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Abstract

Reconstructing shapes from partial and noisy 3D data
is a well-studied problem, which in recent years has been
dominated by data-driven techniques. Yet in a low data
regime, these techniques struggle to provide fine and ac-
curate reconstructions. Here we focus on the relaxed prob-
lem of estimating shape coverage, i.e. asking “how much
of the shape was seen?” rather than “what was the origi-
nal shape?” We propose a method for unsupervised shape
coverage estimation, and validate that this task can be per-
formed accurately in a low data regime. Shape coverage es-
timation can provide valuable insights which pave the way
for innovative applications, as we demonstrate for the case
of deficient coverage detection in colonoscopy screenings.

1. Introduction

The last decade has seen a surge of research on 3D re-
construction and shape completion techniques, which are
crucial in many computer vision and robotic systems. In
this ill-posed inverse problem, the goal is to restore an orig-
inal 3D shape or scene when only observing a partial and
noisy sample of it. However, fully reconstructing the origi-
nal shape is unnecessarily difficult for certain applications.
In such settings, instead of asking “what was the original
shape?”, it may suffice to look at a simplified question:
“how much of the original shape have we seen?”. In this
paper, we focus on this shape coverage estimation task (see
Fig. 1). We propose a method for performing shape cover-
age estimation, validate its effectiveness, and demonstrate
its applicability in a low data regime.

Obviously, if we perform 3D reconstruction, then we can
quite easily estimate the area covered by the partial views at
hand. Yet, 3D reconstruction from partial data is a challeng-
ing ill-posed task. In recent years, advances in 3D recon-
struction have been dominated by data-driven techniques,
which rely on an abundance of data. In the supervised
scenario, many works have learned an end-to-end mapping
from partial data to the reconstructed shape by leveraging
a dataset of such input-output pairs [9, 47, 21, 53]. Oth-
ers have studied the weakly-supervised/unsupervised sce-
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Figure 1: Coverage estimation. (a) Consider a depth sen-
sor which acquires partial views of a 3D shape. The seen
area is colored in green. (b) Given only the acquired depth
maps (and camera poses) we estimate the shape coverage,
i.e. the ratio of the seen shape surface to the total shape
surface. This is performed in a low data regime, where (i)
no depth maps/shape coverage pairs are available for super-
vised learning, and (ii) a scarce amount of full shape sam-
ples is available for devising a shape model.

narios, where such paired data is not available, but a large
set of shape samples are present [59, 55, 67].

By contrast, we are interested in the scenario which we
refer to as the Low Data Regime. This regime implies the
following:
1. Absence of Labelled Data: Our training data contains
noisy depth views which represent partially covered sur-
faces. It does not contain the ground-truth coverage values;
nor does it contain the complete surfaces from which the
partial depth views are derived. This is the standard sense
in which the data is unsupervised.
2. Paucity or Absence of Unlabelled Data: We have access
to a surface model, i.e. a model which captures the family
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of surfaces of interest; however, the key point is that this
model is quite coarse. In particular, it is not learned from
massive amounts of unlabelled complete surfaces. Rather,
this model is either learned from a very small amount of
unlabelled complete surfaces, or it is not learned at all - it is
simply a crude manually specified model.

Clearly, 3D reconstruction models derived in the low
data regime will likely be inferior to the data-driven mod-
els demonstrated in recent years. Such models are expected
to provide coarse approximations of the original shape with
relatively low accuracy. Nevertheless, insights on the rela-
tion between the partial inputs and the original shape can
still be gained. Our goal in this paper is to estimate the
portion of a shape surface that is covered by a set of depth
views (see Fig. 1). We denote this task shape coverage es-
timation. Concretely, given a set of depth maps taken by a
depth sensor with varying sensor pose, we estimate the ratio
of viewed surface area to the entire surface area.

We formulate the notion of coverage mathematically,
from which an algorithm may be derived. At the heart
of this algorithm is a technique for finding a surface from
a coarse shape model which best fits the observed partial
views. This coarse shape model may be manually speci-
fied or constructed from a limited number of shape sam-
ples. The best-fitting surface is predicted by a DNN-based
model, which is trained in an unsupervised fashion. Ana-
lyzing which parts of the surface are covered by the partial
views then yields the surface coverage.

Shape coverage estimation can lead to innovative appli-
cations. Here, we show the potential for colorectal cancer
(CRC) prevention by estimating the colon surface cover-
age during colonoscopy screenings. Colonoscopies are the
gold-standard technique for removing precancerous polyps
from the colon to prevent CRC [36]. Yet, it is estimated that
over 20% of polyps are missed during the procedure [37],
in part due to insufficient coverage of the surface. Ensur-
ing full colon coverage during colonoscopy screenings can
prevent CRC [11]. An online system alerting on low cover-
age could augment physicians’ performance and reduce the
missed polyp rate. Yet, it is practically difficult to obtain a
sufficient dataset of 3D colon surface segments and ground
truth coverage annotations for developing such a system in
a conventional supervised-learning manner. Fortunately, as
we show, accurate surface coverage estimation can be ob-
tained in this low data regime scenario.

To summarize, our main contributions are:
1. Mathematical formulation of shape coverage estimation.
2. A method for estimating coverage in a low data regime.
3. Experimental validation of our method on datasets where
ground-truth coverage can be deduced.
4. A demonstration that our method can efficiently estimate
deficient coverage in colonoscopy screenings.

2. Related Work

Shape Completion Early works on 3D shape comple-
tion commonly relied on locally optimizing a surface to
fit the points [29, 30], or leveraging symmetry or self-
similarity in objects or scenes [49, 62, 73, 33]. Other
works resorted to retrieval and alignment techniques to per-
form shape completion [48, 38, 19, 54]. Data-driven ap-
proaches also include learning a latent space of shapes
and optimizing over this space to perform shape comple-
tion [70, 10, 12, 22]. With the rise in popularity of deep
learning, many works have studied shape completion by
end-to-end training of a DNN in the supervised scenario
[9, 21, 67, 47, 14, 53, 6, 69, 16, 40]. Self-supervised and
weakly-supervised approaches to shape completion have
also been proposed [59, 8, 55]. These learning-based tech-
niques rely on the abundance of training data, either as
input-output pairs in the fully supervised setting, or as a
set of valid shapes for model learning. In contrast, our set-
ting assumes a severe lack of training data where end-to-end
DNN training or complex model learning is not possible.
Shape Models Shape models are widely used in many ap-
plications such as 3D reconstruction, pose estimation, ob-
ject detection and more [10, 32, 46, 2, 57, 26, 70, 12]. While
early works commonly relied on hand-crafted models, re-
cently deep generative models have been widely used to
learn shape models from data [66, 67, 55, 17, 45, 56]. In
contrast to these complex non-linear models, linear models
learned from scans have been shown to accurately capture
the variations of human body and face shapes [41, 1, 3].
Model-based 3D Pose and Shape Estimation Optimiza-
tion based methods are a leading paradigm for performing
3D pose and shape estimation [4, 18, 35]. These methods
usually produce accurate estimation, yet are relatively slow
and are susceptible to local minima. Recently, deep learning
methods have attempted to directly regress to model param-
eters in a one-shot fashion [25, 46, 50]. These are fast and
do not rely on good initialization at test-time, yet may be
less accurate and rely on large datasets for training. Other
works have attempted to combine the best of both worlds
[32, 64]. While most works infer pose and shape from im-
ages, closer to our setting are works which infer pose and
shape from depth data [61, 51].
3D Reconstruction from a Single Image Many methods
for single-image 3D reconstruction based on deep learning
have been proposed. Fully supervised approaches include
[13, 7, 43, 17, 23]. Other work focuses on self-supervised
or weakly-supervised approaches which commonly enforce
some form of consistency [60, 52, 63, 68, 65, 20, 28, 39].
While these works share similarities with our task, we di-
rectly process 3D data rather than images.
“Next-Best-View” This approach e.g. [34, 27, 42, 72] for-
mulates the objective as maximizing the coverage of a 3D
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surface. There are however key distinctions between these
works and ours: (a) These works focus on maximally in-
creasing the coverage with the next camera pose, but not
on accurately estimating the current overall coverage (with-
out additional scans). (b) Data-driven works [72, 42] as-
sume full supervision where ground-truth shapes and cover-
age values are known for training and evaluation; our main
contribution is a method for unsupervised coverage estima-
tion.

3. Methods
3.1. Informal Problem Formulation

We begin with an informal account of the problem. We
are given a partial view of a surface. In practice, the partial
view will consist of a collection of depth images taken from
different angles, and we will use this formulation explic-
itly in describing the network architecture in Section 3.4.
For the purposes of much of the exposition, however, it is
sufficient to treat the partial view as simply another surface
which is a subset of the main surface, or a noisy approxima-
tion to such a subset. Given such a partial view of a surface,
our goal is to estimate what fraction of the surface has been
seen. This fraction is the so-called coverage.

Our main assumption is that we work in the Low Data
Regime. This means two things: (1) absence of labelled
data; (2) paucity or absence of unlabelled data (see Sec-
tion 1). Our scheme for the computation of coverage is
illustrated in Figure 2. We now describe the background to
derive this scheme, beginning with a definition of coverage.

3.2. Defining Coverage

We denote a single surface as X : U → R3, where
u ∈ U ⊂ R2 is a parameterization of the surface, and X(u)
is continuous and sufficiently smooth (e.g. C2). For sim-
plicity, we assume that the atlas consists of a single chart
U . The set of points corresponding to the surface will be
written as X ≡ X(U) = {X(u) : u ∈ U}. A family of
surfaces is then denoted as X : U × Q → R3 where the
parameters q ∈ Q ⊂ Rd index which surface in the family
we are referring to, and the family is d-dimensional. Again
X(u, q) is continuous and sufficiently smooth. The set of
points corresponding to a particular surface in the family
will be written as Xq ≡ X(U , q) = {X(u, q) : u ∈ U}.

We now define coverage; we do so through an increas-
ingly general set of assumptions. To begin with, suppose
that we are given a single surface X , and a partial view of
that surface S which is an exact subset of X . In this case,
the coverage is defined straightforwardly as

C =
A[S]
A[X ]

(1)

where A[·] denotes the area of the relevant surface.

In the case that we are given an entire family of surfaces,
then the coverage generalizes as

C =
A[S]
A[Xq∗ ]

where q∗ is such that D(S,Xq∗) = 0 (2)

where D is a distance between sets. That is, q∗ is the mem-
ber of the family of surfaces for which the partial view S is
a subset. If there is more than one q∗ with D(S,Xq∗) = 0,
we take the one with highest coverage.

For illustrative purposes, we may think of D as the
ordinary (asymmetric) Hausdorff distance, D(S,Xq∗) =
sups∈S infx∈Xq∗ ‖s − x‖, though we will use a somewhat
different distance measure in practice which we describe in
Section 3.3. For our purposes, the crucial aspect of any dis-
tance measure D that we use is that it is asymmetric: all
points in the partial view S should match a point in the full
surface Xq∗ , but not the other way around.

What if the surface S is only approximately a subset of
a member of the family of surfaces Xq? This situation natu-
rally arises in practice, where there is sensor noise, approx-
imate algorithms for depth estimation, and so forth which
generate the partial view S. In this case, let us define the
projection operator to be

P(s,X ) = argmin
x∈X
‖s− x‖ (3)

That is, P(s,X ) is the closest point on the surface X to the
given point s. The projection operator is naturally extended
to an entire surface as P(S,X ) = {P(s,X ) : s ∈ S}. We
extend this to a distance-restricted projection as follows:

Pε(S,X ) = {P(s,X ) : s ∈ S and ‖s−P(s,X )‖ ≤ ε}
(4)

which is the set of all points in S projected onto X which
are within a distance of ε from X . With these ideas in hand,
we may naturally define coverage as

C =
A[Pε(S,Xq∗)]

A[Xq∗ ]
where q∗ = argmin

q
D(S,Xq) (5)

ε is chosen to take account of “reasonable noise”: if points
from S are too far away from the surface X , then the points
they project to on X ought not to be considered covered.

3.3. Algorithmic Approach

General Approach Our goal is to learn to compute cover-
age in an unsupervised fashion for a partial view S. The key
insight is that the definition of coverage in Equation (5) ac-
tually leads to an algorithm. In particular, rather than train-
ing a network to compute coverage directly, we instead train
the network to compute the optimal q∗, i.e. the surface from
the given family of surfaces which most closely matches S.
The coverage may then be computed directly from q∗ using
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Figure 2: Unsupervised coverage estimation. We train a DNN to predict the surface of a 3D shape present in a partial
sequence of depth maps and corresponding camera poses. Training is performed in an unsupervised manner, where discrep-
ancies between the predicted surface and the 3D reconstruction of the depth maps are minimized (eq. (11)). Note that the
surface model is fixed and serves as a prior of valid surfaces. At test time: surface points in proximity of observed 3D points
in the reconstruction are considered “seen”. The coverage rate is the ratio of the seen surface area to the total surface area.

the formula for C in Equation (5). We will see empirically
that the resulting unsupervised algorithm will be well suited
to the Low Data Regime. The scheme is shown in Figure 2.

To restate the above in a more formal mathematical fash-
ion: let our network be of the form F (S; θ) ∈ Q, where the
network’s parameters are given by θ. Then our goal is to
find θ such that

F (S; θ) = argmin
q
D(S,Xq) (6)

Given the output of the network, it is straightforward to
compute the coverage precisely as in Equation (5), i.e.

C(S; θ) =
A[Pε(S,XF (S;θ))]

A[XF (S;θ)]
(7)

To train our network F , we minimize the following loss:

min
θ
L(θ) = ES

[
D(S,XF (S;θ))

]
(8)

where the expectation is over different noisy partial views
S of elements of the family of surfaces given by X(u, q).
Enabling Implementation The optimization problem in
(8) leads to an algorithm for learning; however, as it stands
the problem is not implementable in a straightforward fash-
ion, for reasons relating to both the need for discretization
and the differentiability of the loss. We therefore make the
following four changes in order to alleviate these issues:

(1) Discretization: It is straightforward to transform the
coverage definition in (5) and hence the loss in Equation
(8), from working on continuous surfaces to discrete sam-
ples drawn from those surfaces. The form of the loss L(θ)
remains the same, but the distance D is now over discrete
sets. The other modification is to change the meaning of
A[·] in the coverage computation (5) from area to a discrete
measure (e.g. cardinality in the case of uniform sampling).

(2) Choice of Set-Distance Function: As described previ-
ously, the crucial aspect of the distance measure D is that it
is asymmetric: in Equation (8), all points in the partial view
S should match a point in the full surface XF (S;θ), but not
the other way around. We therefore choose the following
natural set distance:

D(S,XF (S;θ)) =
1

|S|
∑
s∈S

min
x∈XF (S;θ)

‖s− x‖ (9)

Unlike the Hausdorff distance, this D depends on all points
in S, which is desirable for robustness.

(3) Continuous Relaxation: The distance introduced in
(9) is not smooth, due to the presence of the min operators.
We therefore replace the min operation by a soft-min:

D(S,XF (S;θ)) =
1

|S|
∑
s∈S

∑
x∈XF (S;θ)

w
(
s, x;XF (S;θ)

)
‖s−x‖

(10)
where w(s, x;X ) = e−‖s−x‖/σ∑

x′∈X e
−‖s−x′‖/σ . The hyperparame-

ter σ controls how close the soft-min approximates the min:
as σ gets smaller, the soft-min approaches the min.

(4) Depth Maps: In practice, we have access to the depth
map di and corresponding pose pi for each frame i in an
n-frame video sequence. The partial view is then given by
S = ∪ni=1∪s∈di Tpi(s), where Tp is the transformation cor-
responding to pose p, and di is construed as a set of points.
Summary of Training Procedure: To summarize, our
training procedure consists of minimizing the following loss
with respect to the network parameters θ:

L(θ) = ES

 1

|S|
∑
s∈S

∑
x∈XF (S;θ)

w
(
s, x;XF (S;θ)

)
‖s− x‖


(11)
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Figure 3: Surface estimator architecture. Features are
extracted separately from each input depth map and cam-
era pose. The depth feature extractor is a MobileNet [24],
and the pose feature extractor is an 8-layer fully-connected
net. The features are then concatenated, and fed through an
8-layer convolutional net which outputs the surface parame-
ters. The number of filters are specified in parentheses. See
the supplementary for full details.

where w is defined as in Equation (10). We refer to this loss
as the Partial View Discrepancy Loss. Note that the mean in
(11) is taken only over (a batch of) partial views S, without
any ground-truth shapes or coverage values appearing in the
loss, such that training is truly unsupervised as discussed in
Sections 1 and 3.1.

3.4. Surface Estimator Architecture

We now turn to a description of the network architec-
ture, see Figure 3. The input to the network is a chrono-
logical sequence of N depth map and camera pose pairs
{di, pi}Ni=1. First, features are extracted from each depth
map and camera pose vector1 separately. To support on-
line inference capabilities, the lightweight low-latency Mo-
bileNet [24] is used as the depth map feature extractor. The
top (classification) layer is discarded, resulting in a feature
vector yi ∈ R1024 for each depth map. This depth feature
extractor is shared across all depth maps. The pose feature
extractor is an 8-layer fully-connected net, with all layer
widths set to 256 and followed by ReLU activations (except
for the final layer), based on the architecture for process-
ing pose vectors in [44] . The output is a feature vector
zi ∈ R256 for each pose. This pose feature extractor is
shared across all the pose vectors.

Next, each depth feature and corresponding pose feature
are concatenated, yielding feature vectors mi = (yi, zi) ∈
R1280. Then, the N features {mi} are stacked, resulting in
a feature map M ∈ R1280×N . The feature map is then for-
warded through the surface parameter regression net, which

1We use 7-dimensional pose vectors, where 3 dimensions represent the
camera translation and the remaining dimensions represent the camera ro-
tation in quaternion format.

is a 1D convolutional network.2 Specifically, the net con-
sists of six 1D convolution layers, followed by global 1D
max-pooling, and finally a fully-connected layer. The input
M is considered a sequence of N inputs each with 1280
channels, thus the 1D convolutions and max-pooling are
performed across the sequence (second feature map dimen-
sion). The number of filters in each layer is specified in
Fig. 3. The convolution layers have a stride of 2, and are
followed by ReLU activations (except for the last layer).

There are a total of 4.3 million parameters in the entire
model, and it is trained in an end-to-end manner. Full archi-
tecture details can be found in the supplementary.

3.5. Implementation Details

In specifying the parameters q ∈ Q which define the
family of possible shapes, we divide the parameters into two
separate types: global geometric transformation parameters
Qg and “intrinsic” shape parametersQi, withQ = Qg×Qi.
The set of global geometric transformation parameters Qg
is a group; we take it to be the set of translations, rotations,
and independent scalings in each dimension. The set of in-
trinsic shape parameters Qi describes the more “interest-
ing” aspects of the family of shapes, e.g. deformations.
Qi may be any family of surfaces which is differentiable

in its underlying parameters qi. However, to emphasize the
ability to use very coarse shape models, we will often use
extremely simple affine models. More specifically, recall
that Xq is a discrete set, in which case it may be written as a
matrix Xq ∈ Rn×3 where n is the cardinality of the set. In
this case, we can write our simple shape model as

Xq = qgR(Aqi + b) (12)

where A ∈ R3n×k and b ∈ R3n specify the affine part of
the model; R reshapes vectors of length 3n into matrices of
size n× 3; and qg is the geometric transformation, which is
applied to each row of the matrix separately. A and b can
be learned via PCA from a small number of examples; and
we will see that PCA models with very few modes k are
sufficient for the computation of coverage in practice.

In order to improve the results of the network F , we can
run test-time optimization using the same loss applied to the
single instance of relevance. That is, we can initialize q as
the output of the network F (S; θ) and run gradient descent
on Linf(q) =

1
|S|
∑
s∈S

∑
x∈Xq w (s, x;Xq) ‖s − x‖ for a

small number of steps. This follows the practice of [32],
which showed that networks for regressing pose and shape
are less susceptible to local minima, and can provide good
initializations for additional gradient descent steps. In prac-
tice, a small number of gradient descent steps is sufficient.

2The underlying assumption is that there is significance to the order in
which the depth maps occur, as they are derived from the camera’s traver-
sal in R3. In the case where the partial view is the result of combining
unordered depth maps, instead of using a 1D convolutional network, one
may apply a network which ingests sets, such as in [71].
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Figure 4: Coverage estimation on body shapes. Top: Input (partial view) depth maps; darker is closer. Middle: Local
correspondence between our estimation and the ground-truth. Color coded texture indicates: green - correctly estimated
covered area; gray - correctly estimated uncovered area; blue - estimated covered but actually uncovered area; red - estimated
uncovered but actually covered area. Bottom: Estimated vs. ground-truth coverage rate.

4. Validation on Body Shapes

To validate our method in a clean, controlled environ-
ment, we first evaluate it on synthetic human body shapes
generated by the Skinned Multi-Person Linear (SMPL)
model [41]. In this experiment, we adopt a simplified set-
ting where the parametric shape family is not a coarse ap-
proximation of the data model, but the exact data model.
This will allow us to visualize our algorithm’s behaviour.
Note that we do not rely on such an assumption in general,
and it will be dropped for the real world scenario in Sec. 5.

Shape Model The shape model is constructed by consid-
erably reducing the SMPL model. While the SMPL model
is parameterized by both articulated pose and body shape
parameters, we freeze the pose parameters and only use the
star-shaped (rest) body pose. The SMPL body shape family
is represented by triangulated meshes of n=6890 vertices
spanned by 300 PCA vectors, where we use only the first
k=10 components which account for 97% of the data vari-
ance. The parametric shape model is thus given by eq. (12),
whereA is composed from the 10 SMPL shape components
and b is given by the SMPL average body shape mesh.

Dataset Given this model, by randomly sampling the shape
parameters q in (12), we generated 1960 training, 40 valida-
tion, and 300 test body meshes. To generate the input partial
depth views, for each synthesized body shape we randomly
sampledN=5 virtual camera poses and rendered the corre-
sponding depth maps using a z-buffer based approach [58].
By utilizing the underlying synthetic model used to gener-
ate the data, we can also compute the ground-truth coverage
rate as the ratio between the surface area in the camera field-
of-view and the total mesh surface areas. Note that only the
partial depth maps / camera poses are used for unsupervised
training and inference. The corresponding full body meshes
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Figure 5: Estimated vs. ground-truth coverage. Left: For
the body shapes experiment in Sec. 4. Right: For the syn-
thetic colonoscopy experiment in Sec. 5.1.

and coverage rates are used solely for the purpose of visu-
alization and evaluation.
Model Training The surface estimator was trained to min-
imize the loss in eq. (11) using the Adam optimizer [31] for
50 epochs with a batch size of 4 and learning rate of 2·10−4.
See the Supplementary for more training details.
Results After training concludes, we estimate the test sam-
ples’ coverage with eq. (7). Figure 5 (left side) depicts
the estimated vs. the ground-truth coverage for the test set,
yielding a mean absolute coverage error of MAE = 0.0440.
Figure 4 depicts our results on three samples. The top row
shows the input depth maps, and the second row presents
the local correspondence between our estimation and the
ground-truth on the body mesh. The green/gray colors in-
dicate correctly estimated covered/uncovered areas, and in-
deed the coverage maps are dominated by these two colors.

5. Coverage Estimation in Colonoscopies

Colorectal cancer (CRC) is the cause of an estimated
880K deaths globally per year [74]. For the most part, CRC
is preventable by identifying and removing precancerous
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polyps via colonoscopy screenings [36], yet successful pre-
vention is dependent on the endoscopist’s capabilities. It
is approximated that over 20% of polyps are missed during
these procedures [37], in part due to poor coverage of the
colon surface. An online system which alerts on low cov-
erage and allows for revisiting of the unseen areas within
the ongoing procedure could augment the physicians’ per-
formance and reduce the missed polyp rate [11].

Polyps are missed for various reasons, some of which
have been addressed by recent commercial polyp detection
systems. The inherent limitation of current systems is the
inability to detect polyps which never appear in the camera
field-of-view. Furthermore, these recent AI-based systems
may actually lead to a decrease in polyp detection rates,
based on the clinicians “over-relying” on these systems and
covering less colon surface [11]. As a result, leading clin-
icians have surfaced the need for complementary systems
which ensure sufficient coverage [11].

We demonstrate the applicability of our coverage esti-
mation technique for detecting deficient colon coverage. It
is practically impossible to obtain ground-truth colon cov-
erage on real colonoscopy videos, so one cannot derive a
model in a supervised learning setting. A large dataset of
3D colon shapes is also unattainable, so deriving a fine
colon shape model based on data-driven techniques is not
an option. Nevertheless, our algorithm which is trained in
an unsupervised manner and only requires a coarse shape
model can predict colon coverage. A previous work [15]
studied colon coverage, yet relied on ground-truth coverage
obtained on synthetic data in a supervised setting.

5.1. Synthetic Colonoscopy Videos

We start by testing our method on synthetic colonoscopy
videos, where we can obtain ground-truth coverage rates for
the sake of evaluating performance. However, as opposed to
Sec. 4, we do not assume that we have access to the complex
3D model used to create the data. The shape model here
will be a truly coarse approximation of the data generation
model, and will in fact be a “hand-crafted” model which is
not derived from shape samples.
Dataset Our dataset consists of 32 synthetic colonoscopy
videos, each including 10K frames consisting of RGB,
depth map and camera pose data. These videos are based
on the 3D colon model developed by 3D systems [75] and
rendered using Blender [76]. Our dataset is split into 20/5/7
videos for training/validation/testing.
Preprocessing We train our model to estimate coverage
on segments of 300 frames, corresponding to 10 seconds
of video3. These segments are randomly extracted from

3Our goal is to provide alerts on deficient colon coverage which allow
the endoscopist to re-examine the segment within the ongoing procedure.
Focusing on 10 second intervals allow such re-examinations without a sig-
nificant increase in procedure time.
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Figure 6: Coverage estimation on synthetic colonoscopy
segments. Left: Point clouds reconstructed from the in-
put depth maps and camera poses. Middle: Our al-
gorithm’s estimated shape surface, where green/red indi-
cates seen/unseen areas. Right: The estimated/ground-truth
shape coverage.

the videos in an overlapping manner, and temporally down-
sampled by a factor of 15. The remaining N = 20
depth maps and the corresponding camera poses serve as
the coverage estimator input. In total, 10K/100/400 seg-
ments are extracted for training/validation/testing from the
train/validation/test set videos. As in Sec. 4, we compute the
ground-truth coverage for each sample. Here as well, only
the partial depth maps / camera poses are used for unsu-
pervised training, and the ground-truth coverage rates exist
solely for evaluation purposes.

Shape Model With no dataset of colon shapes at hand, we
manually design a crude model of colon segments. Colon
segments are generally tube-shaped with perturbations of
bends and curves. We start with a cylinder mesh of n=1500
vertices. Then, we generate m = 8000 perturbed meshes,
where for each the cylinder is bent by translating a set of
vertices (see the Supplementary for details and examples).
Each perturbed cylinder is represented by a vector v ∈ R3n

of the vertices’ coordinates. All m vectors are stacked in a
matrix V ∈ R3n×m, on which a PCA decomposition is per-
formed and the first k = 5 components (which account for
98% of the data variance) are extracted. The shape model is
given by eq. (12), where A ∈ R3n×k is composed from the
top 5 PCA components, and b ∈ R3n is the mean shape.

Model Training The model was trained to minimize the
loss in eq. (11) using the Adam optimizer [31] for 10 epochs
with a batch size of 8 and learning rate of 2 · 10−4. See the
Supplementary for more training details.

Results After training concludes, we estimate the test sam-
ples’ coverage with eq. (7). Figure 5 (right side) plots the
estimated vs. the ground-truth coverage for the test set, and
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Method Training MAE
Physicians’ annotation [15] 0.177
C2D2 [15] Supervised 0.075
Ours Unsupervised 0.092

Table 1: Mean absolute error (MAE) on synthetic
colonoscopy videos. Our method does not require super-
vision (making it better-suited for real colonoscopy data).
This comes at the cost of a 23% increase in MAE on syn-
thetic data, which is still much better then physicians’ abil-
ity to estimate colon coverage.

Table 1 compares our method’s performance to prior work.
Figure 6 visualizes our algorithm’s process. Given a se-
quence of depth maps and camera poses (visualized here
by the equivalent point cloud), the algorithm predicts the
best fitting tube-shaped surface. Then, areas in proximity
of points (colored in green) are considered seen, while the
rest are considered unseen. Coverage is then estimated by
taking the ratio of seen area to the total area.

5.2. Real Colonoscopy Videos

We now validate our method on real colonoscopy videos.
It is impractical to obtain either ground-truth coverage or
a dataset of colon shape samples in this setting, so here
too we rely on a coarse “hand-crafted” model. Moreover,
depth data and camera pose are not captured during colono-
scopies. These must be estimated from raw RGB frames,
introducing additional complexity into this experiment.
Dataset The dataset includes 470 deidentified videos
taken during colonoscopy screening. These are split into
400/20/50 videos for training/validation/testing.
Preprocessing Similar to Sec. 5.1, we estimate coverage
on segments of 200 frames, where 20K such training seg-
ments are randomly extracted in an overlapping manner
from the videos. Yet unlike the synthetic data experiment,
we only have RGB frames. Depth maps and camera poses
are obtained by leveraging the technique of [5] for unsuper-
vised monocular depth and camera egomotion estimation4.
After obtaining the depth maps and poses, each sequence is
temporally downsampled by a factor of 4, and the remaining
N = 50 depth maps and poses serve as surface estimation
model inputs. See the Supplementary for more details.
Shape Model and Training We use the same shape model
as in Sec. 5.1. The network was trained to minimize the
loss in eq. (11) using the Adam optimizer [31] for 10 epochs
with a batch size of 2 and learning rate of 2 · 10−5.
Processing time Inference requires 0.47 seconds (for a
6.66 second video segment) on a single GPU, which allows
immediate re-examination within the ongoing procedure.
Results and Validation Figure 7 visualizes our algo-
rithm’s performance on real colonoscopy segments. Given

4We retrained this model on colonoscopy videos.

0.59

Estimated surfaceInput

0.76

0.92

Figure 7: Coverage estimation on real colonoscopy seg-
ments. Left: Sample video frames of a colon segment.
Right: Our algorithm’s estimated shape surface, where
green/red indicates seen/unseen areas, along with the esti-
mated shape coverage.

only a sequence of RGB frames, we estimate the best fit-
ting surface and predict the surface coverage via eq. (7).
As ground-truth coverage is not attainable, expert Gastroen-
terologists (GIs) where asked to evaluate our algorithm’s
predictions. This study was planned carefully, bearing in
mind that disagreement among GIs can be large when as-
sessing colon coverage [15]. First, to remove ambiguous
samples, we divide segments into two classes: (a) mostly
covered segment - if the estimated coverage rate is over 0.8,
and (b) partially covered segment - if the estimated cover-
age rate is under 0.65. Three GIs were shown 42 randomly
chosen video segments (21 from each class) along with our
predicted label, and asked: “does this description match the
clip?” (yes/no answers). To obtain a reliable ground-truth
set, we only take into account video segments on which all
three GIs agreed on, which was the case for 20 segments.
On this “ground-truth” set, the GI’s found our algorithm’s
prediction to be correct on 85% of samples.

6. Conclusion

We have presented a new technique for estimating
shape coverage, demonstrating its accuracy in the low data
regime. Our technique enables novel applications, such as
deficient coverage detection in colonoscopy screenings.
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