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Abstract

Current work on Visual Question Answering (VQA)
explore deterministic approaches conditioned on various
types of image and question features. We posit that, in
addition to image and question pairs, other modalities are
useful for teaching machine to carry out question answer-
ing. Hence in this paper, we propose latent variable mod-
els for VQA where extra information (e.g. captions and an-
swer categories) are incorporated as latent variables, which
are observed during training but in turn benefit question-
answering performance at test time. Experiments on the
VQA v2.0 benchmarking dataset demonstrate the effective-
ness of our proposed models: they improve over strong
baselines, especially those that do not rely on extensive
language-vision pre-training.

1. Introduction
As a classic multi-modal machine learning problem, Vi-

sual Question Answering (VQA) [2] systems are tasked
with providing a correct textual answer given an image
and a textual question. Current VQA models [14, 8, 1]
are trained to learn the relationship between areas in an
image and the question, and to choose the correct answer
from a vocabulary of answer candidates, i.e., they are mod-
elled as a classification problem. The majorities of popular
VQA [7, 9, 18] models are created in a deterministic man-
ner and explore solely information from the given image-
question pair. There are other approaches attempting to
incorporate extra information, such as image captions [17]
and mutated inputs [6, 3]. However, it in turn restricts the
practical applications as the extra information is required to
be explicitly available during testing.

In this paper, we propose an approach to explore addi-
tional information as latent variables in VQA: we employ
latent variables for VQA to exploit extra information (i.e.
image captions and answer categories) to complement lim-
ited textual information from image and question pairs. We
assume a realistic setting where this information – esp. cap-

tions – may only be available during the training phase. To
that end, we introduce a continuous latent variable as the
caption representation to capture the essential information
from this modality. Moreover, the answer category is mod-
elled as a discrete latent variable, which acts as an inductive
bias to benefit the learning of answer prediction, and can be
integrated out during testing. The motivation is that the gen-
erative framework is able to incorporate many other types of
information as continuous or discrete latent variables, and
as such it effectively leverages additional resources to con-
strain the original image-question distribution while omit-
ting them in testing. This grants the models with stronger
generalisation ability compared to its deterministic coun-
terparts, which generally require off-the-shelf pipelines to
model the information from external modalities.

Intuitively, image captions describe diverse aspects of an
image and include attributes and relations of objects in a
more informative way. In our work, a continuous latent
variable is employed for capturing the caption distributions
and constraining the generative distribution conditioned on
image and question pairs. In this way, the joint multimodal
representations from images and question can benefit from
the caption modality during training, and it requires no ex-
plicit caption inputs in testing. Similarly, there exists a
strong connection between a question and answer pair when
the question provides informative signals on its type or the
category of possible answers. For example, “How many”,
“Where is” and “what is” normally connect to numbers, lo-
cations, and objects respectively. We propose a discrete la-
tent variable is employed for modelling answer categories
and providing better inductive bias from the question and
answer pairs.

In summary, our main contributions are:

• A novel generative VQA framework combining the
modularity of latent variables with the flexibility to
introduce extra information as continuous and/or dis-
crete latent variables.

• A method to incorporate additional information which
does not rely on building multiple deterministic
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Figure 1. Architecture of our latent variable model for VQA. We
use dotted lines to denote the process of proposed latent variables.

pipelines, aiming at learning the underlying composi-
tional, relational, and hierarchical structures of mul-
tiple modalities. The models benefit from the extra
information during training without providing explicit
inputs in testing.

• The improvements over deterministic baseline mod-
els (e.g. UpDn [1] and VL-BERT [15]) in experiments
with the VQA v2.0 dataset demonstrate the effective-
ness of our proposed latent variable models. Our qual-
itative analysis also indicates that using extra resources
(i.e. captions and answer categories) as latent variables
captures complementary information during training
and benefits the VQA performance in testing.

2. Model
We first present an overview of our general model struc-

ture, followed by the encoders for different modalities, and
the proposed corresponding latent variables.

2.1. General Model Structure

In a VQA task, images and questions are normally used
to learn a joint multimodal distribution for answer predic-
tions. We postulate that the joint representation can be im-
proved by other multimodal information. Hence, we intro-
duce captions and answer categories to our VQA model as
continuous and discrete latent variables respectively to en-
courage a better learning in the joint distribution of image
and question pairs during training. A notable advantage
of the latent variable models is that they do not explicitly
require captions or answer categories during testing, and
therefore can be easily extended to condition on any other
useful information.

Firstly we introduce the notations used in the general
VQA model. V , Q, A are used to denote the input image,
question, and answer instances respectively. The image fea-
ture v, question representation q, and answer representation

a are extracted from the image encoder, question encoder,
and answer encoder. The VQA task is constructed as a clas-
sification problem to output the most likely answer â from
a fixed set of answers based on the content of the image v
and question q:

â = argmax p(a|v, q) (1)

In our latent variable model, we introduce image cap-
tions C to the training phase. Similarly, we extract the cap-
tion features c by a caption encoder. However, instead of
directly feeding in the caption features c into to the model,
we employ a continuous latent distribution z to be the cap-
tion representations. Here z ∼ q(z|c) is modelled as vari-
ational distribution. We then build a generative distribution
z ∼ p(z|v, q) to infer the caption information by condition-
ing on image and question pairs, which is optimised dur-
ing training via neural variational inference. We originally
experimented using q(z|v, q, c) as the vairational distribu-
tion. However, this distribution is quite close (i.e. small KL
divergence) to the generative distribution p(z|v, q), which
weakens the learning signal from KL divergence.

In addition, we introduce a discrete latent variable d
for modelling answer category inferred via d ∼ p(d|v, q),
which is also conditioned on image and question pairs.

Hence, the training of the latent variable model is carried
out by the samples (v, q, a, c, d). During testing, the answer
a is predicted from the image and question pair (v, q):

â=argmax
∑
d,z

p(a|v, q, d, z)p(d|v, q)p(z|v, q) (2)

where the discrete latent variable d is directly integrated out,
and the z is the Monte-Carlo sample from p(z|v, q).

2.2. Continuous Latent Variable: Caption

As captions are modelled by a continuous latent vari-
able, we only have explicit captions during training. Here
we present the generative distribution that is conditioned
on images and questions during testing, and the variational
distribution that is conditioned on explicit captions during
training. Therefore, the caption encoder is only used in the
training phase.
Generative Distribution - pθ(z|v, q). We use a latent
distribution pθ(z|v, q) to model the joint multimodal dis-
tributions of images and questions. Compared to its
deterministic counterpart using concatenated multimodal
features, we parameterise the stochastic distribution with
N (z|µθ(v, q), σ

2
θ(v, q)).

Variational Distribution - qϕ(z|c). We first apply a RNN
model to embed the caption inputs C and a latent variable
qϕ(z|c) to model the caption semantics and distributions,
where z ∼ N (z|µϕ(c), σ

2
ϕ(c)).
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2.3. Discrete Latent Variable: Answer Category

Assuming that each image and question pair (v, q) can
be projected to an answer category to help find a correct an-
swer, we are able to encourage the model to distinguishing
candidates across answer categories instead of only the spu-
rious relationships between questions and answers via sim-
ple linguistic features. Therefore, in order to leverage this
useful inductive bias, we propose a discrete latent variable
to model the answer category given an image and question
pair (v, q). In particular, for each answer category d, we
have a conditional independent distribution p(a|v, q, d) over
the answers in the certain answer category.

p(a|v, q) =
∑
d

p(a|v, q, d) · p(d|v, q) (3)

We trained an answer category classifier using joint image-
question pairs as the input, given the true labels as shown at
left bottom in Figure 1. We then use the category distribu-
tion to modify the answer distribution through element-wise
production to get more precise answer distribution.

3. Datasets & Setup
3.1. Datasets

We use the VQA v2.0 dataset [2] for our proposed la-
tent variable model. The answers are balanced in order to
minimise the effectiveness of dataset priors. We report the
results on validation set and test-standard set through the
official evaluation server. The source of image captions in
our work is the MSCOCO dataset [12].

We use answer categories from the annotations of [10].
The answers in the VQA v2.0 dataset are annotated with a
set of 15 categories for the top 500 answers that makes up
the 82% 1 of the VQA v2.0 dataset; and the other answers
are treated as an additional category.

4. Experiments
In this section, we first describe the experimental results

of our latent variable model, compared with both a UpDn
(Bottom-up Top-down) baseline model and a state-of-the-
art pre-trained visual-linguistic model (VL-BERT); then we
conduct qualitative analysis to validate the effectiveness of
proposed components.

4.1. Quantitative Analysis

We compare the results of our latent variable model
with the baseline model (UpDn), a state-of-the-art visual-
linguistic pre-training model (VL-BERT), and three other

1Although the category definitions cannot cover all types of answers,
and false prediction during testing might be observed, the latent variable
can still maintain the robustness in predicting correct answers by summing
over all the probabilities of predicted categories.

VQA v2.0 test-dev (%) test-std (%)
All Yes/No Num Other All

Caption [17] - - - - 68.37
DFAF [13] 70.22 86.09 53.32 60.49 70.34
MLIN [5] 71.09 87.07 53.39 60.49 71.27

UpDn [1] 65.32 81.82 44.21 56.05 65.67
+ latent (ours) 66.01 82.96 44.58 55.94 66.29

VL-BERTlarge [15] 71.79 - - - 72.22
+ latent (ours) 72.03 88.03 54.16 62.42 72.37

Table 1. Experimental results on VQA v2.0 test-dev and test-
standard (test-std) set. Accuracies are reported in percentage (%)
terms. The state-of-the-art scores are in bold; underlined scores
are best among (baseline vs. latent variable extension); and both
underlines and bold scores are the overall best results.

related VQA models; where [17] uses generated captions to
assist answer predictions and [13, 5] explore the interactions
between visual and linguistic inputs.

As demonstrated in Table 1, our latent variable model
outperforms when acting as an extension. In particular, our
latent variable model outperforms UpDn by 0.69% accuracy
on test-dev set and by 0.62% accuracy on test-standard set.
In addition, our model improves the performance by 0.24%
accuracy than its VL-BERT counterpart on test-dev set and
by 0.15% accuracy on test-standard set. These results in-
dicate the effectiveness of including captions and answer
categories as latent variables, to promote the distribution of
image and caption pairs to be closer to the captions’ space,
and to learn a better distinction among different kinds of
answers, or different answers within the same answer cate-
gory.

The result of [17] (68.37%) is a very strong baseline,
which follows a traditional deterministic approach. How-
ever, their model is trained to generate captions that can be
used at test time, while in our case only image and ques-
tion pairs are required for answer prediction. [13] and [5]
both achieve comparable performance (70.34% and 71.27%
on test-standard set, respectively) to VL-BERT (72.22%)
without pre-training, by dynamically modulating the intra-
modality information and exploring the latent interaction
between modalities. Our latent variable model has the over-
all best result when combined with the strong pre-training
VL-BERT, which indicates both the effectiveness of the
visual-linguistic pre-training framework, and the incorpo-
ration of continuous (captions) and discrete (answer cate-
gories) latent variables.

Compared to the results on the standard baseline
(UpDn), the improvements achieved by our proposed model
on the VL-BERT framework is smaller. This is because VL-
BERT has been pre-trained on massive image captioning
data, where the learning of visual features have largely ben-
efited from the modality of captions already. Nevertheless,
based upon the strong baseline model, our proposed model
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VQA v2.0 val
All Yes/No Num Other

UpDn 63.15 80.38 42.84 55.86
UpDn + caption 63.85 81.10 43.63 55.90
UpDn + category 63.51 81.62 42.17 55.38

Ours w/o caption 64.09 81.82 44.37 55.74
Ours w/ caption 64.24 82.36 44.52 56.02

Table 2. Ablation study to investigate the effect of each compo-
nent: caption, and answer category. “Ours w/o caption” indicates
our final model in which only image and question pairs are needed
at test time; while “Ours w/ caption” represents the model using
caption during evaluation. The result of our best model are in bold;
while the best performance with captions as inputs during testing
is underlined for comparison.

can still improve performance slightly, which further indi-
cates the effectiveness of the latent variable framework.

The state-of-the-art performance on VQA v2.0 among
pre-training frameworks is achieved by LXMERT, Oscar
and Uniter [16, 11, 4]. They have been extensively pre-
trained using massive datasets on languages and vision tasks
(including VQA) in a multi-task learning fashion. Our work
is not directly comparable, and is not aimed at improving
and beating the state-of-the-art performance. Instead, it is
focused on exploring the potential of latent variable mod-
els to represent additional useful information in multimodal
learning and to contribute to pre-trained vision-language
frameworks. We draw attention to the advantage of using
generative framework on the VQA task. In this case, we can
employ more information during training (which is omit-
ted in testing) to regularise the original multimodal distri-
bution. This can be demonstrated by the improvements on
VL-BERT brought by the latent variables.

4.2. Qualitative Analysis

We perform an ablation study to qualitatively analyse the
effect of the components introduced in our work brought by
the continuous (image caption) and discrete (answer cate-
gory) latent variables, as shown in Table 2.

4.2.1 Effect of Captions

The introduction of captions as a continuous latent variable
improves the classification performance, with an additional
modality as input to benefit the learning of multimodal rep-
resentations. According to the breakdown numbers in 2, the
improvements brought by the latent variables of captions
and answer categories are 0.70 and 0.36 respectively for All
questions altogether. The combined strategy reaches 0.94
which indicates that the benefits from the two latent vari-
ables are complementary. Note that neither the captions nor
the answer categories is available during testing; we only
make use of these modalities during training.
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Figure 2. Examples of our latent variable model outperforming the
baseline UpDn model from the introduction of answer category
as a discrete latent variable. The answer predicted by UpDn is
highlighted in red and the answer from our model is in blue. We
also show other sample answer candidates within each category.

To further investigate potential benefit of the captions,
we design an experiment that feed in ground truth cap-
tions via variational distribution for caption representations
instead of inferring them from question and answer pairs
(i.e. use qϕ(z|c) to replace pθ(z|v, q)). We test this out
in the validation dataset and obtain 64.24 (‘Ours w/ cap-
tion’) compared to 64.09 (‘Ours w/o caption’). It shows
that having explicit captions as input gives slightly better
performance. However, the captions in these experiments
are ground truth, which means that if we were to use in-
stead automatically generated captions from an image cap-
tioning pipeline, the numbers might drop due to the possi-
ble captioning errors. Primarily, our proposed model (‘Ours
w/o caption’) achieves the performance on par with with the
model with ground truth captions, which demonstrates the
effectiveness of the strategy that incorporates extra modality
by latent variables.

4.2.2 Effect of Answer Category

As it can be observed from Table 2, after introducing an-
swer category as an additional discrete latent variable, our
proposed model can also be improved over the UpDn base-
line, where the largest improvement can be observed for
the “Yes/No” type. For the question types “Num” and
“Other”, the results of UpDn+category are lower than
the baseline. This may be due to the multiple answer can-
didates under the two categories. For example, although
the category classier can accurately predict the answer cat-
egory (e.g., “count”, “color”, etc.), it can be still difficult
to distinguish among the answers - {“9”, “20”, ..., “many”
for “count”; “black”, “brown”, ..., “black and white” for
“color”}. We highlight that the contribution of answer cat-
egories as a discrete latent variable is to introduce an induc-
tive bias which helps predict the correct answer categories
and answers given a specific image and question.

In order to further elaborate the effectiveness of answer
categories, we extract examples where our model predicted
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the correct answers while the UpDn baseline failed to do
so, as shown in Figure 2. For the two cases in the top row,
both models predict answers under the same and correct an-
swer categories, hence the answer space is similar; however,
our latent variable model can effectively distinguish and
learn the difference among the answers which fall within
the same category. The bottom row of Figure 2 shows two
cases where the two models predict answers in different an-
swer categories, and therefore they are also very different
in meaning. Our model not only outputs the highest prob-
ability for the correct answer category, but also makes the
correct final prediction.

5. Conclusions
In this paper, we propose to tackle VQA under the frame-

work of latent variable models, employing captions and
answer categories as the continuous and the discrete la-
tent variables respectively to constrain the original image-
question distribution while omitting the extra information
during the test phase. Our experimental results and qualita-
tive analysis show the effectiveness of the latent variables in
boosting answering performance at test time when only im-
age and question pairs are available. This framework could
be easily generalised to incorporate other types of informa-
tion or modalities to enhance VQA and other tasks.
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