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Abstract

Deep learning is largely applied to cell counting in mi-
croscopy images. However, most of the existing cell count-
ing models are fully supervised and trained off-line. They
adopt the usual training-testing framework, whereas the
models are trained in advance to infer numbers of cells in
test images. They require large amounts of manually la-
beled data for training but lack the ability to adapt to newly-
collected unlabeled images that are fed to processing sys-
tems dynamically. To solve these problems, we propose a
novel framework for real-time (RT) cell counting with den-
sity maps (DM). It is a semisupervised system which enables
training with upcoming unlabeled images and predicting
their cell counts simultaneously. It is also flexible enough to
allow almost any cell counting model to be embedded within
it. With a reliable and automatic training set renewing
mechanism, it ensures counting accuracy while optimizing
the models by both historical data and new images. To deal
with cell variability and image complexity, we propose a
Semisupervised Graph-Based Network (SGN) for within the
RT counting framework. It leverages a count-sensitive mea-
surement to construct dynamic graphs of DM patches. With
the graph constraint, it regularizes an encoder-decoder to
represent underlying data structures and gain robustness
for cell counting. We have realized SGN along with several
baseline networks and state-of-the-art methods within the
RT counting framework. Experimental results validate the
effectiveness and robustness of SGN. They also demonstrate
the feasibility, efficacy and generalizability of the proposed
framework for cell counting in unlabeled images.

*Corresponding author.

(a) (b) (c)

Figure 1. (a) A microscopy image from the PanNuke data set[7],
(b) its DM generated from cell annotations and (c) the visualized
effect whereas the image is overlaid with the DM (erased of its
background) to illustrate that DM can reflect cell count and nuclear
spatial details.

1. Introduction
Cell counting is a crucial step in many biomedical stud-

ies and applications. The number of cells in a microscopy
image can indicate the presence of diseases, help differen-
tiate tumor types and assist in understanding cellular and
molecular genetic mechanisms[10]. As manual counting
is tedious, time-consuming and prone to subjective errors,
computer-aided counting methods are developed. Specif-
ically, image analysis and machine learning techniques
have successfully increased accuracy in cell counting. Ad-
vanced deep learning models with their feature representa-
tion power and generalizability have further reduced count-
ing errors. Recently, it is discovered that density maps
(DMs) generated from dot annotations of nuclei can rep-
resent cell counts and local spatial patterns as illustrated in
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Fig. 1, thus feeding more information to the deep networks
than the numbers of cells. Therefore, many counting meth-
ods using DMs as labels are proposed[10][25][24]. How-
ever, there is still room for improvements. Most deep learn-
ing methods for cell counting are fully supervised, which
require large amount of training data manually annotated
a priori. They adopt the usual training-testing framework,
training a model beforehand and testing it on unlabeled data
afterwards. Meanwhile, unknown images may exhibit sub-
stantial new patterns that are unseen by the trained models,
as there are large variations in image acquisition techniques,
tissue backgrounds and cell sizes, shapes and counts. If
there are new images to input, as there always are in real
applications, the generalizability of the trained models and
the information capacity of the historical training set may
no longer support the application to analyze them. Sys-
tems with “human in the loop” such as the active/interactive
learning methods[14] may alleviate these problems, but re-
quire constant inputs from the users to keep them working.

Motivated by the concerns above, we propose a novel
DM regression framework for real-time (RT) cell counting.
The strengths of this method are as follows. 1) Timeliness.
It can learn from unlabeled images in a semisupervised
manor and predict their DMs/cell counts simultaneously as
the data are fed to the system. Moreover, it updates and re-
fines the predicted cell counts iteratively during the semisu-
pervised training. 2) Reliability. It optimizes the count-
ing models by both historical data and new images, thus
exploiting the prior information provided by manual labels
and the variable patterns in unlabeled images. Specifically,
it involves a training set renewing mechanism. Being fully
automatic, it selects the images with predicted DMs of high
confidence and adds them to the training set for the next
round of optimization. In this way, it can avoid introduc-
ing erroneous information and ensure counting accuracy. 3)
Flexibility. It allows almost any cell counting model to be
embedded within it. Thus, it can leverage the existing pow-
erful supervised models, turn them into semisupervised ver-
sions and further upgrade their performances in cell count-
ing.

The contributions of this work lie in the following as-
pects. 1) It proposes perhaps the first semisupervised re-
gression framework for RT cell counting, to the best of
our knowledge. It allows for timely adaptation to dy-
namic data and saves manual efforts. It utilizes the pow-
erful counting models and achieves state-of-the-art perfor-
mances. 2) Within the framework, a new cell counting
model, Semisupervised Graph-Based Network (SGN) is de-
signed to address cell variability and image complexity. It
constructs dynamic graphs of DM patches with a count-
sensitive measurement[16]. With the graph constraint, it
regularizes an encoder-decoder to represent underlying data
structures and gain robustness for cell counting. 3) Thor-

ough experiments have been conducted on four sets of
microscopy images with large variations. Two of them
are benchmark data sets for cell counting, the simulated
Bacterial Cells in Fluorescence-light Microscopy images
(BCFM)[16] and the Bone Marrow (BM) images[25]. The
other two are recently published Kaggle[2] and PanNuke
data sets [7], including cells of various tissues from differ-
ent patients. The experimental results validate the merits of
the RT framework embedded with different models as well
as the edges of SGN in cell counting.

2. Related Works
Most cell counting methods fall into three cat-

egories, counting after cell segmentation, counting
after cell detection and direct counting[29]. The
first approach counts cells/nuclei in segmentation
masks[1][5][8][9][14][15][20][22][26]. There are un-
supervised segmentation methods applied to blood cell
counting[5] and fully supervised convolutional neural
networks (CNN) that have largely increased counting
accuracy[9][15][20][22][26]. While the segmentation
networks usually require contour or area masks as labels,
the detection-counting methods can work with simpler
annotations, such as dots on nuclei or boxes around
cells[10][23][25][27]. The counting accuracy of these
two approaches depends on segmentation or detection
results, which are heavily affected by cell occlusions and
morphology variations. These problems can be solved by
the regression models that directly predict cell counts or
count-related DMs[10][24][27]. DMs are generated from
point annotations of cells to utilize local spatial information
and improve counting accuracy[4][10][16][24][25]. Xie
et al. [24] proposed a fully convolutional regression
network (FCRN), estimating DMs for arbitrary-sized input
images. He et al. [10] used auxiliary CNNs (AuxCNNs) to
assist in the training of a concatenated FCRN (C-FCRN),
thus boosting DM regression performance and counting
accuracy.

However, these fully supervised models achieve their
success at the cost of large amounts of labeled data [17].
While the manual annotations are hard to come by, there are
ample unlabeled data. Thus, it is natural to resort to semisu-
pervised methods that can leverage the unlabeled data in
training. It can even adapt to dynamic data sets such as
videos for object tracking [3][11]. There are two typical
ways to realize semisupervised learning, label propagation
and graph embedding. The first approach uses a power-
ful model trained on annotated data to infer high-quality
pseudo-labels for unlabeled data, which are fed back to the
model to train it [11][12][17]. It opens the door to learn-
ing from real unlabeled, large scale data. The second strat-
egy constructs graphs to exploit connectivity patterns be-
tween labeled and unlabeled samples to improve learning
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Figure 2. Illustration of the proposed real-time counting frame-
work.

performance[3][6][18][19]. Though being proven flexible
and powerful, semisupervised learning has not been well
applied to cell counting based on DM regression.

3. Method

Inspired by the success of semisupervised learning in
computer vision [12][17], we adopt the notion and pro-
pose a generic DM regression framework for real-time cell
counting. To specifically address cell variability and im-
age complexity, we design a SGN within the framework.
Before beginning describing the method, we define basic
definitions and notations. Denote a microscopy image by
Xi ∈ RB×J with B variables and J pixels, where i =
1, 2, · · · , N (l)+N (u) , N (l) andN (u) represent numbers of
historically labeled images and newly collected unlabeled
images, respectively. For RGB images, B = 3. Suppose
the number of cells in Xi is Ci. If Xi is annotated with
dots (yi = {yi,k}Jk=1) at nuclear centers, the groundtruth
density map mi = {mi,j}Jj=1 of Xi is composed of

mi,j =
∑

k
N(j; yi,k, σ

212×2), (1)

Figure 3. Illustration of the morphology masks for confidence
measurement. (a) An image patch from BCFM (b) and its binary
morphology mask. (c) The predicted DM of the image patch and
(d) is the binary morphology mask. The white pixels indicate nu-
clear areas and black for background. The masks are obtained via
unsupervised thresholding and dilation.

Figure 4. Illustration of the proposed specific model, SGN.

where N(•) is the normalized 2D Gaussian kernel. The re-
lation between DM and cell count is defined by

Ci ≈
∑

j
mi,j , (2)

whereas the tiny approximation errors can be omitted.

3.1. Real-Time Cell Counting Framework

As shown in Fig. 2, the RT framework comprises two
phases: initial training and semisupervised learning. At
first, we train a computational model M(•) for cell count-
ing with historically labeled images{Xi}N

(l)

i=1 in a fully su-
pervised manor. This way, the original model (coloured in
grey in Fig. 2) acquires basic feature representation ability.
It should be noted that M(•) can be almost any supervised
counting model, given the flexibility of the framework.

As unlabeled new images {Xi}N
(u)

i=1 flow in, we switch to
the semisupervised mode and let both labeled and unlabeled
data train the network. In this way, M(•) iteratively adapts
to the dynamic data and enhances representation ability. In
an arbitrary semisupervised iteration t, while being opti-
mized, the model M(•) predicts a DM m′i,t for each un-

labeled image Xi ∈ {Xi}N
(u)

i=1 and estimates the number
of cells by Eq. (2). As the process continues, the real-time
counting errors are gradually reduced.
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Algorithm 1 The RT Counting Framework

Input: the historically labeled data {Xi,m
′
i}

N
(l)
t

i=1 and the

upcoming unlabeled images {Xi}
N

(n)
t

i=1 ;
Step 1 Initial Training:
1a) Pretrain the model M(•) on {Xi,mi}N

(l)

i=1 ;
1b) Let the semisupervised iteration number t = 0 and
initialize the training set {Xi,ai}Nt

i=1 as {Xi,mi}N
(l)

i=1 .
Step 2 Semisupervised Learning:
2a) Feed {Xi}

N
(n)
t

i=1 to the pretained M(•), infer their ini-

tial DMs and collect them in set {Xi,m
′
i}

N
(n)
t

i=1 ;
// Training set renewal;

2b) Sort {Xi,m
′
i}

N
(n)
t

i=1 by the morphology confidence
described in Subsection 3.1 in descending order;

2c) Select the top N
(u)
t samples {Xi,m

′
i}

N
(u)
t

i=1 and

let {Xi,ai}Nt+1

i=1 ← {Xi,ai}Nt
i=1 ∪ {Xi,m

′
i}

N
(u)
t

i=1 ,

Nt+1=Nt + N
(u)
t , {Xi,m

′
i}

N
(n)
t+1

i=1 ← {Xi,m
′
i}

N
(n)
t

i=1 −
{Xi,m

′
i}

N
(u)
t

i=1 , N (n)
t+1=N

(n)
t −N (u)

t+1 and t← t+ 1;
2d) Optimize M(•) with the renewed set {Xi,ai}Nt

i=1;
2e) Predict DM m′i and repeat Steps 2a)-2e) untilN (n)

t =
0 ;

Output: the predicted DM m′i and the cell count estimat-
edby Eq. (2) for each new image.

Layer
No. Layer type

Filter
dimension

Filter
number

1 Conv.+ReLu 3×3×3 8
2 Conv.+ReLu 3×3×8 16
3 Conv.+ReLu 3×3×16 32
4 Conv.+ReLu 3×3×32 64
5 Conv.+ReLu 3×3×64 64
6 Upsample+Conv.+ReLu 3×3×128 32
7 Upsample+Conv.+ReLu 3×3×64 16
8 Upsample+Conv.+ReLu 3×3×32 8
9 Upsample+Conv.+ReLu 3×3×16 8
10 Conv.+ReLu 1×1×8 1

Table 1. Architecture of the backbone in SGN.

In the semisupervised stage, a training set renewing
mechanism is activated. It is designed to ensure the reli-
ability of the system. As shown in Fig. 2, it selects the
otherwise unlabeled samples associated with highly confi-
dent predicted DMs and adds them to the training set to
optimize M(•). Intuitively, we prefer DMs that can faith-
fully mirror the cell patterns in the original images, mean-
ing that the network has indeed learned some features from
the training data. Therefore, we measure the confidence of
by the Euclidean Distance (ED) between a binary mask ob-
tained from the original image Xi (Fig. 3 (a), (b)) and that

of m′i,t (Fig. 3 (c), (d)). The smaller the distance is, the
higher the confidence is. The masks can reflect cell mor-
phology patterns such as shapes and areas that are crucial to
recognition of occluded or overlapping cells. If the masks
are similar to each other, it means that the prediction is
consistent with the original image, thus being highly con-
fident. Theoretically, the morphology masks can be pro-
duced by an arbitrary unsupervised segmentation method.
Empirically, we use thresholding and dilation operations
[29], which require little efforts on parameter tuning. For
double insurance in reliability, each time the system only
selects a very small amount (N (u)

t) of samples from the
new data and adds them to the training set. With erroneous
data largely avoided, the updated training set can positively
help model optimization. Since the renewing process does
not require any annotations or priors, it enables automatic
counting without increasing manual workloads.

The implementation details are summarized in Algo-
rithm 1. Throughout the semisupervised iterations, the
groundtruth DMs of historically annotated data are involved
since they provide the most reliable prior knowledge. The
difference between the proposed method and the usual la-
bel propagation is that the former does not take the highly
confident DMs immediately as the final output for the un-
labeled images. Instead, it adopts the DMs predicted at the
end of semisupervised iterations. It should also be noted
that once the semisupervised learning finishes, M(•) can be
seen as a fine-tuned model with extended generalizability.
It can be used for inferring cell counts in totally unknown
images that are not involved in semisupervision. The infer-
ence mode is preferred over the real-time mode when the
need for efficiency rather than accuracy is in dominant.

3.2. Semisupervised Graph-based Network

Within the proposed framework, we design a specific
model, SGN for accurate cell counting. As illustrated by
Fig. 4, SGN can be substituted for M(•) in Algorithm 1.
The backbone of SGN is an encoder-decoder using DMs as
regression labels. Here we use UNet[21] as it is designed
to capture context and enables precise localization, which
is helpful in spotting cells against complex background tis-
sues. The structure of the backbone is provided in Table 1.
As SGN is trained on both labeled and unlabeled data, the
empirical loss is

`temp = argmin
m′

i.t

∑N(l)

i=1

∥∥mi −m′i,t
∥∥2

+α
∑N(l)+N(u)

i=N(l)+1

∥∥m′i,t−1 −m′i,t
∥∥2, (3)

where α is the trade-off coefficient, set as zero in Step 1 and
reset at a non-zero value in Step 2 of Algorithm 1.

To exploit underlying structures of DMs, we embed
graph Laplacian within SGN as in Fig. 4. Depict the graph
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of DMs by G = {V, E,W} , where V = {ai}(ai can
be the groundtruth DMs for the manually annotated images
or the predicted DMs for the unlabeled data), E = {ei,j}
and W= {wi,j} denote vertices set, edge set and edge
weights, respectively. Link vertices ai and aj by edge
ei,j = {ai,aj |ai ∈ S (aj) ∨ aj ∈ S (ai) } , where S (•)
obtains the neighborhood of the argument. Instead of ED
or other usual measures, we utilize Maximum-Excess-over-
SubArrays (MESA)[16] to define S (•) because it is robust
to local modifications but sensitive to change in number of
objects, which is a pleasant characteristic for cell counting.
Therefore, we split each ai into sub-patches f ip and compute
the MESA measurement between ai and aj by

dMESA(ai,aj) = max
p∈P

∣∣∣∣∑Q

q
f ip,q −

∑Q

q
f jp,q

∣∣∣∣ , (4)

where f ip,q stands for pixels in sub-patch f ip and P is the
index set of the sub-patches. Then find k vertices with the
smallest MESA associated with ai to construct the neigh-
borhood S (ai), Further, we design the edge weights as

wi,j =

{
exp

(
−‖ai − aj‖2/‖ai − aj‖1

)
, ei,j 6= ∅

0, ei,j = ∅ , (5)

where ‖•‖1 is `1-norm. Storing all the predicted DMs in
matrix V, we construct the graph regularization

`treg = min
∑

i,j
‖ai − aj‖22wi,j

= minTr
(
VTLiV

)
,

(6)

where Tr (•) is the trace function and L denotes the nor-
malized graph Laplacian matrix[21], which is computed by
D−1/2(D −W)D−1/2 and D is a diagonal matrix whose
entries are the row-wise or column-wise sums of W. Fi-
nally, we obtain the overall loss

`t = `temp + λ`treg, (7)

where is λ a trade-off coefficient. Different from the man-
ifold regularized regression network (MRRN)[29], SGN is
designed for semisupervised learning as the loss function
and the graph regularizer consider both annotated images
and unknown samples. Further, SGN is more robust to vari-
ation in cell distribution than MRRN as the former estab-
lishes graph edges based on MESA while the latter only
uses simple geometrics. When implemented, SGN is opti-
mized by Adam optimizer [13] in Step 2d), Algorithm 1.

4. Experiments
4.1. Data Sets

To evaluate performance of the proposed method, four
sets of microscopy images are used, namely, BCFM
images[16], BM images[25], Kaggle 2018 Data Science

Bowl[2] and the PanNuke data set released in 2020[7]. The
first two are benchmark data sets for cell counting with
point annotations of nuclei. They can give a general eval-
uation of different counting methods. The last two are re-
cently published with nuclear segmentation masks. We turn
these masks into point annotations by locating the center
of each cell area to generate DMs. These images are ac-
quired through different means and exhibit great variability
in cell type and morphology. They can demonstrate gener-
alizability of the RT framework and effectiveness of SGN.
In experiments, we split each data set into three sub-sets:
a labeled set with groundtruth DMs for initial training, an
unlabeled set for semisupervised learning which simulates
the new data flowing in dynamically without any prior an-
notations, and a test set simulating the unknown images to
be analyzed off-line. The performances on the unlabeled
set and the test set mainly reflect real-time counting abil-
ity and generalizability, respectively. Details of each data
set are provided as follows. 1) BCFM is a synthetic data
set designed by Lempitsky et al.[16]. Each image contains
256×256 pixels. We randomly select 32 images from the
first 50 images as the labeled set, use the 50-100 images as
the unlabeled set and the last 100 samples as the test set.
2) BM contains 11 HE stained bright-field microscopy im-
ages, cropped from whole-slide images (40× magnification)
of human bone marrow from eight different patients, each
with 1200×1200 pixels[25]. We slice them into 600×600
sub-images as in the references[25]. We randomly select
15 of the 44 sub-images as the labeled set, 18 images as
the unlabeled set and the rest 11 images as the test set.
3) Kaggle[2] contains 670 HE stained microscopy images.
The images were obtained under different conditions, vary-
ing in size, cell type, magnification, and imaging method
(bright field and fluorescence). The data set is designed to
challenge an algorithm’s ability to generalize across these
variations. We use 335 samples as the labeled set, 135 as
the unlabeled set, and the remaining 200 as the test set. 4)
PanNuke[7] consists of 7870 images of 19 different types of
tissues. Each image has 256×256 pixels. As the publisher
has already been split it into three subsets, we use the first
one (2625 images) as the labeled set, the second one (2523
images) as the unlabeled set and the third one (2722 images)
for as the test set.

4.2. Implementation Details

To demonstrate the flexibility of the proposed frame-
work, we embed various supervised cell counting models,
including three baseline networks, UNet[21] and FCRN-
A/B[24], and three advanced methods, Structured Regres-
sion (SR)[25], Count-Ception[4] and C-FCRN+Aux[10].
Substituting a competing model “X” for M(•) in Algorithm
1, we create its counterpart for RT counting, i.e., RT-X. We
also compare them with a self-training (ST) framework[28].
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Despite the name, it is little different from semisupervised
learning. After cell segmentation by ST, we count the
cells in the predicted masks. Moreover, we implement
MRRN[29] with the graph regularizer defined by Eq. (6)
to serve as a supervised version of SGN. Among the com-
peting methods, SR (2018), C-FCRN+Aux (2021) and ST
(2020) can be viewed as state-of-the-art. Although some
methods are initially proposed for cell detection or segmen-
tation, they are adapted to cell counting with great care.

To be fair, we use the same configurations for the RT
framework while different models are embedded. As input,
each image of BCFM, Kaggle and PanNuke is sliced into
32×32 patches. Since the BM images are large, they are
sliced into 50×50 patches. The batchsize is 32 during the
initial training and semisupervised learning. We have care-
fully tuned the hyperparameters of each model until they
reach their optimal performances as in the reference papers.
Instead of the original distance map, density map is used
for SR for better counting results. The initial learning rate
is 0.001 and decayed with a factor 0.9 by 30 steps. For
the proposed SGN, λ is 0.2 and the number (k) of nearest
neighbors is 8. During its semisupervised learning phase, α
is 1 and the number (N (u)

t ) of selected samples is 1 for BM,
2 for BCFM and Kaggle, and 25 for PanNuke.

The evaluation metrics are Mean Absolute Error (MAE)
and Mean Relative Error (MRE)[10]. MAE directly reflects
the number of miss-counted cells while MRE provides a rel-
ative assessment as it is independent of the total cell num-
ber in an image. The mean result and standard deviations
of 5 repetitions of each experiment are reported. All the
algorithms are run on Intel Xeon E3, 11G GPU and 64G
RAM. The codes and optimized models will be available at
https://github.com/Yihouyihou/SGN.

4.3. Experimental Analysis

1) RT counting
i) Feasibility and flexibility. Table 2 gives a comparison

between real-time counting and off-line prediction. The er-
ror indexes of the RT methods are low enough to indicate
that the framework is feasible and the real-time counting is
a success. The framework learns from the unlabeled im-
ages and their cells simultaneously, thus reducing counting
errors. The results also show that the RT framework is flex-
ible enough to extend various supervised models to their
semisupervised versions.

ii) Efficacy and generalizability. Fig. 5 presents some
typical results by SGN. It visualizes four microscopy im-
ages overlaid with their groundtruth or predicted DMs. It
shows that SGN can accurately count various types of cells
in very different settings. Table 3 shows that SGN outper-
forms the ST method on all the data sets, demonstrating the
superiority of the proposed RT framework. Moreover, each
semisupervised model outperforms its supervised counter-

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 5. Typical results of SGN on the test sets. (a) A BCFM
image and (b) its true and (c) predicted DMs (MAE: 1.75, MRE:
1.63%). (d) A BM image and (e) its true and (f) predicted DMs
(MAE: 7.52, MRE: 8.35%). (g) A Kaggle image and (h) its true
and (i) predicted DMs (MAE: 10.32, MRE: 15.53%). (j) A Pan-
Nuke image and (k) its true and (l) predicted DMs (MAE: 1.87,
MRE: 10.64%). Overlaying the DMs with the original images in
the same way as in Fig. 1 is only for the purpose of illustration.

part on the test sets. It indicates that the semisupervised
learning mechanism is effective in reducing counting errors.
By engaging ample amount of unlabeled data in optimiza-
tion without increasing manual workload, the RT frame-
work let the counting models gain representation power au-
tomatically. With enhanced generalizability, the semisuper-
vised models yield better results for unseen data than the su-
pervised ones. Meanwhile, SGN gives less counting errors
than the competing models except for RT-C-FCRN+Aux on
the BM data set. The cells in the BM images are over-
crowded and difficult to recognize, as illustrated by Fig.
5(d). Fortunately, the proposed framework can leverage the
powerful models such as C-FCRN+Aux and keep its edge
in cell counting.
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Method
Data Set BCFM BM Kaggle PanNuke

MAE MRE MAE MRE MAE MRE MAE MRE
UNet[21] 4.86±1.51 3.88 13.45±1.78 8.75 8.52±0.45 18.93 5.20±0.73 19.30

FCRN-A[24] 3.00±0.52 2.40 22.52±6.22 14.71 9.78±0.72 21.73 5.38±0.64 19.93
FCRN-B[24] 3.33±0.78 2.66 28.75±4.88 18.79 12.24±0.72 27.20 5.37±1.02 19.89

SR[25] 3.02±0.65 2.41 9.58±1.68 6.26 9.02±0.60 20.04 5.55±0.89 20.56
Count-Ception[4] 2.75±0.31 2.20 9.02±2.00 5.83 9.37±0.60 20.82 4.21±0.25 15.59
C-FCRN+Aux[10] 2.78±0.77 2.24 8.53±2.10 5.57 8.99±0.79 19.97 5.75±0.30 21.30

MRRN[29] 2.62±0.14 2.09 8.96±1.12 5.85 8.42±0.50 18.71 3.46±0.21 12.81
ST[28] 4.89±0.58 3.91 8.68±1.87 5.68 9.51±0.55 21.13 9.00±0.57 33.33

RT-UNet 2.98±0.74 2.38 8.45±1.58 5.52 6.72±0.45 14.93 4.31±0.34 15.96
RT-FCRN-A 2.56±0.51 2.05 19.45±7.70 12.70 7.77±0.56 17.26 4.71±0.42 17.44
RT-FCRN-B 2.67±0.52 2.14 21.29±7.20 13.91 7.31±0.66 16.24 4.89±0.56 18.11

RT-SR 2.87±0.41 2.29 6.40±1.85 4.18 7.98±0.38 17.73 4.87±0.42 18.04
RT-Count-Ception 2.24±0.20 1.79 6.22±1.57 4.06 7.65±0.40 17.00 3.45±0.29 12.79
RT-C-FCRN+Aux 2.23±0.65 1.78 5.65±1.35 3.69 6.79±0.52 15.08 4.90±0.31 18.15

SGN 1.98±0.12 1.58 5.72±1.03 3.73 5.38±0.30 11.95 2.82±0.29 10.44

Table 2. Evaluation of cell counting performances on the unlabeled sets in terms of MAE and MRE(%).

Method
Data Set BCFM BM Kaggle PanNuke

MAE MRE MAE MRE MAE MRE MAE MRE
UNet[21] 5.75±1.25 3.46 12.32±2.30 9.78 8.15±0.55 19.40 5.10±0.69 20.64

FCRN-A[24] 3.15±0.69 1.74 28.22±8.62 22.39 9.22±0.69 21.96 5.58±0.64 23.05
FCRN-B[24] 3.84±0.84 2.12 27.87±9.78 22.06 9.85±0.70 23.45 5.69±1.02 22.51

SR[25] 3.22±0.54 1.89 8.88±1.57 7.04 8.68±0.60 20.67 5.59±0.89 23.10
Count-Ception[4] 2.85±0.20 1.67 8.65±1.80 6.86 9.03±0.60 21.50 4.14±0.25 18.48
C-FCRN+Aux[10] 2.89±0.87 1.69 7.13±1.24 5.67 8.74±0.79 20.93 5.86±0.30 23.91

MRRN[29] 2.70±0.14 1.58 7.98±1.05 6.03 7.90±0.50 18.99 3.46±0.21 14.29
ST[28] 5.19±0.79 3.19 7.86±1.42 6.23 9.51±0.67 22.64 8.92±0.48 34.03

RT-UNet 4.33±0.85 2.67 10.61±2.11 8.42 7.86±0.45 18.71 4.45±0.33 18.39
RT-FCRN-A 2.97±0.69 1.64 25.52±8.50 20.25 9.00±0.58 21.42 4.96±0.48 20.50
RT-FCRN-B 3.03±0.84 1.67 25.33±8.45 20.13 9.21±0.60 21.92 5.23±0.64 21.61

RT-SR 3.00±0.42 1.78 8.02±1.95 6.36 7.43±0.35 17.69 4.88±0.39 20.16
RT-Count-Ception 2.78±0.21 1.63 7.95±1.56 6.31 8.78±0.42 20.70 3.87±0.27 15.99
RT-C-FCRN+Aux 2.70±0.34 1.57 6.99±1.35 5.54 8.01±0.47 18.67 5.20±0.29 21.49

SGN 2.68±0.12 1.57 7.64±0.89 6.06 6.57±0.30 15.64 3.38±0.18 14.08

Table 3. Evaluation of cell counting performances on the test sets in terms of MAE and MRE (%).

iii) Reliability and efficiency. Figs. 6(a)-(b) show that
the RT counting error, MAE decreases as the semisuper-
vised iterations move on. This is strong evidence for the
reliability of the training set renewing mechanism. By se-
lecting a small amount of unlabeled images with top mor-
phology confidence values, the RT framework successfully
manage the risks of introducing erroneous information and
guarantees counting accuracy. Figs. 6(c)-(d) show that the
learning errors are also minimized as all the loss curves of
Step 2d), Algorithm 1 in the semisupervised iterations con-

verges nicely. It indicates that SGN is a stable and reliable
system. As most iterations end within 20 epochs, it is effi-
cient to perform RT counting by SGN.

2) SGN

i) Robustness and count sensitivity. It is already shown
by Tables 2-3 that SGN performs accurate cell counting.
Here the effects of the MESA-based graph regularization,
which plays a major role in SGN are analyzed. Fig. 7 gives
two examples of DM neighborhood (sub-graph) used in the
graph construction. It shows that the normalized MESA dis-
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(a) (b)

(c) (d)

Figure 6. Analysis on reliability and efficiency of RT counting by
SGN. Count MAE against semisupervised iterations for the unla-
beled sets of (a) BM and (b) PanNuke. Overall loss against op-
timization epochs in the first six semisupervised iterations for the
(c) BM and (d) PanNuke data sets.

(a) (b)

Figure 7. Sub-graphs of predicted DMs for test images of (a) Kag-
gle and (b) PanNuke. The numerical values indicate the normal-
ized MESA.

tance between two DM patches is small as long as their cell
counts are close, no matter how the cells vary in positions.
Even when the cells are cut-off by the edges of DM patches,
the edges and weights of the sub-graphs can capture the pat-
terns of invariant cell counts. Thus, it is reasonable to em-
ploy MESA to build graph regularizers with robustness to
spatial variations and sensitivity to cell counts.

ii) Ablation study. MRRN and UNet can be regarded as
two ablated models of SGN since MRRN is the supervised
version of SGN while UNet is the backbone. As shown
in Fig. 8, SGN outperforms UNet and MRRN in differ-
ent training conditions. It justifies the contributions of the
graph regularization and the semisupervised mechanism to
counting accuracy. Moreover, as the number of labeled im-
ages decreases, MAE of SGN increases the slowest among
the competing models. It should be attributed to the graph
embedding and the semisupervised framework of SGN.

3) Discussion. The performance analysis above has val-
idated the merits of the RT framework and SGN in cell
counting. Interestingly, as illustrated by Fig. 9, SGN is open
to possibilities of cell detection and classification. With

Figure 8. Count MAE of SGN, MRRN and UNet for the test set of
BCFM.

Figure 9. Visualization cell localization results of SGN for a BM
image, whereas green rings stands for real cell locations and yel-
low dots indicate the predicted ones. Best viewed when zoomed
in.

proper postprocessing of the predicted DMs, we can obtain
cell locations as detection results as well as nuclear regions
for classification. We could also use different feature maps
as regression labels[25][9]. While the topic is not within the
scope of this paper, we are not going to dwell on it but will
include it in our future work.

5. Conclusion

To count cells simultaneously as new microscopy images
are captured and fed to application systems, we propose a
flexible and reliable RT counting framework. It is a regres-
sion system that uses density maps as labels. It could al-
most extend any supervised counting model to the semisu-
pervised version and improve its performance in cell count-
ing. The framework can automatically adapt to unlabeled
new data and perform real time counting. With the delicate
design for training set renewal, this process does not require
extra manual efforts while the system gains representation
power and refines the counting results. Moreover, we pro-
pose a robust counting model, SGN to address the specific
issues such as cell variability and image complexity. Exper-
imental results on four different data sets have validated the
generalizability of the RT framework as well as the efficacy
of SGN.
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