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Abstract

Current state-of-the-art image captioning models adopt
autoregressive decoders, i.e. they generate each word by
conditioning on previously generated words, which leads
to heavy latency during inference. To tackle this issue, non-
autoregressive image captioning models have recently been
proposed to significantly accelerate the speed of inference
by generating all words in parallel. However, these non-
autoregressive models inevitably suffer from large gener-
ation quality degradation since they remove words depen-
dence excessively. To make a better trade-off between speed
and quality, we introduce a semi-autoregressive model for
image captioning (dubbed as SATIC), which keeps the au-
toregressive property in global but generates words paral-
lelly in local . Based on Transformer, there are only a few
modifications needed to implement SATIC. Experimental re-
sults on the MSCOCO image captioning benchmark show
that SATIC can achieve a good trade-off without bells and
whistles. Code is available at https://github.com/
YuanEZhou/satic.

1. Introduction
Image captioning [24, 28, 18], which aims at describing

the visual content of an image with natural language sen-
tence, is one of the important tasks to connect vision and
language. Most proposed models typically follow the en-
coder/decoder paradigm. In between, convolutional neural
network (CNN) is utilized to encode an input image and
recurrent neural networks (RNN) or Transformer [22] is
adopted as sentence decoder to generate a caption. Cur-
rent state-of-the-art models adopt autoregressive decoders
which means that they generate one word at each time step
by conditioning on all previously produced words. Though
impressive results have been achieved, these models suffer
from high latency during inference owing to the autoregres-
sive property, which is unaffordable for real-time industrial
scenarios sometimes.

To tackle this issue, there is an increasing interest to de-
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Figure 1. Given an image, autoregressive image captioning (AIC)
model generates a caption word by word and Non-Autoregressive
Image Captioning (NAIC) model outputs all words in parallel,
while Semi-Autoregressive image captioning (SAIC) model falls
in between, which keeps the autoregressive property in global but
outputs words parallelly in local. We mark error words by red font.

velop non-autoregressive decoding [9, 15, 6, 11] to signif-
icantly accelerate inference speed by generating all target
words parallelly. These non-autoregressive models have ba-
sically the same structure as the autoregressive Transformer
model [22]. The difference lie in that non-autoregressive
models generate all words independently (as shown in the
bottom of Figure 1) instead of generating one word at each
time step by conditioning on the previously produced words
as in autoregressive models (as shown in the top of Fig-
ure 1). However, these non-autoregressive models suffer
from words repetition or omission problem compared to
their autoregressive counterparts owing to removing the se-
quential dependence excessively.

To alleviate the above issue, some methods have been
proposed to seek a trade-off between speed and quality. For
example, iteration refinement based methods [15, 7, 2] try
to compensate for the word independence assumption by
taking caption output from preceding iteration as input and
then polishing it until reaching max iteration number or no
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change appears. Nevertheless, it needs multiple times re-
finement to achieve better quality, which hurts decoding
speed significantly. Some works [6, 10] try to enhance the
decoder input by providing more target side context infor-
mation, while they commonly incorporate extra modules
and thus extra computing overhead. Besides, partially non-
autoregressive models [5, 19] are proposed by considering
a sentence as a series of concatenated word groups. The
groups are generated parallelly in global while each word in
group is predicted from left to right. Though better trade-off
is achieved, the training paradigm of such model is some-
what tricky because it must need to incorporate curriculum
learning-based training tasks of group length prediction and
invalid group deletion [5].

In contrast, the model (SATIC) introduced in this paper
can achieve similar trade-off performance but without bells
and whistles during training. Specifically, SATIC also con-
siders a sentence as a series of concatenated word groups, as
similar with [5, 19]. However, all words in a group are pre-
dicted in parallel while the groups are generated from left to
right, as shown in the middle of Figure 1. This means that
SATIC keeps the autoregressive property in global and the
non-autoregressive property in local and thus gets the best
of both world. In other words, SATIC can directly inherit
the mature training paradigm of autoregressive captioning
models and get the speedup benefit of non-autoregressive
captioning models.

We evaluate SATIC model on the challenging MSCOCO
[3] image captioning benchmark. Experimental results
show that SATIC achieves a better balance between speed,
quality and easy training. Specifically, SATIC generates
captions better than non-autoregressive models and faster
than autoregressive models and is easier to be trained than
partially non-autoregressive models [5]. Besides, we con-
duct substantial ablation studies to better understand the ef-
fect of each component of the whole model.

2. Related Work
Image Captioning. Over the last few years, a broad col-
lection of methods have been proposed in the field of im-
age captioning. In a nutshell, we have gone through grid-
feature [27, 13] then region-feature [1] and relation-aware
visual feature [29, 28] on the image encoding side. On
the sentence decoding side, we have witnessed LSTM [24],
CNN [8] and Transformer [4] equipped with various atten-
tion [12, 31, 18] as decoder. On the training side, mod-
els are typically trained by step-wise cross-entropy loss
and then Reinforcement Learning [21], which enables the
use of non-differentiable caption metrics as optimization
objectives and makes a notable achievement. Recently,
vision-language pre-training has also been adopted for im-
age captioning and show impressive result. These mod-
els [30, 16] are firstly pretrained on large image-text corpus
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Figure 2. Illustration of Transformer-based semi-autoregressive
image captioning model (SATIC), which composes of an encoder
and a decoder. Without loss of generality, we set K=2 for conve-
nience. Notice that the Residual Connections, Layer Normaliza-
tion are omitted.

and then finetuned. It is noteworthy that it’s not fair to di-
rectly compare them with non-pretraining-finetuning meth-
ods. Though impressive performance has been achieved,
most state-of-the-art models adopt autoregressive decoders
and thus suffer from high latency during inference.
Non-Autoregressive Decoding. Due to the downside of
autoregressive decoding, Non-autoregressive decoding has
firstly aroused widespread attention in the community of
Neural Machine Translation (NMT). Non-autoregressive
NMT was first proposed in [9] to significantly improve
the inference speed by generating all target-side words in
parallel. While the decoding speed is improved, it of-
ten suffers from word repetition or omission problem due
to removing words dependence excessively. Some meth-
ods have been proposed to overcome this problem, includ-
ing knowledge distillation [9], well-designed decoder in-
put [10], auxiliary regularization terms [26], iterative re-
finement [15], and partially-autoregressive model [19, 25].
Following similar research roadmap, non-autoregressive
decoding has recently been introduced to visual caption-
ing task [7, 11, 6, 2, 5]. This work pursues the semi-
autoregressive decoding in NMT [25] for image captioning
and further explores its effectiveness under the context of
reinforcement training.

3. Approach
In this section, we first present the architecture of SATIC

model built on the well-known Transformer [22] and then
introduce the training procedure for model optimization.

3.1. Transformer-Based SATIC Model

Given the image region features extracted by a pre-
trained Faster-RCNN model [20, 1], SATIC aims to gener-
ate a caption in a semi-autoregressive manner. The architec-
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ture of SATIC model is shown in Figure 2, which consists
of an encoder and decoder.
Image Features Encoder. The encoder, which is basi-
cally the same as the Transformer encoder [22], takes the
image region features as input and outputs the contextual
region features. More details can be found in supplemen-
tary material.
Captioning Decoder. The decoder takes contextual re-
gion features and previous word embedding features as in-
put and outputs predicted words probability. It is basically
the same as the Transformer decoder [22] except that origi-
nal masked multi-head attention is replaced with the relaxed
masked multi-head self-attention. Specifically, the original
lower triangular matrix mask is now replaced by the relaxed
mask. Formally, given the caption length T and group size
K, the relaxed mask M ∈ RT×T is defined as:

M [i][j] =

{
0 if j < ([(i− 1)/K] + 1)×K, allow
−∞ other, disallow attending

,

(1)

where i, j ∈ [1, T ] and [·] denotes floor operation. An intu-
itive example is shown in the right of Figure 2, where T = 6
and K = 2. As a consequence, the scaled dot-product at-
tention in relaxed masked multi-head self-attention module
is modified to:

Attention(Q,K, V ) = softmax(
QKT

√
dk

+M)V, (2)

where Q/K/V denotes query/key/value and dk is the dimen-
sion of the key. Thanks to the relaxed mask, all words in
a group can now access all words in its preceding groups.
Different from original autoregressive Transformer model,
which outputs a word at each step, SATIC takes a group
of words as input and outputs a group of words at each
step during decoding. Each group contains K consecu-
tive words. For example, at the beginning of decoding,
we feed the model with K <START> symbols to predicate
y1, ..., yK and then y1, ..., yK are fed as input to predicate
yK+1, ..., y2K in parallel. This process will continue until
the end of sentence. An intuitive example is shown in the
middle of Figure 1 with K = 2. .

3.2. Training

Since SATIC model keeps the autoregressive property in
global and the non-autoregressive property in local, it gets
the best of both world and the conditional probability can
be formulated as:

p(y|I; θ) =
[(T−1)/K]+1∏

t=1

p (Gt|G<t, I; θ) , (3)

where θ is the model’s parameters and y = (y1, ..., yT )
is the associated target sentence of image I and G<t

represents the groups before t-th group and Gt =
y(t−1)K+1, ..., ytK except for the last group which may
have less than K words. If the length of padded word se-
quence can’t be divided by K, remaining words only keep
in output but not in input. At the first training stage, we
optimize the model by minimizing cross-entropy loss (XE):

LXE(θ) =−
[(T−1)/K]+1∑

t=1

log p (Gt|G<t, I; θ)

=−
[(T−1)/K]+1∑

t=1

tK∑
i=(t−1)K+1

log p (yi|G<t, I; θ) .

(4)
At the second training stage, we finetune the model using
self-critical training (SC) [21] and the gradient can be ex-
pressed as:

∇θLSC(θ) = −
1

N

N∑
n=1

(R(ŷn1:T )− b)∇θ log p(ŷn1:T |I; θ),

(5)
where R is the CIDEr [23] score function, and b is the base-
line score. We adopt the baseline score proposed in [17],
where the baseline score is defined as the average reward
of the rest samples rather than original greedy decoding re-
ward. We sample N = 5 captions for each image and ŷn1:T
is the n-th sampled caption.

4. Experiments
4.1. Dataset and Implementation Details.

We conduct experiments on the widely used
MSCOCO [3] dataset and standard automatic evalua-
tion metrics [3] (including BLEU, METEOR, ROUGE,
SPICE, and CIDEr) are used for reporting results. We
train model under cross entropy loss for 15 epochs with a
mini batch size of 10 and then optimize the CIDEr score
with self-critical training for another 25 epochs. Our
best SATIC model shares the same training script with
autoregressive image captioning model (AIC) except that
we first initialize the weights (weight-init) of SATIC model
with the pre-trained AIC model and replace the ground
truth captions in the training set with sequence knowledge
distillation (SeqKD) [14, 9] results of AIC model with
beam size 5 during cross entropy training stage. More
details can be found in supplementary material.

4.2. Quantitative Results
In this section, we will analyse SATIC in detail by an-

swering following questions.
How does SATIC perform compared with other models?
We compare SATIC model with autoregressive models, non-
autoregressive models and a partially non-autoregressive model.
As shown in Table 1, SATIC achieves comparable caption quality
with autoregressive models but with significant speedup. When
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Models BLEU-4 METEOR SPICE CIDEr Latency Speedup

Autoregressive models

NIC-v2 [24] 32.1 25.7 / 99.8 / /
Up-Down [1] 36.3 27.7 21.4 120.1 / /
AOANet [12] 38.9 29.2 22.4 129.8 / /
M2-T† [4] 39.1 29.2 22.6 131.2 / /
AIC† (bw = 1) 38.8 29.0 22.7 128.0 135ms 2.25×
AIC† (bw = 3) 39.1 29.1 22.9 129.7 304ms 1.00×
Non-autoregressive models

MNIC† [7] 30.9 27.5 21.0 108.1 - 2.80×
FNIC †[6] 36.2 27.1 20.2 115.7 - 8.15×
MIR †[15] 32.5 27.2 20.6 109.5 - 1.56×
CMAL †[11] 37.3 28.1 21.8 124.0 - 13.90×
Partially Non-autoregressive models

PNAIC(K=2) †[5] 38.3 29.0 22.2 129.4 - 2.17×
PNAIC(K=5) †[5] 38.1 28.7 22.0 128.5 - 3.59×
PNAIC(K=10) †[5] 37.5 28.2 21.8 125.2 - 5.43×
SATIC(K=2, bw=3) † 38.4 28.8 22.7 129.0 184ms 1.65×
SATIC(K=2, bw=1) † 38.3 28.8 22.7 128.8 76ms 4.0×
SATIC(K=4, bw=3) † 38.1 28.6 22.4 127.4 127ms 2.39×
SATIC(K=4, bw=1) † 37.9 28.6 22.3 127.2 46ms 6.61×
SATIC(K=6, bw=3) † 37.6 28.3 22.1 126.2 119ms 2.55×
SATIC(K=6, bw=1) † 37.6 28.3 22.2 126.2 35ms 8.69×

Table 1. Performance comparisons with different evaluation met-
rics on the MS COCO offline test set. “†” indicates the model is
based on Transformer architecture. AIC is our implementation of
the Transformer-based autoregressive model, which has the same
structure as SATIC models and is used as the teacher model for se-
quence knowledge distillation [14]. “/” denotes that the results are
not reported. “bw” denotes the beam width used for beam search.
Latency is the time to decode a single image without minibatch-
ing, averaged over the whole test split. The Speedup values are
from the corresponding papers. Since Latency is influenced by
platform, implementation and hardware, it is not fair to directly
compare them. A fairer alternative way is to compare speedup,
which is calculated based on their own baseline.

K = 2, SATIC achieves about 1.5× speedup while the caption
quality only degrades slightly compared with its autoregressive
counterpart AIC model. Compared with non-autoregressive mod-
els , SATIC obviously achieves a better trade-off between qual-
ity and speed by outperforming all the non-autoregressive models
except CMAL in speedup metric. Compared with most similar
partially non-autoregressive model PNAIC, SATIC achieves sim-
ilar speedup and caption evaluation results. It is worth nothing
that SATIC outperforms PNAIC on SPICE metric, which concerns
more on semantic propositional content. What’s more, the training
of SATIC is more easy and straightforward than PNAIC. Overall,
SATIC achieves a better trade-off between quality, speed and easy
training.

What is the effect of group size K? We test three different
setting of the group size, i.e. K ∈ {2, 4, 6}. From the bottom of
Table 1, we can observe that a larger K brings more significant
speedup while the caption quality degrades moderately. For ex-
ample, the decoding speed increases about 1.5× while the CIDEr
score drops about 1.5 when K grows from 2 to 4, and drops no
more than 3 when K grows further to 6. This is intuitive since
K is the indicator of parallelization and also indicates that SATIC
model is relatively stable to K.

Can SATIC benefit from beam search? From the bottom
of Table 1, we can also find that SATIC benefits little (CIDEr score
only increases 0.2) from beam search compared with its autore-
gressive counterpart AIC (CIDEr score increases 1.7) after self-

critical training. There are two possibilities, the one is self-critical
training make its output probability concentrated and the other one
is SATIC can not benefit from beam search. To investigate whether
SATIC can benefit from beam search, we test its output just after
cross entropy training with different beam search width. From
Table 2, we can observe that SATIC model can still benefit from
beam search and there are two interesting phenomena: 1) SATIC
with too large K benefits less from beam search and 2) the effect
of beam search is larger when without weight initialization and
sequence knowledge distillation. A plausible explanation is that
long-distance dependence is hard to capture and sequence knowl-
edge distillation decreases dependence among words.
What is the effect of sequence knowledge distillation and
weight initialization? We further investigate the effect of se-
quence knowledge distillation and weight initialization and results
are shown in Table 3. We can find that sequence knowledge dis-
tillation plays an important role in both XE and SC training stages
and the effect is more significant in XE stage. Basically, the
larger the K is, the more obvious the effect is. This is intuitive
since the ability of SATIC model to capture conditional probabil-
ity is undermined when K grows and sequence knowledge dis-
tillation compensates for this by reducing the complexity of data
sets. SC can also alleviate sentence-level inconsistency by provid-
ing sentence-level reward. In addition to accelerate convergence,
we can find that weight initialization slightly improves the caption
quality when K is small but has important impact when K is large.

What is the effect of batch size on latency? Above la-
tency is measured with batch size set to 1. However, there may
be multiple requests at once in real application. So, we further
investigate the latency under various batch size setting. From Ta-
ble 4, we can find that SATIC can basically accelerate decoding
even under large batch size. We can also observe that the speedup
is decline as batch size increases. This indicates that non-gpu pro-
gram becomes a bottleneck when the runtime of gpu program is
negligible.

Models bw B1 B4 M R S C

w/ weight-init and SeqKD:

K=2 1 79.3 36.2 28.2 57.4 22.1 121.5
3 80.0 37.3 28.4 57.8 22.3 123.9

K=4 1 77.3 32.9 27.0 56.0 20.5 111.0
3 78.0 34.4 27.2 56.5 20.9 114.5

K=6 1 77.3 33.3 26.7 56.0 20.4 110.3
3 77.2 33.7 26.6 56.1 20.4 110.7

w/o weight-init and SeqKD :

K=2 1 74.2 29.1 25.8 53.8 19.5 100.0
3 76.0 32.8 26.8 55.2 20.6 107.2

K=4 1 65.8 17.0 21.8 48.3 16.1 73.3
3 69.7 20.9 22.7 50.2 16.6 79.6

K=6 1 67.6 17.6 21.3 48.6 15.2 73.5
3 68.8 19.1 21.6 49.6 15.5 76.3

Table 2. The results after XE training when using different beam
search width.

4.3. Qualitative Results
We present three examples of generated image captions in Fig-

ure 3. From the top example, we can intuitively understand the
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Models XE SC

B1 B4 M S C B1 B4 M S C

K=2:

Base 74.2 29.1 25.8 19.5 100.0 80.3 37.6 28.4 22.0 123.7
+SeqKD 78.8 36.0 28.0 21.8 120.4 80.5 38.4 28.7 22.6 128.1
+Weight-init 79.3 36.2 28.2 22.1 121.5 80.7 38.3 28.8 22.7 128.8

K=4:

Base 65.8 17.0 21.8 16.1 73.3 79.8 35.3 27.3 20.9 119.5
+SeqKD 69.5 22.2 23.0 16.7 85.5 80.4 37.5 28.3 22.2 126.0
+Weight-init 77.3 32.9 27.0 20.5 111.0 80.6 37.9 28.6 22.3 127.2

K=6:

Base 67.6 17.6 21.3 15.2 73.5 79.2 32.2 26.7 20.4 116.1
+SeqKD 73.2 27.0 24.6 18.1 96.3 79.9 37.0 28.0 21.6 123.9
+Weight-init 77.3 33.3 26.7 20.4 110.3 80.6 37.6 28.3 22.2 126.2

Table 3. The effect of sequence knowledge distillation (SeqKD)
and weight initialization (Weight-init) . Beam width is set to 1.

Model b=1 b=8 b=16 b=32 b=64
Transformer 135ms 22ms 13ms 11ms 10ms
SATIC, K=2 76ms 13ms 8ms 7ms 7ms
SATIC, K=4 46ms 8ms 6ms 5ms 5ms
SATIC, K=6 35ms 7ms 5ms 5ms 5ms

Table 4. Time needed to decode one sentence under various batch
size settings. Beam width is set to 1 since we find that larger
beam width brings little performance boost but significant latency
to SATIC model after self-critical training.

GT: there are a toilet a sink and a shower stall in a large bathroom.

Base: a bathroom bathroom a shower and and shower. 

+SeqKD: a bathroom with a sink and a sink and a toilet.

+SC: a bathroom with a toilet and a sink and a showerIm
ag
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GT: a banana and two oranges sit on a tray next to a bowl and a plate.

AIC: a banana and two oranges on a table. 

SATIC,k=2: two oranges and a banana on a table.
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SATIC,k=4: two oranges and a banana sitting a a table.

SATIC,k=6: two oranges and a orange sitting on a table with a banana.

GT: a stone building that has a clock on the top.

AIC: a white building with a clock tower on top of it. 

SATIC,k=2: a white building with a clock tower on top of it.
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SATIC,k=4: a building with a clock tower on top of it .

SATIC,k=6: a white building with a clock tower on top of it.

Figure 3. Examples of the generated captions. GT denotes
ground-truth caption. Base here denotes SATIC(k=4) model
trained by cross entropy loss using original training set. We mark
repeated words by red font.

effect of sequence knowledge distillation (SeqKD) and self-crical
training (SC) in reducing repeated words and incomplete content.
In general, the final SATIC models with different group size K can
generate fluent captions, as shown in the middle example. Never-
theless, repeated words and incomplete content issues still exist,
especially when K is large. As shown in the bottom example, ‘a’
and ‘orange’ are repeated words and ‘tray’,‘bowl’ are missing.

5. Conclusion
In this paper, we introduce a semi-autoregressive model for im-

age captioning (dubbed as SATIC), which keeps the autoregres-
sive property in global and non-autoregressive property in local.
We conduct substantial experiments on MSCOCO image caption-
ing benchmark to better understand the effect of each component.
Overall, SATIC achieves a better trade-off between speed,quality

and easy training.
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