Supplementary Material for ‘“Probeable DARTS with Application to
Computational Pathology”
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1. Network Structures

The macro network structures in both the searching and
evaluation phases are formed by stacking the normal and re-
duction cells sequentially. At 1/3 and 2/3 of the total depth
of the network, there are reduction cells. Fig. | shows the
general network structure, where the stem block contains
several convolutional layers and the classifier consists of a
global pooling layer and a fully connected layer.

The final architecture searched on ADP [3] is shown in
Fig. 2. Note that there are no normal cells between the two
reduction cells since the total number of cells is four, which
is not divisible by three.
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Figure 1. General network structure for searching and evaluation.

2. Dataset Details

CIFAR [6]. In the searching phase, we follow [&] to
split the original training set into two parts, one for training
and one for evaluation. In the evaluation phase, we use the
default splits. We use random cropping with size 32x32 and
random horizontal flipping as data augmentations.

CPath datasets. ADP and BCSS [I] are multi-label
datasets, while BACH [2] and Osteosarcoma [7] are single-
label. Their image resolution is all 272x272. We only con-
duct searching on ADP but evaluate the searched architec-

N
| 3x3_conv with stride ZJ
[ A
\\st_conv with stride 21
J

Normal cell

o

P
| Reduction cell

-
| Normal cell |
)

| Adaptive Avg_pool
N J
N

| FC layer |
\ J

Figure 2. Final network structure searched on ADP.

ture on all four datasets. During searching, we treat half of
the training set of ADP as the validation set. Data augmen-
tations in all datasets include random horizontal and vertical
flipping, random affine, and resize. Note that during search-
ing on ADP, we resize the images to 64x64 to alleviate the
computation overhead, and during evaluation, images are
resized only in the test of different resolutions (136, 68, and
34).

3. Hyperparameters
3.1. Architecture Search

In CIFAR experiments, we train the network for 50
epochs with batch size 64 and initial channels 16. We test
two optimizers for optimizing model weights, which are the
original SGD [8] and Adas [4]. For DARTS+SGD, we fol-
low [8] to use initial learning rate 0.025, cosine annealing
scheduler, momentum 0.9 and weight decay 3 x 10~%. For
DARTS+Adas, we use initial learning rate 0.175, scheduler
beta 0.98, momentum 0.9, and weight decay 3 x 10~%. As
for architecture parameter optimization, we follow [8] to
use Adam [5] optimizer with initial learning rate 3 X 1074,
momentum (0.5,0.999), and weight decay 10~3.

In ADP experiments, most hyperparameters are the
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same except that we use batch size 32 due to computa-
tion overhead. We also increase the initial learning rate of
DARTS+SGD to 0.175 for model weights optimization.

3.2. Architecture Evaluation

In both CIFAR and CPath experiments, we follow [8]
to train the network for 600 epochs with batch size 96 and
initial channels 36. We use SGD optimizer with an initial
learning rate of 0.025, cosine annealing scheduler, momen-
tum 0.9, and weight decay 3 x 10~*. Additional enhance-
ments include cutout and auxiliary towers as in [8]. Note
that we disable auxiliary towers in training when we com-
pare the performance of the searched architectures with the
state-of-the-art networks.
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