
Generalizing Few-Shot Classification of Whole-Genome
Doubling Across Cancer Types

Sherry Chao
Harvard University

Cambridge, MA, USA
schao@g.harvard.edu

David Belanger
Google Brain

Cambridge, MA, USA
dbelanger@google.com

Abstract

The study and treatment of cancer is traditionally spe-
cialized to the cancer’s primary site of origin. However,
certain phenotypes are shared across cancer types and
have important implications for clinical care. To date,
automating the identification of these characteristics from
routine clinical data - irrespective of the type of cancer
- is impaired by tissue-specific variability and limited la-
beled data. Whole-genome doubling is one such phenotype;
whole-genome doubling events occur in nearly every type
of cancer and have significant prognostic implications. Us-
ing digitized histopathology slide images of primary tumor
biopsies, we train a deep neural network model end-to-end
to accurately generalize few-shot classification of whole-
genome doubling across 17 cancer types. By taking a meta-
learning approach, cancer types are treated as separate but
jointly-learned tasks. This approach outperforms a tradi-
tional neural network classifier and quickly generalizes to
both held-out cancer types and batch effects. These results
demonstrate the unrealized potential for meta-learning to
not only account for between-cancer type variability but
also remedy technical variability, enabling real-time identi-
fication of cancer phenotypes that are too often costly and
inefficient to obtain.

1. Introduction

Genomic characteristics of a patient’s cancer, such as
gene mutations and aneuploidy, are increasingly used to im-
prove the course of care [55, 66, 67, 18, 63]. In spite of their
clinical benefit, these characteristics not only are difficult to
measure from routinely-collected patient data but also ne-
cessitate measurements across cancer types, made difficult
due to cancer’s inherently heterogeneous nature and the lim-
ited size of patient cohorts. There is an unmet need to build
tools that automate fast identification of cancer phenotypes
from routinely-collected patient data, irrespective of can-

Figure 1. Representative histopathology image tiles from four can-
cer types, depicting tumor biopsy samples with (top) and without
(bottom) whole-genome doubling.

cer type, particularly when the phenotype (i) has prognostic
or therapeutic implications and (ii) is expensive or slow to
measure under traditional means.

Whole-genome doubling (WGD) is one such pheno-
type. WGD is a genome-wide aberration characterized by
the presence of at least twice the normal number of chro-
mosomes and is associated with advanced metastasis and
overall poor prognosis [1]. Patients with WGD events
are more prone to aneuploidy, which lends itself to more
aggressive treatment regimens for multiple cancer types
[13, 33]. Moreover, WGD itself confers unique vulnerabil-
ities that can be therapeutically targetable [44, 58, 10, 48].
The prevalence and prognostics of WGD merits knowledge
of WGD status in determining the course of care; how-
ever, measuring WGD is inefficient. Karyotyping costs
$11k/diagnosis and DNA sequencing costs $10k/genome,
both of which take several weeks to complete [35, 51]. The
medical oncology community would significantly benefit
from automating WGD identification via more time- and
cost-efficient means.

We propose inferring WGD from digitized histopathol-
ogy images of tumor biopsies, a routinely-collected source
of patient data (Figure 1). Across cancer types, the tissue
morphology is a manifestation of the genomic characteris-
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Figure 2. Overview of meta-learning. The model is trained on mul-
tiple tasks (“meta-training”), and at deployment time, the model is
presented with a small set of labeled examples and quickly boot-
straps a task-specific classifier (“meta-testing”). In contrast, under
standard supervised learning, the model remains static at deploy-
ment time. Positive-labeled examples are highlighted in green.

tics of the tumor. However, histopathology images from
different cancer types exhibit tissue-specific characteristics
(e.g., colon, lung, skin) even if they share the same WGD
status. Traditionally, good performance on cancer-related
classification tasks has been achieved via training separate
models for each cancer type [28]. This approach has sev-
eral shortcomings: (i) it necessitates acquiring many train-
ing examples from all cancer types, as each model learns
from a single cancer type, and (ii) the models are not inter-
changeable, i.e., a model trained to classify WGD for lung
cancer is unable to classify WGD for breast cancer. Suc-
cessfully integrating machine learning into the clinic neces-
sitates a model that can sufficiently handle inter-cancer di-
versity [32].

Recent work by Fu et al. [17] to classify WGD from
histopathology images across cancer types shows good per-
formance on only seven out of 27 cancer types. We pro-
pose using meta-learning to automate the classification of
WGD across cancer types (Figure 2). In the meta-learning
regime, models are learning to learn from few examples.
Let us consider a toy example of a standard meta-learning
framework. We are given three small datasets: Dataset A
contains images of cats/non-cats, Dataset B contains im-
ages of dogs/non-dogs, and Dataset C contains images of
horses/non-horses. Each dataset has been curated to train a
classifier on its respective label (i.e., cat, dog, horse). In-
stead of training on each task individually, however, we in-
stead train on how to learn to learn the tasks from only a
few training examples. At meta-training, the model is pre-
sented with eight labeled images from each dataset before
being asked to correctly classify eight new unlabeled im-
ages from each dataset. Therefore, at meta-test time, when
the model is given a fourth dataset, Dataset D, which con-
tains images of frogs/non-frogs, it will ideally have learned
to learn a new task. Namely, after the model is presented
with eight labeled images from Dataset D, it will be able
to accurately classify subsequent images from Dataset D as

either a frog or a non-frog.
In meta-learning for classification, several approaches

have been proposed, including matching networks and pro-
totypical networks [59, 53]. In this work, we adapt the
model-agnostic meta-learning (MAML) framework to the
problem of WGD classification from histopathology images
across multiple cancer types [16]. We take a multi-task
view by treating WGD classification for each cancer type
as a separate, learnable task. Under identical models, the
MAML training approach is able to outperform standard
supervised learning and generalize well to unseen cancer
types in the held-out meta-test set.

We subsequently extend this approach to accounting for
batch effects, or distributional shifts across histopathology
images due to technical variation in data collection. Batch
effects are pervasive in biomedical datasets. Whereas under
standard practices (e.g., fitting a simple model such as lin-
ear regression), we mitigate batch effects by incorporating
a batch effect-specific term, the complexity of deep neural
network classifiers invalidates this solution because the in-
teractions between variables entangles the batch effect with
the effect of interest. Meta-learning addresses this problem
by treating each batch as its own task-specific dataset such
that the model is focused on learning to learn the task (e.g.,
WGD classification) instead of learning specifics about the
batch (e.g., image resolution or brightness).

Ultimately, we extend the application of meta-learning
beyond classifying different labels (one label per task) to
two novel use cases in the field of medical imaging:

1. Classification of the same label across different cancer
types (one cancer type per task).

2. Classification of the same label across different
batches (one batch per task).

Thus, in a real-world scenario where a clinician would like
to quickly classify the WGD status for tumor biopsies of
a particular cancer type or batch, he/she need only label
a small handful of histopathology images in order for the
meta-learner to automate labeling of subsequent samples.

2. Related Work
Much effort has been devoted to automating cancer di-

agnosis by training neural networks to discern tumor from
normal tissue in histopathology images [45, 25, 5, 54, 57,
30, 29, 70, 19, 7]. Cancer diagnosis efforts have further
delved into cancer subtyping of individual cancer types
[23, 37, 42, 62, 9, 11]. Such work has progressed in tan-
dem with detailed tissue segmentation approaches [21, 60].
More recently, increasing efforts are being made in multi-
class classification, namely aggregating cancer types in an
attempt to accurately diagnose the correct cancer type from
all possible cancer types [24, 40, 46].
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Figure 3. Summary of the distribution of WGD status by cancer
type for samples from The Cancer Genome Atlas. Refer to Ap-
pendix A in the Supplementary Materials for acronym descrip-
tions.

Applying machine learning to histopathology images
in order to infer characteristics of a patient’s cancer is
a growing research area [15]. One avenue of applica-
tions has focused on predicting survival and prognosis
[65, 52, 49, 26, 68, 2, 50, 19]. Another avenue has fo-
cused on using morphological features to infer molecular
features about a patient’s cancer [17, 39, 3, 38, 4, 28, 34].
Moreover, studies demonstrate we are now able to predict
phenotypes such as microsatellite instability and tumor mu-
tational burden from histopathology images of certain can-
cer types [14, 27, 6, 28, 64]. While these advancements
have important therapeutic implications, their applicability
is cancer type-specific. For instance, Fu et al. [17] generate
embeddings to predict WGD, but the results do not general-
ize across cancer types.

The application of meta-learning to medicine is rela-
tively nascent. In medical imaging, Hu et al. [22] train
a meta-learning algorithm, Reptile, on mini-ImageNet to
classify diabetic retinopathy from eye screenings. In drug
discovery, Olier et al. [41] develop Meta-QSAR to predict
chemical compound activity against a target protein. In ge-
nomics, Runge et al. [47] employ a meta-learner to design
RNA sequences that fold into target structures. These ap-
proaches have not been applied to cancer, which is ripe for
meta-learning given cancer’s inherent heterogeneity and the
widespread availability of histopathology images. While ef-
forts have been made to cluster cancer types by morpholog-
ical similarity to improve predictive power, this approach
requires manual curation of datasets [43]. In this work, we
attempt to fill the gap by marrying a meta-learning training
regime to a generalizable cancer classification task.

3. Cohort
3.1. Cohort Selection

The data collected for this analysis comprise RGB-
channel images of hematoxylin and eosin (H&E) stained
histopathology slides and corresponding WGD status labels
for 3,596 samples across 17 cancer types from The Can-
cer Genome Atlas (TCGA). TCGA is a public database of
clinical and genomic data for over 20,000 patient samples

spanning 33 cancer types (Figure 3). The analysis focuses
on primary tumor, for which we have the diagnostic H&E-
stained whole slide image. Ground truth WGD status labels
were annotated via analysis of DNA sequencing data [56].
To ensure both image and label availability, we took the in-
tersection of TCGA images provided by the National Can-
cer Institute (NCI) Genomic Data Commons (GDC) Data
Portal and WGD labels provided by Taylor et al. [56].

Cancer types were subsequently chosen based on the
number of available images, selecting for cancer types
whose number of images was within one standard deviation
of the median number of images (BLCA, COAD, ESCA,
HNSC, KIRC, LIHC, READ, STAD, UCEC). In order to
be able to include common cancer types with more than 450
images (BRCA, LUAD, LUSC) while remaining within our
storage constraints, we randomly subsampled 25% (BRCA)
or 50% (LUAD, LUSC) of the images to yield 200-250
images per common cancer type. Furthermore, rare can-
cer types with less than 100 images (ACC, CHOL, KICH,
OV, UCS) were included to study performance in real-world
scenarios with limited labeled data. Refer to Appendix A in
the Supplementary Materials for acronym descriptions.

3.2. Cohort Overview

In total, 42% of slide images, or 1,522 images, were
WGD-positive, ranging between 19% and 82% of images
by cancer type. The breakdown by clinical features is as
follows (percentages do not sum to 100% due to rounding):

1. Tumor Stage: Stage I (30.0%), Stage II (26.7%),
Stage III (26.4%), Stage IV (14.0%), NA (3.0%)

2. Gender: Male (51.0%), Female (49.0%), NA (0.01%)

3. Age: ≤39 (2.8%), 40-49 (8.0%), 50-59 (19.3%), 60-69
(27.8%), 70-79 (22.2%), ≥80 (7.7%), NA (12.3%)

4. Race: White (66.4%), Black (10.4%), Asian (10.0%),
NA (13.3%)

Refer to Appendix B in the Supplementary Materials for
a detailed description of the TCGA dataset by cancer type
with relevant clinical features, including tumor stage, pa-
tient gender, age, and race.

3.3. Feature Extraction

Of the 3,596 svs images selected for this study, 3,507
were successfully converted to jpeg images; the 89 images
that failed during conversation were due to missing meta-
data in the svs file. To address sample imbalance (i.e., mul-
tiple images per patient), we randomly sampled one image
to retain from each patient with multiple images, yielding
3,467 images in total.

Since slides are digitized at multiple magnifications, it
was important to determine which magnification would be
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Figure 4. Comparison of training regimes. While traditional approaches to model optimization optimize solely the global parameters
(left), meta-learning also optimizes parameters that are local to the particular task (e.g., cancer type or batch) (right).

most useful for WGD classification. Preliminary training of
a ResNet18-based model on WGD classification of colorec-
tal cancer slides at various magnifications (5x, 10x, 20x)
showed the best performance at 10x magnification, which
yielded the highest slide-level accuracy and AUC. Thus, we
selected 10x as our default magnification and extracted im-
ages at 10x magnification for training and evaluation.

3.4. Feature Tiles

Each histopathology slide was segmented into adjacent,
non-overlapping tiles of dimension 3 × 256 × 256 (C ×
H ×W ), wherein only tiles with less than 50% whitespace
were retained. On average, each histopathology image was
segmented into 3,155 tiles for a total of 10.9 million tiles.
Across the samples, the standard deviation was 1,807 tiles
with first, second, and third quartiles of 1,766 tiles, 3,096
tiles, and 4,325 tiles, respectively.

4. Methods

4.1. Model

Let data set D consist of Z cancer types, each of which
is comprised of Nz slide images sz,i and binary labels
yz,i, i ∈ {1, . . . , Nz}. As described in Section 3.4, each
slide image sz,i is segmented into Tz,i non-overlapping tiles
xz,i,t, t ∈ {1, . . . , Tz,i}, with C color channels, H pixel
height, and W pixel width. The data can be summarized as
follows:

D = {D1, . . . , DZ}

Dz = {(sz,i, yz,i)}Nz

i=1

sz,i = {xz,i,1, . . . , xz,i,Tz,i
}

xz,i,t ∈ RC×H×W

yz,i =

{
1, if whole-genome doubling
0, otherwise

Formally, we train the network to maximize the follow-
ing likelihood function:

θ∗ = argmax
θ

p (Y |S, θ) = argmax
θ

Z∏
z

Nz∏
i

p(yz,i | sz,i, θ)

The predictive distribution p(y | s) is parameterized by a
deep neural network comprised of a ResNet18 and two
fully-connected layers [20]. The ResNet18 architecture in-
cludes residual connections, which help to facilitate training
of models with many layers. We initialize training with a
ResNet18 model pre-trained on the ImageNet dataset [12].
The pre-trained ResNet18 undergoes additional pre-training
on images sampled from the meta-train set to tailor its learn-
ing to histopathology images. The final fully-connected
layers are trained from scratch on the histopathology im-
ages while the lower layers are fine-tuned to these images.
The fully-connected layers have a hidden size of 512 with
dropout and tanh activation function. Because each slide is
comprised of a set of tiles, we employ LogSumExp pooling
across tiles as a smooth approximation to max pooling, en-
abling learning across multiple tiles. LogSumExp pooling
of the tile-level prediction scores yields the final slide-level
prediction score.

4.2. Training

Model training is performed by optimizing the model pa-
rameters in order to maximize the log likelihood, yielding
the maximum likelihood estimation. Each model is trained
on the meta-train set (BLCA, BRCA, COAD, HNSC,
LUAD, LUSC, READ, STAD) (2,056 images), tuned on
the meta-validation set (ESCA, LIHC) (458 images), and
evaluated on the meta-test set (ACC, CHOL, KICH, KIRC,
OV, UCS, UCEC) (953 images). Each cancer type is sub-
sequently split into train and test sets, e.g., for ACC, eight
samples are randomly selected for the meta-test train set;
the remaining samples are selected for the meta-test test set.
Prior to training, tile images are normalized by channel to
the mean and standard deviation of the meta-train set.

3385



Algorithm 1 Meta-Training
Require: p(Z): distribution over cancer types
Require: α, η: step size hyperparameters

Initialize θ randomly
repeat

Sample batch of cancer types Zi ∼ p(Z)
for all Zi do

Sample K examples from DZi

Evaluate ∇θLZi
(fθ) with respect to the K exam-

ples
Compute adapted parameters using gradient de-
scent: θi = θ − α∇θLZi

(fθ)
Sample K additional examples from DZi

for the
global update

end for
Update θ ← θ − η∇θ

∑
Zi∼p(Z)(LZi(fθ′))

until forever

In our baseline scenario (“CNN”), the model is pre-
trained on the meta-train set before undergoing meta-
validation and meta-test. In our meta-learning scenario
(“MAML”), the model is pre-trained and meta-trained on
the meta-train set before undergoing meta-validation and
meta-test. Thus, the CNN and MAML models are identical,
differing solely in training regime (Figure 4). The models
are subject to the same evaluation scheme, and performance
is averaged over 40 random initializations. To compare the
performance of CNN and MAML, we employ the Wilcoxon
signed-rank test [61]. We employ this test because it is able
to exploit the paired structure of the experiments, where
each machine learning system has been run on the same set
of train-test splits.

4.2.1 Pre-Training

During pre-training, the model is trained on WGD classi-
fication using all cancer types in the meta-train set. Slides
and tiles in the train set are shuffled for every epoch and aug-
mented via random vertical/horizontal flips and color jitter.
To prevent overfitting, we apply 50% random dropout at
each fully-connected layer. We train for up to 200 epochs
with a minibatch size of 24 slides (50 randomly sampled
tiles per slide) and a learning rate of 0.0001 with an Adam
optimizer [31]. We reduce the learning rate by a factor
of 0.1 upon validation loss plateau with a patience of five
epochs. To encourage regularization, model parameters are
saved when the binary cross entropy loss on the validation
set improves upon that of the previous epoch.

4.2.2 Meta-Training

Meta-training proceeds according to Algorithm 1 using the
pre-trained embeddings described in Section 4.2.1. At ev-

ery step, the parameters of the local (cancer type-specific)
models are set to the parameters of the global model. We
sample a batch of meta-train cancer typesZi, and from each
of these cancer types, we sample a batch of K examples.
Using these examples, we perform one gradient update of
the local parameters. Next, we sample a second batch of
K examples from each cancer type Zi. Using these exam-
ples, we perform one forward pass with their respective lo-
cal models and store the gradient of the loss with respect to
the parameters. Once one batch of cancers is complete, the
global parameters are updated using the stored gradients.

In all experiments, we meta-train for up to 50 epochs
with a learning rate of 0.0001 for both the local parameter
update and the global parameter update. For each update,
we sample a batch of 16 slides (50 randomly sampled tiles
per slide) from five out of the eight cancer types in the train
set, ensuring uniform sampling of the cancer types. Eight
slides are used for the local update, and the remaining eight
slides are used for the global update. For the local parame-
ter update, we use an Adam optimizer, while for the global
parameter update, we use stochastic gradient descent [31].

4.3. Meta-Validation and Meta-Test

Following pre-training (CNN) and meta-training
(MAML), we assess the model’s few-shot classification
performance using a train set size of eight slides (50
randomly sampled tiles per slide) per cancer type (i.e.,
eight-shot learning). The remaining slides are allocated to
the test set. The model takes a fixed number of gradient
steps on the meta-validation/-test train set before being
evaluated on the meta-validation/-test test set. We employ
a learning rate of 0.0001 with an Adam optimizer [31].

4.4. Hyperparameter Tuning

The amount of dropout d and number of gradient steps g
is tuned based on the average meta-validation test set binary
cross entropy loss from taking g gradient steps and applying
d dropout on the meta-validation train set. Once the optimal
hyperparameters are determined, we evaluate the model by
taking g gradient steps and applying d dropout on the meta-
test train set and measuring WGD classification AUC on
the meta-test test set for each cancer type in the meta-test
set. In all experiments, the baseline CNN classifier per-
formed optimally with five gradient steps and 0% dropout,
and the MAML classifier performed optimally with 20 gra-
dient steps and 25% dropout.

4.5. Experiments

4.5.1 Cancer Types

To assess the utility of meta-learning for generalizing few-
shot WGD classification across cancer types, we applied
the meta-training approach by treating WGD classification
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Figure 5. Given the original unperturbed images (left), we assess
the ability of the meta-learning training regime to generalize few-
shot classification across cancer types when faced with two batch
effects: lower resolution (center) and lower brightness (right).

for each cancer type in the meta-train set as separate tasks.
During meta-training, the model is encouraged to learn to
learn WGD classification for different cancer types that ex-
hibit different tissue morphology, with the intent of extract-
ing WGD-specific signal. The meta-test test set classifica-
tion performance of the MAML classifier trained under the
meta-learning regime is subsequently compared to that of
the baseline CNN classifier trained via standard fine-tuning
of a pre-trained deep neural network (see Section 4.1).

4.5.2 Batch Effects

To assess the utility of meta-learning for generalizing few-
shot WGD classification across batches, we applied two
transformations to the images in the meta-test set, reflective
of real-world technical variations in image capture:

1. Resolution. Reduction of the effective pixel width
and height by 50% to mimic a systematic distributional
shift to a lower-resolution input distribution.

2. Brightness. Reduction of the pixel intensity by 50%
to mimic a systematic distributional shift to a dimmer
input distribution.

Analogous to the experiment described in Section 4.5.1, we
applied the meta-training approach by treating WGD classi-
fication for each cancer type in the meta-train set as separate
tasks. During meta-test, however, we assess the classifica-
tion performance of the MAML classifier trained under the
meta-learning regime and the CNN classifier on the batch-
adjusted images from the meta-test set.

5. Results
5.1. Cancer Types

Following model training to minimize binary cross-
entropy loss, we evaluate model performance based on the
meta-test test set AUCs, which compares the prediction
scores outputted by the model to the ground truth WGD la-
bels. Table 1 depicts the classification performance of the
seven cancer types in the meta-test set. On average, the

CNN MAML
ACC 0.6873 ± 0.0540 0.6988 ± 0.0581
CHOL 0.6890 ± 0.0532 0.6845 ± 0.0643
KICH 0.6928 ± 0.0312 0.7022 ± 0.0303
KIRC 0.6611 ± 0.0609 0.6843 ± 0.1018
OV 0.6950 ± 0.0393 0.7020 ± 0.0435
UCEC 0.7000 ± 0.0602 0.6859 ± 0.0816
UCS 0.6846 ± 0.0387 0.6908 ± 0.0667
META-TEST 0.6888 ± 0.0506 0.6944 ± 0.0773

Table 1. Results comparing the WGD classification AUC under
a baseline standard (CNN) or meta-learning (MAML) training
regime. Results are shown for the held-out meta-test set, by can-
cer type and combined for the entire meta-test set, from 40 random
initializations (average ± 1 standard deviation).

CNN MAML
ACC 0.6316 ± 0.1011 0.6930 ± 0.0689
CHOL 0.6733 ± 0.0570 0.6730 ± 0.0548
KICH 0.7081 ± 0.0261 0.6941 ± 0.0285
KIRC 0.6269 ± 0.0805 0.6401 ± 0.0855
OV 0.7097 ± 0.0728 0.7136 ± 0.0751
UCEC 0.6794 ± 0.0496 0.6877 ± 0.0569
UCS 0.6697 ± 0.0330 0.6649 ± 0.0886
META-TEST 0.6713 ± 0.0716 0.6809 ± 0.0717

Table 2. Results comparing the WGD classification AUC un-
der a baseline standard (CNN) or meta-learning (MAML) train-
ing regime. Results are shown for the resolution-adjusted held-
out meta-test set, by cancer type and combined for the entire
resolution-adjusted meta-test set, from 40 random initializations
(average ± 1 standard deviation).

baseline CNN classifier achieves an AUC of 0.6888, rang-
ing from AUC of 0.6611 to 0.7000. In contrast, the MAML
classifier achieves an AUC of 0.6944, ranging from AUC
of 0.6843 to 0.7022, achieving better performance on av-
erage than the CNN classifier on five of the meta-test can-
cer types. Notably, the MAML approach outperforms the
baseline CNN approach on four out of the five rare cancer
types. Taken together, the MAML approach outperforms
the baseline CNN approach on the meta-test set (Wilcoxon
signed-rank one-sided p-value=0.0411).

5.2. Batch Effects

5.2.1 Image Resolution

Table 2 depicts the classification performance of the
resolution-adjusted seven cancer types in the meta-test set.
On average, the baseline CNN classifier achieves an AUC
of 0.6713, ranging from AUC of 0.6269 to 0.7097. In con-
trast, the MAML classifier achieves an AUC of 0.6809,
ranging from AUC of 0.6401 to 0.7136, achieving bet-
ter performance on average than the CNN classifier on
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CNN MAML
ACC 0.6742 ± 0.0801 0.7062 ± 0.0655
CHOL 0.6819 ± 0.0475 0.7147 ± 0.0388
KICH 0.7101 ± 0.0216 0.7079 ± 0.0335
KIRC 0.6670 ± 0.0795 0.7060 ± 0.0825
OV 0.6989 ± 0.0774 0.7000 ± 0.0952
UCEC 0.6899 ± 0.0312 0.6961 ± 0.0379
UCS 0.6900 ± 0.0495 0.6837 ± 0.0874
META-TEST 0.6884 ± 0.0620 0.6973 ± 0.0704

Table 3. Results comparing the WGD classification AUC un-
der a baseline standard (CNN) or meta-learning (MAML) train-
ing regime. Results are shown for the brightness-adjusted held-
out meta-test set, by cancer type and combined for the entire
brightness-adjusted meta-test set, from 40 random initializations
(average ± 1 standard deviation).

four of the meta-test cancer types. Taken together, the
MAML approach outperforms the baseline CNN approach
on the meta-test set (Wilcoxon signed-rank one-sided p-
value=0.0312). Due to the coarse-grained nature of the
resolution-adjusted images and associated loss of pixel in-
formation, the MAML classifier learns better on the orig-
inal unperturbed meta-test set images than the resolution-
adjusted meta-test set images (Wilcoxon signed-rank one-
sided p-value=0.0254). This result is consistent with our
feature extraction analysis to identify the optimal magnifi-
cation, which showed superior performance on 10x magni-
fication images compared to 5x magnification images.

5.2.2 Image Brightness

Table 3 depicts the classification performance of the
brightness-adjusted seven cancer types in the meta-test set.
On average, the baseline CNN classifier achieves an AUC of
0.6884, ranging from AUC of 0.6670 to 0.7101. In contrast,
the MAML classifier achieves an AUC of 0.6973, ranging
from AUC of 0.6837 to 0.7147, achieving better perfor-
mance on average than the CNN classifier on five of the
meta-test cancer types. Notably, the MAML approach out-
performs the baseline CNN approach on three out of the five
rare cancer types. Taken together, the MAML approach out-
performs the baseline CNN approach on the meta-test set
(Wilcoxon signed-rank one-sided p-value=0.0370). More-
over, the MAML classifier is able to learn equally well
on the original unperturbed meta-test set images and the
brightness-adjusted meta-test set images, with no signifi-
cant difference in performance (Wilcoxon signed-rank two-
sided p-value=0.9967).

6. Discussion
In this work, we demonstrate that machine learning en-

ables signal extraction from medical imaging data mired in

tissue site-specific idiosyncrasies. Unlabeled data is often
abundant in healthcare settings because label acquisition
is expensive. The meta-learning training regime enables
fast learning with only a handful of examples. In the case
of WGD classification, the MAML classifier outperforms
the baseline CNN classifier on the meta-test set when it is
trained on only eight training examples per cancer type.

In addition, we introduce two batch effects into our
dataset in order to further study the utility of the meta-
learning approach. It is generally difficult to correct for
batch effects with deep neural network classifiers because
the interactions between variables entangles the batch effect
with the effect of interest. However, the meta-learning ap-
proach is able to learn despite systematically-imposed dif-
ferences between the meta-train and meta-test sets. For ev-
ery image in the meta-test set, we perturb the image by (i)
reducing the brightness by 50%, or (ii) reducing the reso-
lution by 50%. In both cases, the MAML classifier outper-
forms the baseline CNN classifier on WGD classification.
Furthermore, the MAML classifier’s performance is com-
parable between that of the original unperturbed images and
that of the lower-brightness images.

Ultimately, accounting for variations between cancer
types is made possible by fast learning on only a hand-
ful of labeled images, which was successfully extended
to accounting for technical variations within cancer types.
From a clinical perspective, the ability to accurately and
cost-effectively stratify patients enables a more fine-grained
study of and tailored approach to treatment. From a ma-
chine learning perspective, fast adaptation to new tasks is
key to mitigating heterogeneity in high-dimensional data
that is nonspecific to the signal of interest.

As natural extensions of this work, we will expand this
analysis to include all 33 cancer types from TCGA and
multiple labels beyond WGD status. For instance, the pan-
cancer detection of WGD from histopathology images sug-
gests the possibility of detecting other genomic aberrations,
such as DNA mismatch repair deficiency (MMRd). Ge-
nomic aberrations are increasingly used to predict response
to cancer therapies, such as immune checkpoint blockade
(ICB). While MMRd is linked to ICB response, it is not
understood at a morphological level [69]. Given MMRd
status shows negative correlation with WGD status, we hy-
pothesize that complex tissue-level features associated with
MMRd may be orthogonal to those associated with WGD
[1]. In an effort to advance morphology-guided treatment
decisions, we envision applying meta-learning to generalize
MMRd status and WGD status classification across cancer
types from histopathology images.

Finally, we hope to devise methods that can learn from
multiple slices and magnifications, as higher magnifications
may capture intra-cellular patterns, while lower magnifica-
tions may capture inter-cellular patterns [36]. By facilitat-
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ing a more complete picture of the tumor, we envision these
technologies can be seamlessly integrated into the clinic for
real-time histology assessment and decision support [8].
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