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Abstract

A recent study [30] has found that training a multi-
modal network often produces a network that has not
learned the proper parameters for video action recognition.
These multi-modal network models perform normally dur-
ing training but fall short to its single modality counter-
part when testing. The main cause for this performance
drop could be two-fold. First, conventional methods use a
poor fusion mechanism, where each modality is trained sep-
arately and then simply combine together (e.g., late feature
fusion). Second, collecting videos is much more expensive
than images. The insufficient video data can hardly provide
support for training a multi-modal network that has a larger
and more complex weight space.

In this paper, we proposed the Language-guided Multi-
Modal Fusion to address the above poor fusion problem. A
sophisticatedly designed bi-modal video encoder is used to
fuse audio and visual signal to generate a finer video rep-
resentation. To ensure the over-fitting can be avoid, we use
a language-guided contrastive learning to largely augment
the video data to support the learning of multi-modal net-
work. On a large-scale benchmark video dataset, the pro-
posed method successfully elevates the accuracy of video
action recognition.

1. Introduction
The explosive growth in video and its applications has

drawn considerable interest in the computer vision commu-
nity and boost the need of high-level video understanding
and effectively recognize human actions. However, it is
a particularly challenging problem due to the complicated
nature of videos, including large intra-class variations and
complex temporal structures. In recent years, the accu-
racy gains for video action recognition have come from the
newly designed CNN architectures (e.g., 3D-CNNs), and
most contemporary models for video analysis exploit only
the visual signal and ignore the audio signal. Traditional
visual-only 3D-CNNs are thus prone to have limited recog-
nition accuracy.

The fact that videos are intrinsically multimodal requires
solutions that can explore not only static visual information
but also audio clues. Given its high potential in facilitat-
ing video action recognition, researchers have attempted to
utilize both audio and visual information in videos. How-
ever, end-to-end training of multi-modal video action recog-
nition is non-trivial. In theory, a well-optimized multi-
modal classifier should always match or outperform the best
uni-modal classifier since the multi-modal network receives
more information. However, we usually observe the oppo-
site that the best uni-modal network often outperforms the
multi-modal network. The main cause for this performance
drop could be two-fold. First, conventional independent
and separate training of multiple modalities (e.g., late fea-
ture fusion) may pose a poor modalities fusion mechanism.
Since an action is usually complex and could span several
video segments, simply concatenating features from dif-
ferent modalities could reversely increase the difficulty of
network learning. Second, jointly trained multi-modal net-
work have weight space that is too large for effective train-
ing. Since multi-modal network, especially for video action
recognition, is much more complex than single modality
counterpart or conventional 2D image network, it requires
a great amount of video training data. However, acquiring
a large amount of labeled video data will be prohibitively
difficult and expensive comparing to image data collection.

In this paper, we propose the Language-guided Multi-
Modal Fusion to address the above poor fusion and data
scarcity problem. Our contributions are two-fold. First, A
sophisticatedly designed bi-modal video encoder is used to
jointly fuse both audio and visual signal to optimize the net-
work prediction, which is able to exploit multi-modal fea-
tures that are more comprehensive than those previously at-
tempted. Second, to ensure the over-fitting can be avoid, we
use a novel language-based contrastive learning to largely
augment the video data. On large-scale video dataset,
the proposed method successfully elevates the accuracy of
video action recognition.

The rest of this paper is organized as follows. We discuss
the related work in Section 2 and describe our contrastive
audio-visual fusion network in Section 3. Section 4 presents
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Figure 1. The proposed Contrastive Audio-Visual Fusion (CAV-Net) Architecture

the details of our experiment and Section 5 concludes this
paper.

2. Related work
The goal of video action recognition aims to identify a

single or multiple actions per video. In recent years, most of
the accuracy gains for video action recognition have come
from the introduction of new powerful architectures. 3D-
CNNs [3, 9, 16, 21, 26, 27, 28, 29, 33] have been widely
used to learn video features and classify video in a end-
to-end manner. However, the 3D-CNNs proposed by the
above methods are mainly focused on the design of con-
volution network architecture, and trained by single clip
(e.g., gradients are updated based on one clip point of view),
where irrelevant video segments could lead the gradient to
the wrong direction and thus disrupt training performance.

Multi-modal networks [2, 10, 11, 19, 24] is another re-
search track that aims to boost the video action recognition
accuracy. However, simply concatenating output from in-
dividual network often reversely decrease the video-level
prediction result since multi-modalities are trained indepen-
dently and didn’t be fused properly during the training pro-
cess. Some recent works [35, 31, 5] has explored the idea
of allowing different modalities to attend to each other. Un-
fortunately, previous works focus mostly on the text-visual
retrieval, and has less attention on the video action recog-
nition task. In [5], the author tried to use co-attention to
better fuse audio-visual signal. However, it still faces the
difficulty of insufficient video data for training a complex
multi-modal network. Contrastive learning [20, 22] has re-
cently been used for large-scale multi-modal network train-
ing, but mostly focus on the text-visual domain as well. In
[20], MIL-NCE objective was proposed, but an averaged
pooled frame features were used, which is a less effective
video representation encoder.

In contrast to all the previous works, we sophisticat-
edly integrate the idea of bi-modal attention with language-
guided contrastive learning to learn a better video represen-
tation and boost the accuracy of video action recognition
application.

3. Method

Figure 1 shows an overview of the proposed Contrastive
Audio-Visual Fusion framework (CAV-Net). The CAV-Net
is composed by two neural networks: A Bi-modal Video
Encoder and a Text Encoder. The two encoders produce
similar embeddings if the video and the text contain similar
visual and textual concepts. Below are the details of each
module and training process.

3.1. Bi-modal Video Encoder

Figure 2 shows the architecture of the proposed bi-modal
video encoder that can help generate a audio-visual-fused
video representation. To represent a visual stream, we use
a 3D-CNN network while for the audio stream we employ
an audio CNN network (e.g., VGGish [7]), where both 3D-
CNN or VGGish contain a set of convolutional layers (ei-
ther 3D or 2D) to represent each video segment. The output
of visual and audio CNN feature can be represented as V =
{v1, v2, . . . , vn} ∈ Rdv∗n and A = {a1, a2, . . . , am} ∈
Rda∗m where n and m is the number of clips (or segments)
of visual and audio feature respectively, and dv and da is the
feature dimension of visual and audio feature respectively.

Since each clip descriptor is produced by the visual- or
audio-CNN module separately, the inter-clip relationships
modeled by convolution are inherently implicit and local
(e.g., each clip descriptor can only observe an extremely
limited local event). This will become a performance bot-
tleneck since the duration of different actions are variant
and complex actions could span across multiple video seg-
ments. Hence, to capture the inter-clip dependencies for
both short- and long-range dependencies, we first apply the
bi-directional fusion module to strengthen the local clip de-
scriptor of the target position via aggregating information
from other positions (e.g., other video segments). The inter-
clip relationships can be fused by a bi-directional attention
layer to link different clips and can be expressed as:

B(S, T ) = softmax(
(WqS)(WkT )

T

Nd
)(WvT ), (1)
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where S and T are source and target vector, andWq ,Wk,
and Wv denote linear transform matrices for query, key,
value vector transformation. (WqS)(WkT )

T model the bi-
directional relationship between source and target (e.g., raw
video or audio descriptor at different time segments), and
Nd is the normalization factor.

V self = B(V, V ) (2)

Aself = B(A,A) (3)

Here we call V self (resp. Aself ) the visual (resp. audio)
self-attended vector.

To fuse visual and audio feature, we use a cross-attention
layer to integrate different modalities. Specifically, we
use the visual self-attended vector to fuse with audio self-
attended vector (and vice versa) to build the fused visual
(audio) signal:

V fuse = B(V self , Aself ) (4)

Afuse = B(Aself , V self ) (5)

Here we call V fuse (resp. Afuse) the fused visual (resp.
audio) vector.

Since an action typically represents only a subset of ob-
jects and events which are most relevant to the context of
the video, directly taking average of fused vector for action
class prediction would decrease the accuracy due to those ir-
relevant clips. Here we further introduce the adaptive pool-
ing to adaptively pool fused-descriptors based on their sig-
nificance so that the final video-level action recognition de-
cision can be further improved. Here a gating module r is
used to achieve the adaptive pooling goal:

X = [V fuse, Afuse] (6)

r(X) = σsigmoid(W2σReLU (W1X)) (7)

z =

m+n∑
i

Xi ∗ ri(X) (8)

Where z is the final bi-modal video embedding.

3.2. Language-guided Contrastive Learning

End-to-end training of multi-modal video action recog-
nition is non-trivial. Due to the high dimensionality of
the parameterization in multi-modal network and the lack
of large-scale labeled video data, previous multi-modal
method cannot be trained well and tend to generate infe-
rior recognition accuracy. In practice, we often observe that
the best uni-modal network can even outperforms the multi-
modal network.

Inspired by [22], we propose to use a language-guided
contrastive learning to relax the limitation of data scarcity
and learn directly from the vast amount of video with noisy

Figure 2. The proposed Bi-modal video encoder

text on the internet. Here, we use Sentence-BERT [23] , a
modification of the pretrained BERT [6] network that use
siamese and triplet network structures to derive semanti-
cally meaningful sentence embeddings, as the text encoder
to generate text embedding. For videos with various text
information (e.g., labels, titles, description, caption, and
etc.), we encode the corresponding text into a sentence vec-
tor t ∈ Rdt , where dt is the dimension of sentence vector.
Given a randomly sample a mini-batch of N (video, text)
pairs, the proposed CAV-Net is trained to predict which of
the N × N possible (image, text) pairings across a batch
actually occurred. To do this, CAV-Net learns a visual-
semantic embedding space by jointly training an video en-
coder and text encoder to maximize the cosine similarity of
the video and text embeddings of the N real pairs in the
batch. We do not sample negative examples explicitly. In-
stead, we treat the other 2(N − 1) examples within a mini-
batch as negative examples.

To be more specific, let sim(z, t) = zT t
‖z‖‖t‖ denote the

dot product between L2 normalized video embedding z and
sentence embedding t. Then the loss function for a positive
pair of examples (i, j) is defined as

Li,j = −log(
exp(

sim(zi,tj)
τ )∑2N

k=1 1[i 6=k]exp(
sim(zi,tk)

τ )
) (9)

where 1[i 6=k] ∈ {0, 1} is an indicator function evaluating
to 1 iff i 6= k, and τ denotes a temperature parameter. The
final loss is computed across all positive pairs, both (i, j)
and (j, i), in a mini-batch.

In testing stage, sim(.) function can be used to link the
test video with related action category (e.g., comparing the
similarity between video embedding and action label) to get
the video action prediction result.
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Method Accuracy(%)
Top-1 Top-5

Audio Only
VGGish [14] 10.5 23.1

Visual Only
I3D [3] 71.1 90.3
MF-Net [4] 72.8 90.4
R(2+1)D [28] 72.0 90.0
TSM [18] 74.7 N/A
SlowFast [9] 4×16 75.6 92.1
Nonlocal [33] 76.5 92.6
X3D [8] 77.5 92.9
CAV-Net (visual only) 78.1 93.3

Multi-modal
Two-Stream (Audio-visual) I3D [25] 68.5 87.3
AVSlowFast 4×16 [32] 77.0 92.7
CAV-Net 79.2 94.4
CAV-Net + pretrain 80.7 95.2

Table 1. Accuracy comparison of different methods

4. Experiments
4.1. Datasets

To compare to previous research, we use Kinetics-400 as
the benchmark dataset. Kinetics-400 dataset contains 400
human action classes, with at least 400 video clips for each
action. Each clip is approximately 10 seconds long and is
taken from a different YouTube video.

4.2. Multi-Modal Action Recognition Accuracy

In this subsection, we study the effectiveness of the pro-
posed model on learning multi-modal classifier on different
datasets. Our CAV-Net can be used with any existing clip-
based action classifier and immediately boost the recogni-
tion accuracy. Here we use the classical 3D-ResNext [13]
[34] as the backbone of visual network, and ResNet [14]
with 50 layers as the audio network.

Table 1 shows the action recognition results of uni-modal
and multi-modal methods. For audio only method, as ex-
pected that since audio alone cannot handle the video recog-
nition task, it thus has the lowest top-1 accuracy. On the
other hand, the best visual only model (e.g., X3D [8]) can
achieve 77.5% accuracy in Kinetics 400.

For multi-modal fusion methods, the popular two-stream
network [25] that adopted a late-fusion strategy based on
I3D [3] (noted as Two-Stream Audio-visual I3D in Table 1)
surprisingly achieves merely 68.5% top-1 accuracy, which
has worse performance than its counterpart uni-modal ver-
sion I3D [3], where it has 71.1% top-1 accuracy. It shows
the difficulty of training a multi-modal network for video
action recognition, and the importance of a proper fusion

process for multi-modalities. AVSlowFast [32] achieves a
slightly better accuracy than its counterpart visual-only ver-
sion SlowFast [9], where they achieve 77.0% and 75.6%
top-1 accuracy respectively. The accuracy improvement
could come from the adoption of an early fusion strategy
in AVSlowFast.

In contrast, our proposed CAV-Net achieves the best ac-
curacy among all different type of methods. As shown in ta-
ble 1, our CAV-Net (train mainly based on Kinetics dataset)
has 79.2% top-1 accuracy, which significantly outperforms
all uni-modal and conventional audio-visual fusion meth-
ods. It shows the effectiveness of the propose bi-modal fu-
sion strategy in integrating the multi-modal signal into deep
network.

To verify the effectiveness of language-guided learning,
we also collect videos with noisy text information (such
as caption, description, and etc) as the augmented video
datasets to pretrain the CAV-Net, including public avail-
able video datasets (such as Youtube-8M [1], Charades-
ST [12], DiDeMo [15], ActivityNet Captions [17], and
etc) and videos crawled from the Internet, where the title
will be used as the label. As can be seen that ’CAV-Net
+ pretrain’ has the best accuracy among all the methods,
which achieves 80.7% accuracy. It shows that the proposed
language-based contrastive learning strategy can bring more
generalization to the model, and employ the video data that
is traditionally hard to be used for training (e.g., noisy text
and sentences as labels).

We are also interested in the effectiveness of the pro-
posed fusion strategy in uni-modality. We thus remove the
audio branch in video encoder (i.e., only with inter-clip fu-
sion and no cross-modal fusion) and train the CAV-Net. The
result is shown in ’CAV-Net(visual only)’. As can be seen in
1, despite that the uni-modal video encoder is less accurate
than the bi-modal counterpart, it still achieves 78.1% accu-
racy, which outperforms the best uni-modal visual modal
(i.e., X3D). It shows the benefit brought by the inter-clip
fusion strategy.

5. Conclusion
In theory, a well-optimized multi-modal video action

classifier should always match or outperform the best uni-
modal classifier. However, as we’ve shown in the ex-
periment that the best uni-modal network often outper-
forms the multi-modal network counter-intuitively due to
a poor design of multi-modal fusion and training process.
In this work, the proposed language-guided multi-modal
fusion successfully addresses the above problem. The
language-based contrastive learning strategy also largely
augment the available video data (though with noisy la-
bels/texts/sentences) to further optimize the classifier. On a
large-scale video dataset, the proposed method successfully
elevates the accuracy of video action recognition
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