This ICCV workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

EfficientARL: improving skin cancer diagnoses by combining lightweight
attention on EfficientNet

Miguel Nehmad Alche!, Daniel Acevedo!?, Marta Mejail'+?
'Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales,
Departamento de Computacion. Buenos Aires, Argentina.
2CONICET-UBA. Instituto de Investigacién en Cs. de la Computacién (ICC). Buenos Aires, Argentina.

mikealche@gmail.com, {daniel, marta}@dc.uba.ar

Abstract

Melanoma is a very dangerous form of skin cancer. Early
diagnosis is crucial to increase the chances of its cure.
Based on this, computer vision algorithms can be used to
analyze dermoscopic images of skin lesions and decide if
these correspond to benign or malignant tumors. In this
work we propose the adaptation of the attention residual
learning designed for ResNets to the EfficientNet networks,
and compare this mechanism with attention mechanisms
that these networks already have. We maintain the effi-
ciency of these networks since only one extra parameter per
stage needs to be trained. We also test several preprocess-
ing methods on the dataset improving the final performance.

1. Introduction

Melanoma is one of the forms of skin cancer with the
highest mortality rates [6]. That is why it is vitally impor-
tant that proper treatment is carried out as soon as possible.
Various computer vision techniques have emerged in order
to detect this type of skin lesions in an early stage. The pur-
pose of these algorithms is to be able to bring as many peo-
ple as possible a reliable way to carry out periodic checks:
either by distributing them in mobile applications for end
users, as well as the creation of specific tools for health pro-
fessionals specialized in skin treatment.

The research on classification of skin lesions has grown
greatly in recent years due to the high rates achieved with
deep learning techniques. Also, it has benefited from inter-
national competitions [2] which make dermoscopic image
datasets with associated classification labels available to re-
searchers.

Regarding image classification algorithms, after the suc-
cess of ResNet networks [4], several improvements and
variations have been tested. Among them, the Efficient-

Net [11] points to a good trade-off between precision and
computational cost.

The attention mechanism has been applied so as to
strengthen the discriminative ability of a convolutional net-
work. Zhang et al. [13] proposed the addition of a small
number of parameters to the ResNet that allows a simple
but powerful attention mechanism with low computational
cost. Another form of attention in the channel dimension
has also been introduced by Hu et al. [5] to improve perfor-
mance of convolutional networks.

Techniques that combine several models (ensemble
models) were studied by Xie et al. [12], however this type of
models usually require high computational costs that are to
be avoided if a lightweight implementation is desired such
as mobile apps.

In this paper we improve state of the art results on
melanoma image classification. Inspired by the work of
Zhang et al. [13], where an attention residual learning
mechanism is added to the Resnet, we incorporate a similar
mechanism into the EfficientNet. In line with the economy
of resources posed by the EfficientNet, this mechanism uses
very few parameters.

Also, it has been shown that skin lesion images benefit
from color preprocessing [1]. For that, we apply prepro-
cessing algorithms that normalize the colors of the images
by applying color constancy algorithms, as well as remov-
ing variations in hue from images by applying Ben Graham
preprocessing [3].

Our results show that significant improvements are
achieved when both the Ben Graham preprocessing method
as well as the addition of the attention residual learning
mechanism to the EfficientNet networks are used. The pa-
per is organized as follows. In Section 2 the proposed
methodology is presented. Next on Section 3 we present
and analyze the results that verify our hypothesis. Conclud-
ing remarks are presented in Section 4.
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2. Methodology

The improvements we obtain on skin lesion classifica-
tion are mainly achieved by the introduction of the atten-
tion residual mechanism on the EfficientNet along with im-
age preprocessing. For that, in this section we describe the
base methods of our proposal. First, preprocessing tech-
niques are introduced. We then describe the attention resid-
ual mechanism on ResNets followed by the EfficientNets
and how we insert this attention mechanism on them.

2.1. Preprocessing

2.1.1 Color correction and Color Constancy.

Color preprocessing methods aim to achieve greater unifor-
mity in the images without discarding valuable and particu-
lar information about each one which facilitates the task of
classification for neural networks. Color constancy methods
[1] transform the colors of an image that have been captured
under an unknown light source, so that the image appears to
have been obtained under a canonical light source. The im-
plementation of this transformation consists of two steps.

First, it is necessary to estimate the light source under
which the image was taken, called estimated illuminant and
represented by a vector e = [eg eg ep]T. Two algorithms
are implemented:

Max-RGB: This algorithm forms the estimated illumi-
nant by selecting for each channel of an image the maxi-
mum value that appears in it by the equation maxy I.(x) =
ke.

Shades of Gray: This method computes the estimated

f<1c<x>>pdx>1“’
fdx

where I, represents the channel c of the image; x = (z,y)
is the spatial position of the pixel and £ is a normalization
constant.

As a second step, the image colors have to be recalibrated
by means of the equation I = I.*1/(+/3e.) for each chan-
nel ¢, once the estimated illuminant vector e = [er e ep]*
is computed.

In this work, the color constancy transformation is per-
formed prior to any other data augmentation transforma-
tion.

illuminant from the equation ( = ke,

2.1.2 Ben Graham Preprocessing.

This preprocessing comes from the winner of the diabetic
retinopathy competition on the Kaggle platform [3]. It re-
sembles the unsharp masking method for image sharpening,
since it is based on obtaining the unsharp mask from an im-
age. It can be summarized on Eq. (1) where the input image
I;,, is subtracted from its convolved version with the Gaus-
sian kernel G’ (whose variance is determined automatically

from the image size); then it is scaled and shifted.
Toyt = 4(17171, —Gx Im) + 128 (D)

2.2. Attention Residual Learning

In the paper by Zhang et al. [13] authors are able to sim-
ulate the effect of an attention layer without the extra com-
putational cost that comes comes from the addition of sig-
nificant number of new parameters. This technique is based
on adding a second skip connection to the ResNet blocks,
where the original input is multiplied pointwise by a Soft-
maxed version of the block’s output.

The final output of the block is then formed by the typical
output of a ResNet block (with its regular skip-connection)
added to this new ARL aggregate which is controlled by a
scalar « that regulates its effect. This can be seen formally
in Eq. (2) where z is the input, F’ is the convolutional block,
o is the scalar that regulates the intensity of the effect, ‘-’
is the point wise multiplication and finally 1 is the softmax
function applied spatially.

y=z+ F(z)+a NF(x)] z 2

The softmax function 1 is defined in Eq. (3) where O is the
input, m ; refers to the value at position (7, j) from channel
c of output m.

%
‘ﬁS(O) = {m | m;j = 72 pa } 3)

i5j

The classical residual block and the ARL is shown in
Fig. 1. It is worth mentioning that only one parameter « is
added to the training process for each ResNet block.

Awauspl =
Awuapl &
uouaY

»d
V%4

(b)

Figure 1. Comparison among different blocks used in deep neural
networks. (a) classical convolutional block, (b) a block with the
skip-connection as used by ResNets and (c) the block with the
skip-connection and the added attention residual learning [13].

2.3. EfficientNets

EfficientNet architectures give a defined way of how to
scale the architecture models when more computing power
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is available. These networks are comparable to ResNets and
outperform them in several tasks [11].

The decision of either choosing to add channels to the
layers (width scaling), or to add layers to the model (depth
scaling), or choosing to add resolution to the layers (resolu-
tion scaling) is specified by a constraint that involves taking
full advantage of the computational power available. This
restriction is defined by the following inequalities: (depth)
d = a®, (width) w = %, (resolution) » = ~?, subject to
a-B2-4?~2anda >1,8> 1,7 > 1, where ¢ is a user-
adjustable parameter that regulates available resources and
a, 3,y are parameters determined by a small grid search.
According to the convention used by the authors, a value of
d = 1 implies 18 convolutional layers and a value of r = 1
implies a size of 224 x 224 for the images. This restric-
tion leads to a family of networks called EfficientNet-b1 to
EfficientNet-b7, depending on their capacity and complex-
ity.

In this work we use the EfficientNet-b0 model. The
choice of scaling that defines this model is done us-
ing Neural Architecture Search similar to [10] optimiz-
ing an objective function that is defined by ACC(m) -
(FLOPS(m)/T)" where ACC(m) and FLOPS(m) re-
fer to the accuracy and the number of FLOPS of the m
model respectively, T is the target of FLOPS to achieve and
w is a parameter that controls the importance of the FLOPS
in the optimization.

The base element of the EfficientNet-b0 is the MBConv
block [7]. The first appearance of these blocks in neural
networks occurs with the MobileNet architecture [7]. By
means of Depthwise Separable Convolutions they reduce
the amount of FLOPS required, without significantly im-
pairing model accuracy. It is based on splitting the standard
convolution layer in two: the first layer, called a depthwise
convolution, performs a lightweight filtering by applying
a single convolutional filter per input channel; the second
layer is a 1 x 1 convolution, called a pointwise convolu-
tion, which is responsible for building new features through
computing linear combinations of the input channels. An-
other significant change that MobileNet brings is the use of
inverted residuals. In the bottleneck blocks of the ResNet, a
channel reduction is made prior to applying the convolution
operation. However, in MobileNet this dynamic is reversed:
the channels are expanded prior to performing the convolu-
tion operation and then reduced again, instead of reducing
the channels and then expanding them. See [7] for details.

The EfficientNet-b0 baseline network is mainly built
from inverted bottlenecks MBConv. As in ResNets, this
blocks have skip connections. In line with the computa-
tional savings that these networks put forward, we propose
the addition of a light attention mechanism as in attention
residual learning, i.e., we add the last term of Eq. (2) to
each MBConv. It should be noticed that, as with ResNets,

each MBconv block now only has a single extra parameter
o to be trained.

The ARL attention mechanism implemented on
EfficientNet-b0 can be introduced where skip-connections
exist. The skip-connection only appears in the MBConv
blocks which make up 16 of the 18 layers. However, the
skip-connection cannot be applied in the 16 existing layers
since 7 of them double the number of channels of the
output with respect to the input (making it impossible to
match input and output dimensions). That is why we will
apply the ARL mechanism in only 16 — 7 = 9 layers and
we will then have 9 new « parameters to train. This can
be clearly seen in Table 1 where the ARL column marks
with the symbol ‘x’ the specific layers that have the ARL
mechanism incorporated.

The EfficientNet-b0 baseline network also has an atten-
tion mechanism added to it called Squeeze & Excitation [5],
which can be combined with our proposed mechanism. In
the experiments we test the inclusion and removal of both
mechanisms.

Operator Resol. #Chan | ARL
1 | Conv3x3 224 x 224 32
2 | MBConvl, k3x3 112 x 112 16
3 MBConv6, k3x3 112 x 112 24
MBConv6, k3x3 112 x 112 24 *
4 MBConv6, k5x5 56 x 56 40
MBConv6, k5x5 56 x 56 40 *
MBConv6, k3x3 28 x 28 80
5 | MBConv6, k3x3 28 x 28 80 *

MBConv6, k3x3
MBConv6, k5x5
6 | MBConv6, k5x5
MBConv6, k5x5
MBConv6, k5x5
MBConv6, k5x5

28 x 28 80 *
14 x 14 112
14 x 14 112 *
14 x 14 112 *
14 x 14 192
14 x 14 192 *

7 MBConv6, k5x5 14 x 14 192 *
MBConv6, k5x5 14 x 14 192 *
8 | MBConvo6, k3x3 77 320
9 | Convlxl & Pool- 7Tx 7 1280
ing & FC

Table 1. EfficientNet-BO Arquitecture. Each row describes a layer
of type Fi, with (ﬁl, W1> input resolution, and C; output chan-
nels. The last column indicates with symbol ‘x’ the layers where
the insertion of the ARL mechanism is possible.

3. Experiments and results

We work with ISIC’s 2017 dataset [2] which consists of
2000 dermoscopic images. The images have been resized to
a size of 224 x 224 pixels. The following data augmentation
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Table 2. Mean, standard deviation and quartiles accuracies for 10 runs on the dataset without any color correction, and with the 3 prepro-

H Dataset mean std 25% 50% 75% max
Baseline 0.874000 | 0.006630 | 0.868333 | 0.873333 | 0.878333 | 0.886667
Max RGB 0.876667 | 0.009558 | 0.868333 | 0.880000 | 0.885000 | 0.886667
Shades of Gray | 0.858667 | 0.011244 | 0.853333 | 0.860000 | 0.865000 | 0.880000
Ben Graham 0.887333 | 0.012746 | 0.881667 | 0.886667 | 0.893333 | 0.906667

cessing described algorithms.

H Dataset mean std 25% 50% 75% max
Baseline 0.885389 | 0.014831 | 0.880555 | 0.889861 | 0.894861 | 0.905000
Max RGB 0.891306 | 0.011410 | 0.882153 | 0.891528 | 0.900695 | 0.908333
Shades of Gray | 0.861222 | 0.018135 | 0.849931 | 0.859028 | 0.866111 | 0.903056
Ben Graham 0.898667 | 0.016924 | 0.883681 | 0.900833 | 0.907153 | 0.928333

Table 3. Mean, standard deviation and quartiles AUROC values for 10 runs on the dataset without any color correction, and with the 3

preprocessing algorithms.

techniques are applied as a basis: rotation of 180 degrees
for both sides, zoom of up to 30% in different regions of the
image and alterations in the luminosity. A batch size of 16
is used and Oversampling is used as a mechanism to solve
the class imbalance.

The trainings are carried out in 2 stages. In the first stage,
only the head of the model (the fully connected layers) are
trained. The head has an output size of length 2 correspond-
ing to the 2 classes that we are trying to predict: melanoma
or others. This training is carried out for 4 epochs, apply-
ing a learning rate with a One Cycle [9] policy of using a
maximum value of 3 - 1073, In the second stage, the en-
tire model is trained for 20 epochs, applying the One Cycle
policy with a maximum value of 3 - 10~%. This process is
repeated 10 times, each time with a different seed, in order
to have robust data.

3.1. Impact of the preprocessing methods in the
classification

In this experiment we hypothesize that the differences
in luminosity on which the pictures were taken introduces
noise into the classification process which hardens the task
for the neural network. Therefore, we try to verify if
the application of color constancy algorithms —Max RGB
and Shades of Gray— in the process of homogenizing the
dataset images, also facilitates the task of classification.

In turn, in addition to the color constancy algorithms,
a third method is tried: Ben Graham preprocessing. This
preprocessing is rather something close to a high pass filter.
However, in the process of suppressing the low frequencies,
it is believed that the differences introduced by the different
illuminations when the images have been taken will also be
attenuated.

We train 4 ResNet-50 networks which were pretrained in
ImageNet. The first will serve as a baseline for comparison,
while the second one will be trained on the dataset corrected

with Max-RGB, the third one on the dataset corrected with
Shades of Gray and the fourth on the dataset preprocessed
with the Ben Graham method.

3.1.1 Results and interpretation.

Both tables 2 and 3 are formed by taking the maximum ac-
curacy and AUROC respectively reached by each run and
then calculating the mean, variance and quartiles of them.
As can be seen, the training using Ben Graham’s method
surpasses all the other methods, by giving a maximum av-
erage accuracy between all runs of 0.887, while the training
without any processing obtains 0.874.

Likewise, the Max RGB method also seems to have a
positive impact on the results with average maximum accu-
racy between runs of 0.877, albeit to a lesser extent than the
Ben Graham method. However, the Shades of Gray method
seems in this case to harm performance.

It is understood that this may be due to the way each
preprocessing method corrects images. In Fig. 2 it can be
seen how the images processed by Shades of Gray are in-
clined —in some cases— towards a blue tint, while those
processed by Max-RGB maintain the reddish tone that char-
acterizes them at the same time as they amalgamate. Re-
garding the reason of why the Ben Graham method gives
such good results, it can be hypothesized that it is because
its action of filtering the low frequencies of the image allows
the network to focus on the finer details of the lesions.

As a second reason, it can be seen from the comparison
images that the result of applying the Ben Graham method
also achieves a certain color correction effect: all images
(not just some as in the Shades of Gray method) are now
found leaning towards blue and brown tints. In other words,
the global information on the tone of the image is homoge-
nized together with the reduction of low frequencies.
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Figure 2. Comparison between different image preprocessing methods.

| Dataset | mean | std | 25% [ 50% | 75% | max |
Baseline(SE) | 0.857333 | 0.007166 | 0.853333 | 0.860000 | 0.860000 | 0.866667
No attention | 0.834667 | 0.007569 | 0.833333 | 0.833333 | 0.840000 | 0.846667
ARL 0.829333 | 0.012649 | 0.821667 | 0.833333 | 0.838333 | 0.846667
SE and ARL | 0.862000 | 0.007730 | 0.860000 | 0.863333 | 0.866667 | 0.873333

Table 4. Accuracy results on the baseline EfficientNet-b0 and their combinations of attention mechanisms.

| Dataset | mean | std | 25% | 50% | 75% | max |
Baseline(SE) | 0.852667 | 0.009516 | 0.848472 | 0.850972 | 0.861042 | 0.865278
No attention | 0.788500 | 0.016842 | 0.780347 | 0.794306 | 0.797639 | 0.813056
ARL 0.786250 | 0.012818 | 0.769722 | 0.785555 | 0.796875 | 0.804445
SE and ARL | 0.853611 | 0.009903 | 0.848958 | 0.855694 | 0.861250 | 0.866667
Table 5. AUC-ROC results on the baseline and their combinations of att. mechanisms.

3.2. Attention Residual Learning on EfficientNet

In this experiment we try to study the effect of adding
the Attention Residual Learning (ARL) mechanism on the
Efficient-Net models. Specifically, it is not only interest-
ing the addition of the mechanism to the base model, but
we also study the way it relates to the attention mechanism
already present: Squeeze & Excitation (SE). For this, we
study how 4 EfficientNet variants behave (corresponding
to the possible combinations of having these two attention
mechanisms activated or not).

We employ the EfficientNet-b0 variant. Each of the four
networks is pretrained on ImageNet. The first one will serve
as a baseline for comparison, on the second one we will sup-
press the SE mechanism, on the third one not only we will
suppress the SE but will also add the ARL mechanism and
finally the fourth and last network will have both attention
mechanisms activated. EfficientNet-bO has only 9 blocks
on which a skip connections is used, therefore when adding
ARL we will have only 9 new o parameters to train.
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Figure 3. GradCAM heatmap comparison for models with or without ARL. In the first and second row examples, only the model with
SE and ARL correctly predicted the presence of melanoma. In the example in the third row, all models correctly predicted the absence of

melanoma.

3.2.1 Results and interpretation

As can be seen on Tables 4 and 5, after 10 runs with differ-
ent initial seeds, the maximum average accuracy reached by
the model using ARL and SE outperforms the base model.
It can be seen a considerable difference between models that
have SE enabled from the models that don’t. This gives
us the insight that a big part of EfficientNet’s great per-
formance comes from the attention mechanism rather than
from the new architecture.

3.2.2 Qualitative analysis with GradCAM.

In addition to the metrics that allow a quantitative analysis,
it is possible to perform a qualitative analysis of the models
by observing the result of GradCAM [8]. The GradCAM
technique allows viewing heat maps on images to under-
stand which sections of the images have the greatest influ-
ence on the classification. Fig. 3 shows a comparison be-
tween the heat maps generated by the original model versus
those generated by the model with ARL.

Looking at Fig. 3 the third row is the one that seems
to expose the differences most clearly. The introduction
of ARL appears to significantly reduce the area of the im-
age that the network considers relevant for classification.
That is, one can visually see that the attention mechanism is
working properly. This is especially noticeable in the model
that has ARL as the only attention method (EfficientNet
model from which the SE mechanism is removed), although
it is also observed in a more subtle way in the model that it

has both ARL and SE mechanisms.

A second striking aspect to notice appears in the exam-
ple in the second row where one can see how all the models
seem to focus on the area surrounding the injury rather than
the injury itself. This would be an indication that the tissue
surrounding the lesion also provides valuable information.
Particularly in the original image corresponding to the ex-
ample of the second row, the surrounding tissue is covered
with red marks, which does not appear to be information
that can be ruled out.

4. Conclusions

In the present work, various mechanisms have been stud-
ied to improve the performance of the classification of skin
lesions using convolutional neural networks.

Regarding the experiments on dataset preprocessing in
section 3.1 it has been found that Ben Graham’s prepro-
cessing notably improves the accuracy of the classification.
This is not the case with the Max RGB and Shades of Gray
color correction algorithms, which give no considerable in-
creases or even inferior results respectively to the original
control dataset.

Regarding the experiment in section 3.2 which studies
the impact of introducing attention mechanisms in networks
—particularly the ARL mechanism— it has been found that
the introduction of ARL improves the accuracy in the mod-
els of the EfficientNet family.
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