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Abstract

Accurate segmentation and tracking of cells in mi-
croscopy image sequences is extremely beneficial in clin-
ical diagnostic applications and biomedical research. A
continuing challenge is the segmentation of dense touch-
ing cells and deforming cells with indistinct boundaries,
in low signal-to-noise-ratio images. In this paper, we
present a dual-stream marker-guided network (DMNet) for
segmentation of touching cells in microscopy videos of
many cell types. DMNet uses an explicit cell marker-
detection stream, with a separate mask-prediction stream
using a distance map penalty function, which enables su-
pervised training to focus attention on touching and nearby
cells. For multi-object cell tracking we use M2Track
tracking-by-detection approach with multi-step data asso-
ciation. Our M2Track with mask overlap includes short
term track-to-cell association followed by track-to-track
association to re-link tracklets with missing segmenta-
tion masks over a short sequence of frames. Our com-
bined detection, segmentation and tracking algorithm has
proven its potential on the IEEE ISBI 2021 6th Cell Track-
ing Challenge (CTC-6) where we achieved multiple top
three rankings for diverse cell types. Our team name is
MU-Ba-US, and the implementation of DMNet is avail-
able at, http://celltrackingchallenge.net/
participants/MU-Ba-US/.

1. Introduction
The capacity of cells to exert forces on their environ-

ment and alter their shape as they move [3] is essential to
many biological processes including the cellular immune
response to infections [25], embryonic development [48],
wound healing [8] and tumor growth [16]. Detecting cell
shape and their changes over time as cells navigate the mi-
croenvironment are essential for understanding the multiple
mechanisms guiding and regulating cell motility [74]. We
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propose an end-to-end pipeline for accurate cell detection,
segmentation and tracking as shown in Figure 1.

Manually segmenting and tracking cells is an expensive,
labor intensive and subjective (difficult to reproduce) task
due to the need for deep expert domain knowledge and large
amounts of image data acquired during live-cell studies.
Automated methods and pipelines are needed to perform
microscopy video analysis, particularly to segment, track,
and characterize cells to accelarate scientific discovery and
clinical adoption.

Over several decades, many classical computer vision
methods and pipelines have been developed for automated
cell detection and segmentation [8, 54, 23, 47]. More re-
cently, various models have been developed for cell bound-
ary prediction to handle segmentation of touching cells
[63, 57, 63, 57, 40, 39, 27, 64]. However, accurate cell anal-
ysis under different protocols, imaging modalities and cell
types remains challenging due to experimental variability,
low signal-to-noise ratios, touching or overlapping cells, in-
distinct deforming boundaries particularly in high cell den-
sity cases, agile, unpredictable motion of individual cells,
and dynamic interactions between cells.

Recently, deep-learning methods have shown tremen-
dous success in many applications of computer vision in-
cluding natural object image classification [18], aerial scene
classification [13], feature tracking in wide area motion im-
agery [26], 3D point cloud classification [5], and particu-
larly in various biomedical image analysis e.g. vessel seg-
mentation [33], and malaria diagnosis [34] etc. If adapted,
these methods offer promising solutions for cell detection
and segmentation.

Cell tracking and lineage is the process of locating cells
of interest in images and maintaining their identity over
time across cell divisinos to analyze their spatio-temporal
behavior (i.e. proliferation, mitosis, and apoptosis). Cell
tracking plays an important role in biomedical research
for tasks such as cell lineage-tracing [60, 6, 19] and high-
throughput motion or behavior analysis [24, 32, 4, 67]. An-
alyzing cell behavior on live-cell videos requires robust
cell tracking approaches to overcome the challenges that
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Figure 1: Overall pipeline with two stream DMNet for cell segmentation and M2Track for tracking.

the videos have, such as, frequent cell deformations, non-
distinct appearance, low image quality in term of contrast,
resolution, and imaging acquisition artifacts.

A two-stage segmentation and tracking pipeline is pro-
posed in this work to localize and track different cell types
in time-lapse video sequences, as shown in Figure 1. The
pipeline consists of two main modules: cell segmentation
and cell tracking modules. The cell segmentation mod-
ule is designed to precisely localize and segment different
cells, and the tracking module uses a multi-step data as-
sociation approach to efficiently track cells across frames.
Our pipeline participated in CTC-6 with results on eight 2D
datasets with different characteristics in term of cell shape,
density, motion patterns, and microscopy modalities. Our
results either outperformed the other methods that partic-
ipated to the challenge or produced comparable results as
described in the experimental results section.

To summarize, our contributions are three-fold: (i) we
developed DMNet a dual-stream marker guided network
for accurate cell segmentation and detection, (ii) we de-
signed M2Track a two level cell tracking module for asso-
ciating detections and linking tracklets, and (iii) our pro-
posed pipeline demonstrates state-of-the-art performance,
scalability and robustness across cell types on the CTC-6
microscopy videos. The subsequent parts of this paper are
organized as the following. Section 2 reviews the related
work in cell segmentation and tracking. Section 3 describes
our proposed approach and details in the design of cell seg-
mentation and tracking. Section 4 presents quantitative re-
sults on CTC-6 followed by conclusions.

2. Related Work

2.1. Cell Segmentation

Early methods for cell segmentation include simple
thresholding methods [37, 72], hysteresis thresholding [30],
edge detection [70, 65], or shape matching [14, 68]. Some
methods use sophisticated approaches based on region

growing [44, 51, 15], machine learning [61, 10, 56] or en-
ergy minimization [52, 62, 73, 21, 45, 22, 20, 7]. For a more
comprehensive review of earlier cell segmentation methods,
please refer to [47, 53].

More recently, with the development of deep learning
networks, many methods benefit from training neural net-
works with annotated data. Existing methods usually de-
sign models for cell boundary or border prediction to han-
dle touching cells. [63] proposes to predict adapted thicker
borders and smaller cells in the model to reduce the amount
of merged cells. [64] designs a novel representation of cell
borders, the neighbor distances, to segment touching cells
of various types. [40] utilizes distance transforms with dis-
crete boundaries for single cell nuclei, and [27] uses hor-
izontal and vertical gradient maps. [39] tackles the label
inconsistencies problem through encoding a center vector.

Different from these other methods working on various
border prediction for handling clustered cells, we propose
a dual-stream network to generate guided markers to help
splitting cells for accurate cell detection and segmentation.

2.2. Cell Tracking

Cell tracking and behaviour understanding algorithms
study individual cell movement, velocity, formation, mi-
tosis, cell groups behavior and etc. Tracking methods
can be categorized into two groups: tracking-by-detection
[42, 45, 59] and tracking-by-model evolution. Tracking-by-
detection, requires locating cells in advance on the entire
sequences using segmentation [42, 49, 38], or detection al-
gorithms [69, 12] followed by an association process to link
detections in time to generate cell trajectories. Tracking-
by-model evolution involves an initialization step to locate
the cells of interest on the first frame followed by a per
cell model evolution in time by using deformable models
such as active contours to keep track of individual cell states
(position, motion, shape, and orientation) in the following
frames [28, 36, 29]. The most popular cell tracking method-
ology is tracking-by-detection [42, 45, 59]. Some methods
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Figure 2: Illustration of intermediate results in the DMNet workflow for cell segmentation: (a) Normalized raw input image,
(b) Marker Ground-Truth for the supervision of the marker detection stream, (c) Distance penalty map in Ldist, (d) Cell seg-
mentation ground-truth showing cells with tracking ids (binarized version provides supervision for mask prediction stream),
(e) Marker prediction output from marker detection stream, (f) Labeled predicted markers after thresholding and connected
component labeling, (g) Mask prediction output from mask prediction stream, and (h) Cell segmentation prediction using
mask and marker, after splitting cells using marker guided morphological watershed algorithm.

use online mode [41], which implement track linking by as-
sociating detections between consecutive frames. In such
cases, the information is gathered only from current and
past frames. These methods tend to be sensitive to detection
errors, and produce fragmented tracklets. While the offline
models [43], exploit information from the whole time-lapse
sequence (i.e. past, and future frames) and have longer and
more reliable trajectories.

Our tracking-by-detection cell tracking module is
adapted from our earlier works on multi-object tracking for
video surveillance [1, 2]. Multi-cell M2Track module is
used to track the cells detected by our DMNet segmenta-
tion module. The goal is to link the detected cells, recover
from missed-detections by better data association using a
fast intersection-over-union (IOU) mask matching, predict
cell motion using Kalman filtering [31], and link tracklets
by taking into account tracklet history such as velocity, mo-
tion, and spatial information. Our tracking module can ex-
plicitly handle cells entering and exiting the field of view,
birth and death of cells, and mitosis.

3. Our Approach Using DMNet and M2Track

The overall pipeline is illustrated in Figure 1. There
are two modules in our pipeline: cell segmentation mod-
ule DMNet, and multi-cell tracking module, as described in
the following parts.

3.1. DMNet: Detection and Segmentation

The cell detection and segmentation task is defined to
find segmentation mask of each cell. There are two streams
in the proposed DMNet, one stream is designed for cell
marker detection, and the other is designed for cell mask
prediction, as show in Figure 1.

Marker Detection Stream The marker-based loss func-
tion Lmarker(·) is computed pixelwise with respect to the la-
beled marker annotations using a soft Jaccard and weighted
cross-entropy loss functions,

Lmarker = αLJaccard(·) + βLwce(·) (1)

where α and β are used to balance the Jaccard loss LJaccard

and weighted cross-entropy loss Lwce. The Jaccard loss is,

LJaccard =
1

N

N∑
k=1

−ykŷk

yk + ŷk − ykŷk
(2)

Since the distribution of marker and non-marker pixels is
highly biased, we use a class balanced cross-entropy loss,
which is defined as,

Lwce = −λ−
∑

yk(i,j)∈Y−

log(1− ŷk)− λ+
∑

yk(i,j)∈Y+

log(ŷk) (3)

where each prediction map in the mini-batch of marker
detection stream is ŷk, of size R × C, ŷk ∈ (0, 1) de-
notes a predicted marker map (see Figure 2 (e)), yk is the
groundtruth mask (see Figure 2 (b), yk is the binarized ver-
sion of it). λ+ = |Y+|

(|Y+|+|Y−|) , λ− = |Y−|
(|Y+|+|Y−|) balance the
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Figure 3: M2Track with intersection-over-union mask overlap matching for multi-cell tracking-by-detection. The two major
modules are: Level 1 for managing frame-to-frame linear assignments between detected cells and handles entering and
exiting cells, Level 2 for tracklet linking and missing or occluded cells.

marker/non-marker pixels to control the weight of positive
over negative samples.

Mask Prediction Stream For the mask prediction
stream, the loss function Lmask is computed pixelwise with
respect to the labeled mask segmentation annotations using
a a soft Jaccard and distance penalized cross-entropy loss
functions as,

Lmask = αLJaccard(·) + βLdist(·) . (4)

The Ldist is defined as,

Ldist = −
1

N

N∑
k=1

R∑
i=1

C∑
j=1

(1 + φ(i, j))Lce (5)

where Lce is the cross-entropy loss, and Lce =
(mk(i, j) log m̂k(i, j)+(1−mk(i, j)) log(1−m̂k(i, j)) ).
Here each prediction map in the mini-batch of mask predic-
tion stream is m̂k (see Figure 2 (g)), of size R × C. The
cross-entropy loss is modified by a distance penalty map φ,
which inverses and normalizes the distance transform map
D . The Euclidean distance transform map is computed as,

D2(i, j) =

R∑
i

C∑
j

(x(i, j)− b(i, j))2 (6)

where b(i, j) is the location of a background pixel (value 0)
that is closest to corresponding input points x(i, j), where
edge pixels of cells are 0, and remaining pixels are 1. Figure
2 (c) shows an example distance penalty map φ.

Cell Detection & Segmentation During the inference,
both markers and masks are generated, and then the mor-
phological operation watershed [55] is applied to split cell
mask guided by our generated markers.

Encoder-Decoder Backbone For each stream, we use
the same Convolutional Neural Network (CNN) structure
HRNet [71, 66] as the CNN model to learn the marker local-
ization and mask prediction map since the HRNet encodes
rich representations of low-resolution and high-resolution
information.

3.2. M2Track: Multi-Cell Tracking Module

Our multi-cell tracking module in Figure 3, tracks the
detected cells estimated by the DMNet segmentation mod-
ule. Tracking module is a multi-step cascade data associ-
ation process. The cascade data association has two steps:
first, short-term tracking which is frame-to-frame data as-
sociation and matching using mask intersection over union
(IOU) score. IOU computation speeds up for overcoming
dense scenes with very large cell number. IOU mask score
is used for matching current frame detections with previous
frame trajectories using linear assignment optimization al-
gorithm [17]. Followed by the second step, long-term track-
ing, which is called global data association step that con-
nects cells at the track level using spatial and temporal clues
to re-link fragmented tracklets. Several modules are used to
improve the performance including gating strategy for re-
ducing assignment complexity of ids by pruning improb-
able assignments; Kalman filter for recovering from miss-
detections, and removing unreliable tracklets. For more de-
tails of the tracking algorithm, please refer to [1, 2].

Short-Term Tracking: Short-term data association
step, optimizes the associations of current detected cells Dt

at frame t to the predicted track T t−1 at frame t− 1, where
the set of detecitons, Dt = {d1, d2, ...., dN} is assigned to
the previously tracked objects T t−1 = {T1, T2, ...., TM},
and T t−1 is the set of predicted cell trajectories from previ-
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ous cell motion history computed using Kalman filter with
constant velocity model, N is the number of the detected
cells at frame t, M is the number of tracked cells at frame
t − 1. Mask IOU score is used to assign detection-to-track
between following frames by minimizing a cost matrix us-
ing Munkres Hungarian algorithm [50] as:

min
b∈B

m∑
i=1

n∑
i=1

cijbij (7)

where cijt is an i row to j column entry on cost matrix repre-
senting the cost of assigning detection j to tracklet i at time
t and its value represents the IOU between the area of i and
j detect masks as:

cijt =
|Ai ∪Aj | − |Ai ∩Aj |

|Ai ∪Aj |
(8)

with constraints,

m∑
i=1

bij = 1 j = 1, 2, ...., n;

n∑
i=1

bij = 1 i = 1, 2, ....,m.

Circular gating regions around the predicted track positions
are used to eliminate highly unlikely associations to reduce
computational cost, and to reduce false matches. Pairs of
detection and tracks represent the results of minimum opti-
mization. For each individual cell, a (one out of four) status
(new track, linked track, lost track , and dead track) is as-
signed according to the assignment process. Since this step
considers only information from consecutive frames, hav-
ing false detections, occlusions, and matching ambiguities
causes track fragmentation. Further step is important to im-
prove the performance.

Long-Term Tracking: Problems during object detec-
tion or data association process result in implicit fragmen-
tation of cells. Long-term tracking is used to re-link frag-
mented trajectories to produce longer tracks. Using infor-
mation across long video segments can make this process
expensive. Optimizing hypotheses at the track level rather
than the object level reduces the computational cost of data
assignment by gating uncertain hypotheses. Spatial dis-
tances and temporal information are used for filtering.

4. Experimental Results
4.1. CTC-6 Dataset

Cell segmentation and tracking benchmark [11] consists
of 2D and 3D time-lapse video sequences of fluorescent
counterstained nuclei or cells moving on top or immersed
in a substrate. The benchmark consists 20 different datasets

(10 for (2D) and 10 for (3D)). They can be either contrast
enhancing, or fluorescence microscopy recordings of live
cells and organisms. Each dataset consists of two training
and two testing videos. The training videos were provided
with annotations, gold annotation (containing human-made
reference annotations but not for all cells), and silver an-
notation (containing computer-generated reference annota-
tions). The benchmark has different challenges: 1) Dif-
ferent appearances between datasets; 2) Low contrast be-
tween foreground and background; 3) The benchmark were
taken in different light condition and different image acqui-
sition environment; And 4) The ground-truth annotations
for training set are not fully provided for gold annotations
and not accurate for silver annotations.

We participated in ISBI 2021 CTC-6, with over thirty
teams reporting results on the CTC website which is up-
dated monthly. Not every method reported results for all
datasets in the benchmark. We evaluated our pipeline
on eight 2D datasets for cell segmentation and tracking.
OPCSB is used for evaluating cell segmentation which is
composed of the segmentation metric SEG, and the detec-
tion metric DET , as in:

OPCSB = 0.5 · (DET + SEG) (9)

OPCTB is used for cell tracking which is composed of seg-
mentation metric SEG, and tracking metric TRA, as in:

OPCTB = 0.5 · (SEG+ TRA) (10)

For details of evaluation metrics, please refer to the CTC
challenge website [11] and [46].

4.2. Implementation Details

Input images are pre-processed to enhance contrast us-
ing a z-score mapping. During training, the marker detec-
tion stream is trained with supervision using ground-truth
of tracking markers, and segmentation mask is supervised
by silver-truth of annotations. Both the marker localiza-
tion and mask prediction streams were trained on eight
2D datasets (see Tables 1, 2, 3) and five 3D datasets that
are not shown (Fluo-C2DL-MSC, Fluo-C3DH-H157, Fluo-
C3DL-MDA231, Fluo-N3DH-CE, and Fluo-N3DH-CHO).
When using 3D datasets, we used one frame or slice per
volume with the most annotated labels for training. In-
put images are resized then cropped for training. Resize
scale factor for each dataset are: Fluo-C2DL-MSC: 0.35,
Fluo-C3DH-H157: 0.35, Fluo-C3DL-MDA231: 2, Fluo-
N3DH-CE: 0.5, Fluo-N3DH-CHO: 0.6, PhC-C2DL-PSC:
3, BF-C2DL-MuSC: 0.75, BF-C2DL-HSC: 0.75. We crop
patches with size of 256× 256 from images in each dataset
to train the networks, except BF-C2DL-HSC, BF-C2DL-
MuSC which we crop patches of 512 × 512. Regular data
augmentation strategies were used including rotation, flip,
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Table 1: DMNet cell segmentation performance (OPCSB) on CTC-6 of March 2021. All reported results are from the CTC
Challenge website. The first row is OPCSB and the second row is ranking compared to other submitted algorithms. Not all
methods reported results for all datasets which are shown as NA. Since CALT-US did not report results for Fluo-C2DL-MSC
we provide two sets of Rankings – 8 datasets and 7 datasets for equivalent comparison. Rank Sum is the sum of all the ranks
across cell types. DMNet consistently outperforms other methods on 2D cell segmentation.

Dataset
BF-C2DL

-HSC
BF-C2DL

-MuSC
DIC-C2DH

-HeLa
Fluo-C2DL

-MSC
Fluo-N2DH

-GOWT1
Fluo-N2DL

-HeLa
PhC-C2DH

-U373
PhC-C2DL

-PSC Avg
Rank

Sum(8,7)
KIT-Sch-GE [35] 0.905 0.878 0.850 0.686 0.895 0.938 0.927 0.859 0.893

1/14 1/14 14/27 6/32 20/42 11/40 15/30 1/33 69,63
PURD-US [58] 0.745 0.678 0.703 0.478 0.915 0.943 0.940 0.790 0.816

13/14 14/14 19/27 24/32 14/42 6/40 11/30 13/33 114,90
CALT-US [9] 0.901 0.852 0.925 – 0.948 0.915 0.959 0.703 0.886

2/14 4/14 1/27 – 3/42 18/40 1/30 25/33 NA,54
DMNet (Ours) 0.835 0.860 0.864 0.602 0.939 0.954 0.949 0.826 0.890

10/14 3/14 12/27 17/32 5/42 1/40 6/30 6/33 60,43

Table 2: DMNet cell tracking performance (OPCTB) on CTC-6 of March 2021. The first row isOPCTB and the second row
is ranking compared to other submitted algorithms. All reported results are from the CTC Challenge website. Unreported
results are shown as NA. DMNet consistently outperforms other methods on 2D cell tracking.

Dataset
BF-C2DL

-HSC
BF-C2DL

-MuSC
DIC-C2DH

-HeLa
Fluo-C2DL

-MSC
Fluo-N2DH

-GOWT1
Fluo-N2DL

-HeLa
PhC-C2DH

-U373
PhC-C2DL

-PSC Avg
Rank
Sum

KIT-Sch-GE 0.901 0.872 0.848 0.683 0.894 0.938 0.925 0.855 0.865
1/10 1/10 8/20 3/26 13/35 10/33 10/24 1/26 47

PURD-US 0.716 0.670 0.684 0.479 0.914 0.941 0.939 0.783 0.766
9/10 10/10 13/20 18/26 10/35 6/33 8/24 9/26 83

CALT-US NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA

DMNet (Ours) 0.828 0.849 0.854 0.591 0.939 0.953 0.947 0.821 0.848
6/10 2/10 6/20 12/26 2/35 1/33 3/24 4/26 36

Table 3: Performance of DMNet segmentation and tracking pipeline on CTC-6 of March 2021. For each performance metric,
the first row is accuracy and the second row is ranking compared to all other submitted algorithms (as of March 2021). Top
three performance of DMNet by cell type are bolded.

Dataset
BF-C2DL

-HSC
BF-C2DL

-MuSC
DIC-C2DH

-HeLa
Fluo-C2DL

-MSC
Fluo-N2DH

-GOWT1
Fluo-N2DL

-HeLa
PhC-C2DH

-U373
PhC-C2DL

-PSC
OPCTB 0.828 0.849 0.854 0.591 0.939 0.953 0.947 0.821

6/10 2/10 6/20 12/26 2/35 1/33 3/24 4/26
OPCSB 0.835 0.860 0.864 0.602 0.939 0.954 0.949 0.826

10/14 3/14 12/27 17/32 5/42 1/40 6/30 6/33
DET 0.971 0.979 0.926 0.681 0.946 0.985 0.975 0.945

8/14 2/14 13/27 17/32 10/42 10/40 16/30 9/33
SEG 0.699 0.742 0.802 0.522 0.931 0.923 0.923 0.708

6/10 2/10 6/20 13/26 1/35 1/33 3/24 4/26
TRA 0.957 0.957 0.907 0.661 0.946 0.983 0.972 0.933

4/10 4/10 9/20 12/26 7/35 10/33 11/24 8/26

and scale from 0.8 to 1.5 for each sample. Hyperparameters
are learning rate of 0.001 with Adam Optimizer for training
both streams for 300 epochs with, α = 2.5 and β = 10.

4.3. Comparison on CTC-6 Benchmark

DMNet+M2Track performance is compared with state-
of-the-art methods on Cell Segmentation and Cell Track-
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(a) Raw Input (b) Normalized Input (c) Tracking GT (d) Marker Detection (e) Tracking Prediction

Fluo-N2DH-GOWT1

PhC-C2DL-PSC

BF-C2DL-HSC

Figure 4: Visualization of DMNet+M2Track segmentation and tracking results for three cell types including Fluo-N2DH-
GOWT1, PhC-C2DL-PSC and BF-C2DL-HSC exhibiting a range of cell sizes and densities.

ing Tasks. Since not every method reported results for all
2D datasets, we show the three most competitive methods
KIT-Sch-GE [35], PURD-US [58] and CALT-US [9], which
have results for almost all eight 2D cell microscopy videos.

DMNet is robust and achieves state-of-the-art cell detec-
tion and segmentation performance on all eight 2D CTC-6
datasets. In Table 1, we compare our DMNet with the state-
of-the-art methods on CTC-6 challenge. We compute the
rank sum of each method of OPCSB on all the datasets. Be-
cause CALT-US didn’t report results on Fluo-C2DL-MSC,
we put NA in that column, and compute the rank sum on
eight datasets and seven datasets respectively as shown in
the last column of Table 1. Our DMNet achieves best results
on all the 2D datasets with rank sum 60 (eight datsets) and
43 (seven datasets), which demonstrates the robustness and
effectiveness on 2D cell segmentation. DMNet+M2Track is
robust and achieves the state-of-the-art cell tracking perfor-
mance on all eight 2D CTC datasets. In Table 2, we com-
pute the rank sum of each method of OPCTB on all the
datasets. Because CALT-US didn’t perform cell tracking,
therefore it is empty in this table. Our DMNet + M2Track
achieves best rank sum with 36, which demonstrates the ro-

bustness and effectiveness on 2D cell tracking task. Table 3
shows the ranks of our pipeline compared to the other par-
ticipants on CTC-6. Our pipeline ranked in the top three on
four out of the eight 2D cell type microscopy videos. Not
every method provided results for all cell types, whereas
DMNet+M2Track results are given for all videos.

Figure 4 shows the results of DMNet+M2Track segmen-
tation and tracking pipeline for three cell types. The first
column shows the Raw Input image for three cell types,
which are typically low contrast, with dense, clustered cells
and small object size. A z-score normalization is applied
to the raw input image to remove outliers. The raw input
is stretched to increase image contrast, as shown in the sec-
ond column (Normalized Input). We show the groundtruth
segmentation with tracking ids as Tracking GT in the third
column. The fourth and fifth columns are the final marker
detections and cell tracking predictions for all the cells in
each frame of the video. We can clearly see in Figure 4
column (d) that DMNet accurately predicts and separates
the cell markers. Hence, using labeled markers as guidance
for the watershed algorithm to split the predicted cell masks
results in consistently satisfactory cell segmentation results.
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5. Conclusions
The proposed DMNet and M2Track cell segmentation

and tracking pipelines provide a common framework across
a variety of cell types for high accuracy lineage estimation
under challenging sample conditions of high cell density,
touching or overlapping cells, deforming cell shape, vari-
able size and indistinct boundaries. For cell segmentation,
DMNet uses a dual-stream marker guided deep networks
for detection and separation of touching cells. For cell
tracking, our M2Track multi-object tracking pipeline gener-
ates accurate cell trajectories under challenging conditions
(e.g high density, irregular shapes, and cell mitosis activity).
DMNet+M2Track is among the best performing methods
on the CTC-6 cell microscopy videos across a range of cell
types with segmentation and tracking accuracies of over 82
percent (excluding Fluo-C2DL-MSC which has thin elon-
gated mesenchymal stem cells). For 2D cell types our pro-
posed approach has the best rank of all submitted methods
in both the cell segmentation and cell tracking subtasks.
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quero, Andrés Santos, Isabel Vallcorba, José Miguel Garcı́a-
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