in
model performance as compared to using slide-level labels
as weak labels for all image tiles in the regression setting.
Furthermore, the generalizability appeared to be poorer for
models with an attention mechanism. Using weak labels, as
in the MP model, appears robust, has fewer model param-
eters and adds less complexity to the already complex do-
main of computational pathology. Worth noting is that the
MP model appears to perform poorly if only a small fraction
of images contributes to the set-level label, as demonstrated
in the MNIST simulation. We conclude that while the flex-
ibility of attention mechanisms warrants further investiga-
tion, based on current results for the regression problem of
gene expression prediction, the commonly used weak label
approach might be preferable.
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