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Abstract

The goal of out-of-distribution (OoD) detection is to
identify unseen categories of inputs different from those
seen during training, which is an important requirement for
the safe deployment of deep neural networks in computa-
tional pathology. Additionally, to make OoD detection ap-
plicable in clinical applications, one may encounter image
data distribution shifts. This paper argues that practical
OoD detection should handle both semantic shift and data
distribution shift simultaneously. We propose a new self-
supervised OoD detector for colorectal cancer tissue types
based on a clustering scheme. Our work’s central tenet
benefits from multi-view consistency learning with a sup-
plementary view based on style augmentation to mitigate
domain shift. The learned representation is then adapted
to minimize images’ predictive entropy to segregate in-
distribution examples from OoDs on the target data domain.
We evaluated our method on two public colorectal tissue
types datasets. Our method achieved state-of-the-art OoD
detection performance over various self-supervised base-
lines. The code, data, and models are available at https:
//github.com/BehzadBozorgtabar/SOoD.

1. Introduction
Colorectal Cancer (CRC) is considered one of the most

occurring cancers worldwide, and early-stage CRC diagno-
sis can significantly improve the chances for therapy of pa-
tients [6]. In CRC, the Tumor MicroEnvironment (TME)
analysis plays an essential role in cancer grading, and prog-
nostication [23]. Thus, developing automatic tissue phe-
notyping in Whole Slide Images (WSIs) is of great impor-
tance. In recent years, deep learning models have been
widely developed for multi-class tissue type classification
[24, 38, 2]. While these deep models implicitly assume
that the datasets are independent and identically distributed
(i.i.d), in practice, collected datasets are typically far from
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Figure 1: Motivation of the proposed OoD detection un-
der domain shift. SOoD seeks to handle both data dis-
tribution shift and semantic shift. Histological images of
different tissue types present high appearance variability
between the source domain (K19) and the target domain
(K16), and the target domain contains an additional un-
known class (complex stroma).

the i.i.d assumption. Histological images present high ap-
pearance variability in a real-world scenario due to acquir-
ing data in various conditions, including different scanners
or staining procedures. To mitigate this issue, domain adap-
tation techniques [14, 13, 1, 36] disclose the inference-time
data (target domain) to model for adapting the representa-
tion from the training data (source domain). Nevertheless,
most domain adaptation methods [14, 13] assume a closed-
set scenario, where the source and target domains share the
same distribution of classes (label set).

In clinical routine, a model is often exposed to new data
with unknown categories, e.g., tissues from specific cancer
subtypes. Thus, making a model robust to the presence of
out-of-distribution (OoD) samples and sidestep potentially
inaccurate predictions is crucial for the model’s safe deploy-
ment. Although the task of OoD detection has seen con-
siderable progress [17, 34, 40], developing practical OoD
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detection for computational pathology has been a particu-
larly challenging problem for two reasons. First, deep neu-
ral networks (DNNs) often make overconfident predictions
to unknown inputs [31]. Second, due to the domain discrep-
ancy mentioned earlier, OoD detectors may mistakenly de-
tect a test sample from known categories but have a different
style/domain as an OoD. Fig. 1 shows the correspondence
of different tissue types across two CRC datasets, Kather-
19 (K19) [24] and Kather-16 (K16) [25], as the source do-
main and target domain. Histological images present high
appearance variability between two data domains, and the
target domain contains an additional unknown class (com-
plex stroma).

To address the limitations of current OoD detection
methods, we propose SOoD, short for Self-supervised Out-
of-Distribution detection under domain shift for multi-class
colorectal cancer tissue types, a new self-supervised OoD
detector to mitigate both semantic shift and data distribu-
tion shift. We illustrate the pre-training stage of SOoD in
Fig. 2 and present a pseudo-code implementation in Algo-
rithm 1. In summary, we highlight the contributions below:

• Our method (SOoD) is the first work to consider the
problem of multi-class OoD detection under domain
shift for clinical applications to the best of our knowl-
edge;

• The proposed self-supervised OoD method builds
upon multi-view consistency paradigm with comple-
mentary style augmentation to mitigate domain shift,
as opposed to current OoD detections, which focus on
a single image domain;

• We propose a new self-training scheme for OoD de-
tection via minimizing images’ predictive entropy of
unlabeled images to segregate in-distribution examples
from OoDs on the target data domain. Our method
does not require OoD samples during training and is
capable of working with unlabeled source datasets al-
leviating costly annotations;

• Experimental results show consistent improvement of
proposed OoD detection performance over state-of-
the-art (SOTA) self-supervised methods [8, 7, 42, 3]
on two hematoxylin & eosin (H&E) stained CRC tis-
sue types datasets [24, 25].

2. Related Work
The problem of OoD detection has seen considerable

progress in computer vision and medical image analysis,
as OoD detection is crucial for the safe deployment of deep
learning systems. The related work in this area is sizable.
Thus, we mainly focus on the recent deep learning-based
methods in supervised [15] and unsupervised [44] settings.

Most of the current OoD detection solutions presume ac-
cess to the OoD datasets during training [22, 47] or valida-
tion steps [27, 26, 34] that are not well suited for the general
use of OoD detection in real-world applications. Some in-
teresting methods [16, 27, 26] benefit from adversarial sam-
ples via perturbation of the training samples to improve the
robustness of their network, which results in higher training
time and suboptimal solutions.

On the other hand, recent methods [17, 34, 40] rely
on generative or reconstruction-based training schemes [39,
49], deep one-class classifiers [35, 29], and, more recently,
self-supervised approaches [15, 5, 30, 3]. Overall, the un-
derlying rationale behind those methods is modeling the
representation of in-distribution data either using a one-
class [35] or multi-class setup [4], and then a detection func-
tion is usually defined to detect OoDs. However, most pre-
vious OoD detection methods assume that the training and
test data would follow a similar distribution (style/domain).
This assumption can negatively impact OoD detection as
OoD detectors may erroneously detect a test sample from
known classes but have a different style as an OoD class.
A possible solution would be to use additional data from
the new target domain and formulate this problem as open-
set domain adaptation [37, 32], where the source domain
contains in-distribution labeled data and the target domain
contains novel classes in addition to the classes present in
the source domain. Nevertheless, it would require labeled
source data and costly annotations by domain experts. Re-
cent studies have shown that contrastive training [8, 19, 9]
significantly improves OoD detection [45, 42]. These meth-
ods attempt to learn representation based on attracting sim-
ilar views of a sample and repelling disagreeing views from
each other. However, current contrastive training methods
are incentivized to learn features from a single image do-
main.

3. Method
We start by motivating our approach before explaining

the methodological details. The main goal of OoD detection
under domain shift is to learn domain-invariant representa-
tion between one specific domain (i.e., source domain) and
a testing domain (i.e., target domain) so that an OoD model
can robustly leverage such invariances to a new unlabeled
target domain. The domain invariance is often ignored or
not formulated in previous OoD detection methods. As a
result, OoD detectors may mistakenly detect a new test ex-
ample from known classes but have a different style as an
OoD class.

This problem setting is also different from typical un-
supervised domain adaptation (UDA) approaches as a new
target domain contains an additional unknown class. Be-
sides, unlike UDA methods, we formulate our proposed
OoD to deal with the unlabeled source data, which is highly
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demanded in practical applications. In this work, we re-
visit current state-of-the-art contrastive learning-based self-
supervised methods [10, 7, 8, 18] for the OoD task us-
ing only positive pair samples. In particular, we extend
the two-view consistency learning paradigm based on self-
augmentation to a multi-view version with style augmenta-
tion as the new complementary view.

The objective of the pre-training stage is to simultane-
ously learn domain-invariant features and consistent clus-
ter assignments between multiple views of the same tissue
image in an entirely unsupervised setting (Sect. 3.1). The
learned representation is then adapted using a self-training
scheme on the unlabeled target domain images. Typically,
one can use the most probable cluster predicted by the net-
work as pseudo labels. Since the pseudo labels are often
noisy, we propose to segregate known and unknown samples
using the entropy of the clustering output and opt for only
highly confident (lower entropy) target images for pseudo
labeling. More specifically, we perform entropy minimiza-
tion on selected unlabeled target images w.r.t source proto-
types from (Sect. 3.1) to segregate known categories from
OoDs (Sect. 3.2). Finally, we define the OoD function to
detect OoDs.

3.1. Multi-View Consistency

We revisit the recent self-supervised clustering scheme
[7], which clusters the data while imposing an agreement
between cluster assignments obtained from different aug-
mentations of the same image. Specifically, we address
the limitation of the current self-augmentation consistency
learning paradigm in the presence of data domain shift. To
do so, we extend typical two-view consistency learning to a
multi-view version with style augmentation of the target do-
main as the new complementary view. Each source domain
image xs is transformed into two in-domain augmented
views, including weakly augmented view xsw and heavily
augmented view xsh, and the encoder output of the weakly
augmented view provides a pseudo label for the predictions
on heavily augmented view. Furthermore, we add an addi-
tional view based on style augmentation xstyle to make the
model robust against domain shift, especially in the absence
of labeled data. As for the style augmentations, weakly
augmented images are mapped from the source domain to
the target domain via a pre-trained CycleGAN model [48].
Such a new view makes the model invariant to the image
style by further covering the target data distributions and
adding the regularization effect through multi-view consis-
tency learning.

More precisely, we apply a non-linear mapping fθ to
the multi-view augmented images to match their represen-
tations to K dimensional features. The non-linear encoder
fθ includes the convolutional neural network (CNN) back-
bone followed by a 2-layer MLP network. Given an image

Algorithm 1: SOoD PyTorch pseudocode w/o
multi-crop (pre-training stage).

Input: S: unlabeled or partially labeled source samples, trslt:
pre-trained style transformer on S and unlabeled target
samples T , fθ : encoder network

Output: updated fθ
Parameter : tp: temperature, λ1, λ2: weights for the loss

terms, sinkhorn: Sinkhorn-Knopp function
1 for x in loader do // load a minibatch with n

samples from S
2 x sw = weak augment(x)// augmented views
3 x sh = heavy augment(x)
4 x style = trslt(x sw)
5 scores sw, scores sh, scores style = fθ(x sw), fθ(x sh),

fθ(x style)// output n-by-K
6 pseudo sw, pseudo sh, pseudo style = sinkhorn(scores sw),

sinkhorn(scores sh), sinkhorn(scores style)// apply
sinkhorn to generate pseudo label

7 �heavy = H(pseudo sw, scores sh)/2 + H(pseudo sh,
scores sw)/2

8 �style = H(pseudo sw, scores style)/2 + H(pseudo style,
scores sw)/2

9 �mv = λ1�heavy + λ2�style
10 �mv .backward() // back-propagate
11 update(fθ) // encoder update

12 def H(pseudo, score):
13 pseudo = pseudo.detach()// stop gradient
14 pred = softmax(score / tp, dim=1)
15 return-(pseudo ∗ log(pred)).sum(dim=1).mean()

x from one of the three different augmentations of the input
source image, we compute its cluster assignments (codes)
by matching its feature representations to a set of K train-
able prototypes {c1, · · · , cK}. These soft assignments are
in the form of probability distributions over K dimensions.
Then, the probability P is obtained by normalizing the out-
put of the encoder fθ with a softmax function:

P (x)
(i)

=
exp

(
fθ (x)

(i)
/τ

)

∑K
k=1 exp

(
fθ (x)

(k)
/τ

) (1)

where τ is a temperature parameter [46]. As in [7], features
before last linear layer of fθ and prototypes are �2 normal-
ized. We optimize the multi-view consistency loss �mv w.r.t.
the parameters of the encoder θ. Thus, the encoder output
of the weakly augmented view provides a pseudo label for
predictions of two other augmented views from the source
image based on heavy and style augmentation through the
cross-entropy losses �heavy and �style,

min
θ

�mv = λ1�heavy + λ2�style (2)

where λ’s denote the weights for the heavily augmented
view loss �heavy and style augmented view loss �style. The
pseudo label is obtained by applying the iterative Sinkhorn-
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Figure 2: The overview of the pre-training stage of SOoD. Augmented views for input source images are generated, and
the multi-view consistency loss is optimized. The encoder output of the weakly augmented view provides a pseudo label for
predictions of two other augmented views from the source image based on heavy and style augmentation.

Knopp algorithm [12] on the output of the encoder fθ to
select all prototypes the same amount of time.

Details of the loss terms. We first describe the loss
term �heavy for the heavily augmented view, and a simi-
lar formula holds for the loss term of the style augmented
view �style. For the heavily augmented view, we use Ran-
dAugment [11] that mainly deals with color intensity and
geometrical transformations. We first compute for an unla-
beled weakly augmented view its pseudo label P̂ (xsw) ∈
{1, · · · ,K} w.r.t the K prototypes. This is achieved by first
applying a stop-gradient (sg) operator on the encoder out-
put and then using iterative Sinkhorn-Knopp algorithm [12],
P̂ (xsw) = sinkhorn(sg (P (xsw))). Then, we optimize the
encoder to match the heavily augmented view prediction
P (xsh) to the pseudo label P̂ (xsw) using the cross-entropy
loss. In practice, we additionally benefit from a multi-crop
data augmentation strategy [7] such that from a given im-
age, we generate a set V of different positive views. This
set contains two anchor views and several local image crops
of smaller resolution. The predictions of all crops are at-
tracted to the anchor views to further improve the quality of
the learned embeddings. We minimize the loss �heavy with
stochastic gradient descent:

�heavy = min
θ

∑

xsw∈{xa
1 ,x

a
2}

∑
x′
sh∈V,x′

sh �=xsw

H
(
P̂ (xsw) , P (x′

sh)
)

(3)

where H (a, b) = −a log b, and xa
1 and xa

2 denote the an-
chor views. Similar formula holds for �style to align the
style augmented view prediction P (xstyle) to the pseudo
label P̂ (xsw) using the cross-entropy loss:

�style = min
θ

∑

xsw∈{xa
1 ,x

a
2}

∑
x′
style∈V,x′

style �=xsw

H
(
P̂ (xsw) , P

(
x′
style

))

(4)

The style augmented view loss �style complements heavily
augmented view loss �heavy by making the encoder robust
to style variation present in the target domain. Following
[18], we use a symmetrized loss for both loss terms (Eq. 3
& Eq. 4) as symmetrization helps boost accuracy (see Al-
gorithm 1).

3.2. Self-Training via Entropy Minimization

We incorporate an additional self-training criterion on
the target domain into our model to further facilitate OoD
detection. For this purpose, the pre-trained encoder fθ from
the previous step is applied on unlabeled target images to
generate the pseudo-label for target samples, which are then
used to fine-tune the encoder. Since we are not using la-
bel information on the target domain, we use the entropy
of the cluster assignment to draw a boundary between in-
distribution and OoDs such that we expect that the entropy
of OoDs is larger than entropy for the in-distribution sam-
ples. To determine the optimal threshold for the entropy,
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Figure 3: The entropy histogram of cluster assignments
for the style augmented images. We set the threshold ρ to
1.07 such that the entropy of � 80% of training examples
will be lower than ρ. This threshold is used to select highly
confident target examples for pseudo labeling.

we first compute the entropy of the style augmented im-
ages used for training and select a threshold ρ such that the
majority of the style augmented images (�80%)1 have an
entropy lower than ρ. Then we apply this threshold to the
unlabeled images from the target domain to select highly
confident samples for pseudo labeling. We perform an anal-
ysis of ρ in Fig. 3. For the self-training, we perform predic-
tive entropy minimization on pseudo-labeled target data to
make them tighter clustered around the source prototypes
{c1, · · · , cK}. This increases the confidence of cluster pre-
dictions and identifies OoDs if they have different character-
istics compared to in-distribution samples. The prototypes
are kept fixed during self-training, and only the parameters
of fθ are updated. We minimize the entropy loss for the
self-training step �st as follows:

�st = Ext∼T

[
K∑

k=1

−P (xt)
(k)

logP (xt)
(k)

]
(5)

where P (xt)
(k) is the probability obtained by the encoder

shows unlabeled target sample xt matches with cluster pro-
totype ck.

Inference: At inference time, a test image xtest is
passed through the trained encoder fθ to obtain its feature
representation vtest = fθ (xtest). vtest is then compared
with the top M similar features {vm} of the target domain’s
training samples based on the cosine similarity. An OoD

1This ratio is determined based on the distribution of unknown samples.

detection score S (·, ·) is computed as follows:

S (vtest; {vm}) := − 1

M

M∑
m=1

sim(vm, vtest) (6)

where sim(a,b) = aTb
‖a‖‖b‖ and S (·, ·) is normalized us-

ing the maximum and minimum scores of the set such that
S (·, ·) ∈ [0, 1]. Intuitively, the scores of OoD samples
should be larger than the scores from in-distribution ones.

4. Experiments
Datasets and Evaluation Metrics. We evaluate SOoD

on two H&E stained publicly available CRC datasets,
Kather-19 (K19) [24] and Kather-16 (K16) [25], as the
source domain and target domain. K16 dataset con-
tains 5,000 images patches of 150 × 150 pixels each
(74µm× 74µm) from H&E WSIs, while K19 dataset con-
tains 100,000 H&E stained patches at (0.5 µm/pixel). There
is a data distribution shift across two image domains to-
gether with a semantic shift of tissue phenotypes. Incor-
porating expert pathologists’ feedback [1], we group de-
bris/mucus and stroma/muscle as debris and stroma, respec-
tively, to correspond between the two datasets. As a re-
sult, we end up with seven tissue categories shared between
two domains, including (tumor, stroma, lymphocytes, de-
bris, normal mucosa, adipose, and background or empty
class). The target domain contains an additional tissue cat-
egory of complex stroma that is not present in the source
domain, and we consider this tissue type as OoD class. In
total, we end up with 11,495 training images (7,995 from
the source domain and 3,500 from the target domain) with-
out using OoDs. For the validation set, we use 997 images
from the source domain (pre-training and self-training), 621
images from the target domain for t-SNE visualization pur-
pose. For the test set, we use 879 images from the target
domain, including 438 OoD images. The rest of the test im-
ages are equally distributed between seven in-distribution
classes. We use OoD detection metrics: area under the
ROC curve (AUC) and area under the precision-recall curve
(AUPRC) and present mean ± std on the test set for all ex-
periments over three runs. Our experiments follow the set-
ting for multi-crop using two anchor views at resolution 144
× 144 pixels and multiple small crops (local views) of res-
olution 96 × 96 pixels.

Implementation Details. Our implementations are
based on PyTorch 1.9 [33]. We adopt the ResNet18 [20] as
the backbone network for SOoD. All networks are trained
using SGD optimizer (momentum = 0.9), with a weight
decay of 1e − 6 and a learning rate of 0.06. A cosine
scheduler is used during the training. A hyper-parameter
search was conducted to find the optimal batch size (64), τ
(0.1), prototypes (16), λ1 (1) and λ2 (1). Also, we found
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Figure 4: The histograms of OoD detection scores for in-distribution (normal) and OoDs (anomalies) on the target set
(K16). We compare our OoD detection score (left) to other anomaly scores (middle-right). Our OoD detection score clearly
discriminates in-distribution and OoD test images.
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Figure 5: The t-SNE [43] visualization of the feature representations extracted by the encoder trained on the source (K19)
and target sets (K16) for domain alignment (top row) and the different classes’ representations (bottom row). We compare our
method (c-d) to other SOTA self-supervised methods (a-b). Further fine-tuned with self-training, our model learns domain-
invariant representation and can separate OoDs from in-distribution test samples (highlighted with dashed orange contour).

the optimal number of nearest neighbors for k-NN and M
∈ {5, 10, 20, 50} in Eq. 6 and set it to 10 for all baselines.
We conduct ablation studies for the chosen λ’s and the num-
ber of prototypes. We apply random resize crops and hor-
izontal flips augmentation for the weakly augmented view.
Besides, we use RandAugment [11] for obtaining the heav-
ily augmented view. Our model has been pre-trained for
300 epochs using �mv and then fine-tuned by minimizing
�st for additional 20 epochs with a lower learning rate of

0.001. For a fair comparison with [7], we set the Sinkhorn
regularization parameter ε to 0.05 and use three iterations
for all runs. To ensure consistent and comparable compar-
isons, we use the same experimental setup for all baselines.

Comparison with SOTA Methods. Since no prior work
has been done for our specific setup, we provide our base-
lines for OoD detection under domain shift based on state-
of-the-art self-supervised learning methods. We first val-
idate the SOoD framework used in this study with state-
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∗ p < 0.001; a bilateral Welch t-test with respect to the top result.
[†] We compute the OoD detection score before self-training, using only the pre-trained model.
[‡] We compute the OoD detection score after self-training.

(A) Source Only Target Only Both Domains

Method AUROC AUPRC AUROC AUPRC AUROC AUPRC

SimCLR [9] 72.79 ± 1.64 66.84 ± 1.93 87.05 ± 1.24 81.15 ± 2.10 88.75 ± 1.14 83.51 ± 1.97
SwAV [7]† 70.70 ± 1.76 60.80 ± 1.80 84.42 ± 1.32 76.73 ± 2.13 76.84 ± 1.66 69.68 ± 2.17
SwAV [7]‡ 78.50 ± 1.55 72.57 ± 2.09 87.34 ± 1.25 80.81 ± 2.12 85.73 ± 1.28 81.96 ± 1.88
CDMSAD [41] 72.85 ± 1.65 66.85 ± 1.96 84.03 ± 1.34 78.64 ± 2.03 69.34 ± 1.86 58.47 ± 1.70

(B) CSI [42] GOAD [3] SimTriplet [28] SwAV [7] DINO [8] Our model w/o self-training† SOoD‡

AUROC 89.64 ± 1.95 70.56 ± 2.42 69.53 ± 1.32 67.58 ± 2.77 52.56 ± 0.43 88.38 ± 1.30 92.77 ± 0.48
AUPRC 86.32 ± 2.21 63.11 ± 1.84 60.01 ± 1.42 60.44 ± 2.81 46.52 ± 0.29 80.43 ± 2.84 90.90 ± 1.00

(C) Sup. Tr.-100% Sup. Src.-100% SwAV-100% DINO-100% SOoD-100% SOoD-20% SOoD-10% SOoD-1%

Linear (ACC) 78.31 ± 5.98 65.13 ± 3.57 48.83 ± 1.83 42.03 ± 8.51 73.24 ± 0.39 73.39 ± 0.69 73.24 ± 0.82 62.59 ± 1.42
Linear (F1) 78.27 ± 5.86 62.89 ± 1.15 45.67 ± 2.31 37.17 ± 8.49 69.88 ± 0.92 70.29 ± 0.72 70.22 ± 0.92 60.29 ± 0.94
k-NN (ACC) 77.48 ± 1.61 41.50 ± 3.84 41.72 32.20 83.45 - - -
k-NN (F1) 78.01 ± 1.48 37.28 ± 3.97 37.11 28.46 83.25 - - -

Table 1: Evaluation of the proposed method and baselines. Section-wise best scores are in Bold.

of-the-art OoD detection methods, including contrastive
training-based methods and self-supervised approaches.
We also evaluate the representation quality by following
common practice in self-supervised learning with a linear
classifier on top of frozen features from the pre-training
stage. The baselines include:

• state-of-the-art contrastive training based OoD detec-
tion methods, including CSI [42], open-set OoD de-
tection (GOAD) [3], and CDMSAD [41],

• self-supervised learning-based methods [9, 7] pre-
trained on source domain, target domain, and both do-
mains [28, 8, 7], respectively,

• supervised linear classification on frozen features from
different self-supervised methods [8, 7].

Results and Discussion. In Table 1 A, we first re-
port the results of state-of-the-art self-supervised meth-
ods [9, 7, 41] using the same backbone architecture as in
SOoD, a ResNet18 on K16 and K19 datasets. Similar
to SOoD, these methods are concerned with the scenarios
where the source data are not labeled [9, 7] except for [41],
where the source data is partially labeled. We use the same
OoD detection score based on the closest feature distance
for all the baselines for a fair comparison. The contrastive
training-based methods are strong baselines [9, 7, 41] and
can generalize reasonably well on the target data with the
model pre-trained on the source data only, target data only,
or both domains. The models that take advantage of the
target distribution gain superior performance improvement
than the same models trained on the source data. In addi-
tion, combining both data domains for training can further
improve performance.

In Table 1 B, regarding the models trained on both do-
mains, the GOAD method [3] often incorrectly detects a
known class of target domain as an OoD due to the do-
main shift. CSI [42] benefits from contrastive learning to
contrast each image with distributionally-shifted augmen-
tations of itself. The methods in [7, 8] are based on a
clustering scheme, and we use the same self-training ap-
proach as in SOoD for a fair comparison. SimTriplet [28]
is the only method that incorporates multiple instances, but
it is not formulated to address domain shift. For the input
views of [28], we use the same three augmented views as
in SOoD. Unlike these baselines, our method learns gener-
alizable semantic properties in the feature space via cluster-
ing. Our designed domain-invariant formulation gains huge
improvements under domain shift, and our results outper-
form other state-of-the-art self-supervised methods. Addi-
tionally, self-training used in our method further enhances
the OoD detection performance. In Table 1 C, we also
evaluate the quality of frozen features from the pre-training
stage (pre-trained with �mv) via training a linear classifier
on the frozen features. The objective is to show the effec-
tiveness of SOoD to classify in-distribution target images
correctly. Furthermore, we use a nearest neighbors clas-
sifier (k-NN) without any finetuning to vote for the label
of in-distribution test images from the target domain. In
Table 1, we report average F1 and accuracy (ACC) scores
for seven in-distribution classes (all) using both schemes.
We use the fully-supervised trained model (ResNet18) by
utilizing all labeled style augmented images as the upper
bound (Sup. Tr.-100%)2. Self-supervised features from pre-

2One can consider a trained, supervised model on fully labeled real
target images as the upper bound, but this setting is not realistic as we do
not use label information from the target domain.
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K Sensitivity Loss Weights Sensitivity Final Model (SOoD )

Metric K=8 K=24 �1 = 3|�2 = 1 �1 = 1|�2 = 3 w/o �heavy w/o �style K=16, �1 = 1|�2 = 1

AUROC (A) 82.52 ± 1.69 86.70 ± 4.33 85.18 ± 2.12 82.76 ± 0.86 84.63 ± 0.43 83.95 ± 1.85 88.38 ± 1.30
AUROC (B) 88.85 ± 0.57 89.24 ± 0.40 90.77 ± 0.47 90.99 ± 0.28 91.60 ± 0.59 85.87 ± 3.25 92.77 ± 0.48

AUPRC (A) 71.44 ± 2.03 79.60 ± 7.56 76.41 ± 3.22 71.80 ± 0.25 75.76 ± 1.07 75.63 ± 2.40 80.43 ± 2.84
AUPRC (B) 85.30 ± 0.22 84.71 ± 0.43 87.95 ± 0.33 88.64 ± 0.39 90.62 ± 0.54 84.56 ± 2.26 90.90 ± 1.00

Table 2: Ablation studies for the different number of prototypes K and loss weight values. We evaluate the models for both
before self-training (A) and after the self-training stage (B).

Metric Color Jittering SOoD

AUROC (A) 82.44 ± 1.20 88.38 ± 1.30
AUROC (B) 88.58 ± 0.73 92.77 ± 0.48

AUPRC (A) 75.23 ± 1.12 80.43 ± 2.84
AUPRC (B) 86.54 ± 0.57 90.90 ± 1.00

Table 3: Ablation studies for different augmentation tech-
niques. We evaluate the models for both before self-training
(A) and after the self-training stage (B).

Checkpoint AUROC AUPRC

Mahalanobis Distance [26]

Before Self-Training 79.08 ± 0.98 69.13 ± 1.95
After Self-Training 92.36 ± 0.44 90.22 ± 0.74

MSP Distance [21]

Before Self-Training 68.79 ± 3.39 64.56 ± 4.13
After Self-Training 83.66 ± 0.64 79.05 ± 0.85

Closest Features Distance

Before Self-Training 88.38 ± 1.30 80.43 ± 2.84
After Self-Training 92.77 ± 0.48 90.90 ± 1.00

Table 4: The evaluation of the proposed method with dif-
ferent OoD detection techniques before and after self-
training.

trained SOoD perform particularly well with either learn-
ing a linear classifier or k-NN and surpass SOTA self-
supervised methods and supervised baseline. For example,
SOoD trained with 10% labeled source data outperforms the
fully supervised model trained from scratch on the source
domain (Sup. Src.-100%), reducing the gap with full-label
training (Sup. Tr.-100%). Finally, compared to [7, 28], the
t-SNE [43] visualization of extracted features from the en-
coder fθ shows a better alignment of the source and target
domains, representations of the known classes, and a better
separation of OoDs (see Fig. 5).

Ablations. We provide ablation studies to analyze the
key factors that lead to the success of SOoD. These ab-
lations concerning various aspects of SOoD’s design, in-
cluding loss terms, loss weight values, number of proto-
types, augmentation techniques, and OoD detection scores
(see Table 2). We sweep over a different number of pro-

totypes (16-24) and find that our method is not very sensi-
tive to the number of prototypes, but using fewer prototypes
(< 2 × classes) leads to performance degradation. As ar-
gued, the model trained with additional style augmented
view achieved a significant performance boost compared
to baselines without this complementary view (w/o �style).
The sensitivity test for the loss weight values also shows
each loss term for augmented views is equally important,
improving the regularization effect of multi-view learning.
Table 3 compares the OoD detection performance of our
style augmentation with other augmentation (color jittering)
and shows that the performance is significantly improved as
we learn style-invariant representation. For all ablation ex-
periments in Table 2 and Table 3, self-training the model on
the target domain yields a better separation of OoDs from
known classes and higher accuracy than the model trained
only with optimizing �mv . This is also indicated by the
t-SNE [43] visualization in Fig. 5. Finally, we compare
our proposed OoD detection score with popular techniques
(see Table 4), including Maximum over softmax probabili-
ties (MSP) [21] and Mahalanobis distance [26]. The com-
parison demonstrates that OoD detection in these baselines
might be failing due to the semantic ambiguity of some tis-
sue categories, while ours achieves superior performance.

5. Conclusion

Our method is the first self-supervised OoD detection for
CRC tissue types under domain shift in a zero-labeled data
regime, yielding a more realistic and practical setting and
alleviating costly annotations. It is also critical to safely
deploy DNNs in computational pathology to generalize to
a new clinical site with new categories not presented in a
source dataset. We show that our designed multi-view con-
sistency learning together with a self-training scheme gains
substantial performance improvements in both OoD detec-
tion and classification of in-distribution samples compared
to SOTA self-supervised methods. SOoD can be easily ad-
justed to be applied to different organs and histology tasks.
In future work, we plan to design new formulations to im-
prove the accuracy of pseudo labels and the generalizability
of our method to unseen datasets.
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