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Abstract

This paper presents a novel approach to automatic fetal
brain biometry motivated by needs in low- and medium- in-
come countries. Specifically, we leverage high-end (HE)
ultrasound images to build a biometry solution for low-
cost (LC) point-of-care ultrasound images. We propose a
novel unsupervised domain adaptation approach to train
deep models to be invariant to significant image distribution
shift between the image types. Our proposed method, which
employs a Dual Adversarial Calibration (DAC) framework,
consists of adversarial pathways which enforce model in-
variance to; i) adversarial perturbations in the feature
space derived from LC images, and ii) appearance domain
discrepancy. Our Dual Adversarial Calibration method es-
timates transcerebellar diameter and head circumference
on images from low-cost ultrasound devices with a mean
absolute error (MAE) of 2.43mm and 1.65mm, compared
with 7.28 mm and 5.65 mm respectively for SOTA.

1. Introduction
Pregnancy dating is a crucial part of obstetric care be-

cause antenatal care and interventions aimed at improv-
ing pregnancy outcome rely on knowledge of the gesta-
tional age (GA). Measurements of the size of specific fetal
head anatomies is routinely performed to estimate and vali-
date GA. Biometries used include the fetal skull Head Cir-
cumference (HC) and the Transcerebellar Diameter (TCD)
[1], easily measured on ultrasound images from high-end
(HE) machines. US images from HE imaging machines
have high imaging contrast, high imaging definition and
low speckle noise compared to low-cost (LC) ultrasound
images which are acquired with point-of-care (POC) ul-
trasound probes with greater varied image appearance and
hence quality [5]. However, HE imaging may not be avail-
able in resource-constrained areas.

Previous literature has considered automated approaches
for fetal brain biometry on HE 2D ultrasound (US) images
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for GA estimation. [20] use contour detection and graph
cuts for HC estimation. [14] propose a regional convlu-
tional neural network for detection of key anatomical struc-
tures. [21] use U-Nets for HC segmentation and measure-
ment. More recently, [24] directly regresses HC measure-
ments from ultrasound images without segmentation and
[13] directly regresses GA from fetal head images using
a Bayesian neural network. However, these methods esti-
mate on mid-end US images, which may not be available in
resource-constrained settings.

In this paper, we consider jointly learning HC and TCD
automated fetal biometry from partially labelled US images
acquired with a HE ultrasound machine (GE Voluson E8)
combined with unlabelled data from a LC POC ultrasound
probe (Konted C10R) for biometry on LC images. This
is clinically relevant in a case where interobserver varia-
tion on ground truth labelling on LC images is high, due to
the reduced image quality and fuzzy edges, and can be use-
ful where a central corpus of well-labelled HE images are
available for use for validation and inference on LC images.
The core assumption is that domain invariant representa-
tions for feature extraction can be jointly learned from LC
and HE ultrasound images, and unsupervised learning can
calibrate the model in the LC domain so to produce con-
sistent predictions. To this end, we propose a Dual Adver-
sarial Calibration (DAC) approach exploiting two adver-
sarial pathways. One pathway forces predictions from LC
and HE US images to lie on the same output manifold by
training a segmentation network with a discriminator which
learns to classify between them. The other pathway forces
the LC output to be invariant to self-paced adversarial noise
perturbations. Additionally, we propose a novel asymmet-
ric domain augmentation technique specifically designed to
cope with the appearance discrepancy between HE and LC
images. Experimental results presented show that our pro-
posed approach significantly improves the performance of
HC and TCD biometry on LC US images compared to a
neural network trained on HE images alone. Ablation ex-
periments also reveal that our dual adversarial pathways
lead to a network that is able to learn useful feature rep-
resentations that are domain invariant.
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Figure 1: Overview of the training procedure for our proposed dual adversarial calibration network, which is trained with two adversarial
signals simultaneously. 1) a Domain Calibration (DC) pathway designed to learn domain-invariant segmentation, and 2) a Segmentation
Calibration (SC) pathway designed to learn robust segmentation on the unlabelled LC images. SAU: Strong Augmentation; WAU: Weak
Augmentation; SS: Supervised Segmentation (on HE images); BU: Bilinear Upsampling. UEP, LEP explained in section 3.2.

1.1. Contributions.

Our contributions are three-fold: 1) we leverage the su-
pervised learned knowledge from HE ultrasound images to
significantly improve biometry estimation on LC ultrasound
images; 2) we introduce a novel dual adversarial unsuper-
vised intra-modality domain and semantic transfer for this
purpose; 3) our results are shown to be competitive com-
pared to SOTA for both automated HC and TCD estimation
on LC US images.

2. Related Work
2.1. Medical Cross-Modality Domain Adaptation.

Medical cross-modality domain adaptation aims to retain
network performance from the distribution change from an
image resulting from one imaging modality to another. Ex-
amples of imaging modalities include magnetic resonance
imaging (MRI), computed tomography (CT) and ultrasound
(US) imaging. Prior literature focused on cross-modality
domain adaptation between CT/MR [7, 11, 3, 6]. In detail,
[7] uses an adversarial domain adaptation module to map
target input features to the output domain space. [11] use
a tumour-preserving cycle-consistency loss to map CT and
MRI images before training a U-Net to segment lung MRI
scans. [3] use a shared encoder space with adversarial based
domain adaptations for the segmentation of cardiac struc-
tures. [6] share convolutional kernels between MRI and CT
images, but use modality specific normalization layers to
improve cross-modality performance. Comparatively, liter-
ature on cross-modality domain adaptation involving US is
limited. [12] generate synthetic MR fetal head images from

US scans, but validation is limited as only appearance is
evaluated without segmentation results.

2.2. Intra-Modality US Domain Adaptation

Previous literature on intra-modality US domain adapta-
tion focused on adaptation between different HE imaging
devices [4, 15, 18]. [4] use a u-net for left atrium segmen-
tation in 3D ultrasound, and incorporate the imaging device
used as prior knowledge during inference. [15] use a hierar-
chical style transfer network to modify image appearances
from a target domain to the source domain for fetal head
and abdomen segmentation. [18] considered intra-domain
ultrasound adaptation for image classification using mutual
information minimization. However, in all the examples
above, the domain gap in considered was limited as both
source and target domain images were acquired with HE
ultrasound machines with similar imaging capabilities.

2.3. Low-Cost Ultrasound Probe Image Analysis

Three recent papers investigate learning from low-cost
POC probes [8, 23, 17]. Gao et al.[8] developed an image
quality assessment framework to identify frames from LC
US that can be used for manual TCD measurement by a
sonographer. Van den Heuvel et al.[23] investigate gesta-
tional age estimation on downsampled HE images to evalu-
ate GA estimation on degraded images, but do not directly
evaluate from LC POC probes. Maraci et al.[17] segments
the cerebellum for TCD measurement, but the LC US image
led to poor segmentation performance.
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Figure 2: Asymmetrical Domain Augmentation. SAU: Strong
Augmentation; WAU: Weak Augmentation. †: Extra augmenta-
tions included in SAU.

3. Method

In this section, we present the Dual Adversarial Cali-
bration framework in detail, which is illustrated in Fig.1.
The framework consists of four main parts: 1) a domain
dependent asymmetrical augmentation module of the input
space; 2) a segmentation network consisting of a shared
encoder-decoder framework; 3) a domain calibration (DC)
adversarial pathway for semantic transfer on the predicted
output space; 4) a segmentation calibration (SC) cycle path-
way for unsupervised semantic transfer.

3.1. Asymmetrical Domain Augmentation.

We observe that in practice, HE data are fairly consis-
tent in imaging quality and appearance, whereas LC data
can vary quite substantially. Key anatomies, such as the
cerebellum and the thalamus are always clearly visible on
HE data, but may not be so on LC data, as imaged struc-
tures do not have clear edges and acoustic artefacts such as
shadows and speckle can lead to further image degradation.
We therefore augment each input domain asymmetrically.
Specifically, weak augmentation is applied on LC data to
maximize network generalization whilst preserving the spa-
tial visibility of key anatomies by the inclusion of linear and
non-linear grid distortions, and horizontal flipping. Strong
augmentation is applied on HE data to simulate noisy im-
ages including random gamma, random brightness and con-
trast adjustment, image compression and artificial speckle
noise. We qualitatively observe these data augmentations
act to decrease domain gap between HE and LC data, as

Figure 3: The pipeline from segmentation to the final biometry.

shown in Figure 2, which leads to a stronger response to
domain calibration.

3.2. Core Segmentation Network.

We formulate fetal biometry via segmentation tasks. The
HC is derived from segmentation of the fetal skull. How-
ever in LC US images, segmentation of the cerebellum is
challenging due to low image contrast and noise from signal
attenuation. We therefore adopt a strategy inspired by TCD
measurement in real-clinical practice, where two points are
placed on the cerebellum boundary edge for TC diameter
estimation. Thus, the network predicts the upper extreme
point (UEP) and lower extreme point (LEP) of the cerebel-
lum, from which the TCD is estimated.

We therefore target two image analysis tasks - fetal skull
segmentation for the HC, and UEP and LEP detection for
TCD estimation. We employ a U-Net based segmentation
network, represented by {G(x; θ), x ∈ (xLC , xHE)} where
xLC and xHE are examples of HE and LC input US images
respectively and θ represents model parameters. We use
ResNet18 [9] as an encoder-decoder backbone with resid-
ual blocks (fine to coarse: 64, 64, 128, 256 ,512 feature
channels) for the encoder and residual blocks with 2D bilin-
ear upsampling (coarse to fine: 256, 128, 64, 32, 16 feature
channels) for the decoder with skip connections between
the encoder-decoder. Our segmentation head consists of a
single 3×3 2D convolutional layer to map the decoded fea-
ture maps (16 channels) to 3 channels, corresponding to the
skull, UEP and LEP predictions. We then apply a pixel-
wise sigmoid function to the segmentation output to obtain
a pixel-wise probability map for each anatomy. To address
class imbalance, we use a DICE loss to train the segmenta-
tion model defined as:

Lseg = 1−
2
∑

h,w,c yHEpHE∑
h,w,c y

2
HE +

∑
h,w,c p

2
HE

(1)

where yHEϵRh×w×c and pHEϵRh×w×c are the ground
truth annotations and the pixel-wise probability maps for
HE images, h, w and c are height, width and number of
classes respectively (c=3 in our experiments).
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The whole pipeline from input to final biometric estima-
tion is depicted in Figure 3. We got the segmentation prob-
ability maps for each structure i.e. Skull, UEP and LEP. For
computing HC, we segment the entire fetal head, retrieve a
skull contour from the probability map, then fit an ellipse to
the contour, obtain the center, major and minor axis, and ro-
tation of the fitted ellipse. For computing TCD, we perform
non-maximum suppression to find the pixel with greatest
probability for UEP and LEP, then draw a line between the
two estimated point locations.

3.3. Domain Calibration Pathway.

We observe that xHE and xLC have very different in-
tensity distributions. This reflects in imaging quality dis-
crepancy, and networks trained on one do not perform well
on the other. To address this, we introduce an adversarial
pathway to calibrate the underlying output space to be in-
variant to the input domain [22]. Specifically, the output
space can be modelled as a low-dimensional manifold that
contains simple representations and rich semantic informa-
tion about target anatomies. By minimizing the distance
between HE US predictions pHE = G(xHE ; θ) and LC US
predictions pLC = G(xLC ; θ), the model can learn specific
target anatomical regions of interest from a low dimensional
representational space. We adopt a Least-Square GAN [16]
loss for domain adaptation. The domain adaptation is mod-
elled with the objective:

argmin
φ

Ladv(D) :=
1

2
Ep∼pout(HE)[(D(pHE ;φ)− 1)2]

+
1

2
Ep∼pout(LC)[(D(pLC ;φ))

2]

(2)

argmin
θ

Ladv(G) :=
1

2
Ep∼pout(LC)[(D(pLC ;φ)− 1)2]

(3)
Here D(p;ϕ) represents the input probality map p to our

discriminator parameterised by ϕ. The discriminator con-
sists of five convolutional layers (fine-to-coarse: 64, 128,
256, 512, 1 feature channels) with a kernel size of 3 and
stride of 1 and each followed by a leaky ReLU parame-
terised by 0.2 and a max pooling layer.

3.4. Segmentation Calibration Pathway.

The generator G(x, θ) is trained on supervised segmen-
tation with the labelled source input xHE with available
ground truth yHE . We further regularize the model us-
ing unlabelled xLC images by using adaptive perturbations
by noting that the predicted segmentation should be locally
smooth to adversarial perturbations in the input xLC im-
ages [19]. As shown in Fig.1, we generate an augmented

LC input tuple X = {(xLC , xLC + ξ), ξ ∼ N(0, 1)} and
prediction tuple P = (pLC , p̂LC) from the segmentation
network G(X; θ). ξ is self-paced and updated with a cycle
pathway by maximizing the distance between (pLC , p̂LC),
generating ξadv , an adversarial perturbation, then minimis-
ing the Kullbeck-Leibler loss KL [G(x; θ) ∥ G(x+ ξadv)]
to reduce network sensitivity to noise perturbations. To do
this we compute the derivative of LD w.r.t. ξadv defined
as gξ = ▽ξadv

LD evaluated with backpropagation, and the
perturbation as ξadv = ϵ

gξ
∥gξ∥2

, where ϵ is a hyper-parameter
that controls the strength of perturbation. The goal is there-
fore for the network to be robust to the perturbations so as to
produce consistent outputs from the perturbed inputs. The
distance loss LD is therefore defined as:

argmin
θ

LD(x, ξ, θ) :=

Ex∼pdata(LC) KL[[G(xLC ; θ)] ∥ [G(xLC + ξadv; θ)]]

s.t. ξadv := argmax
ξ

{LD(xLC , ξ, θ); ∥ξ∥2 ≤ ϵ}

(4)

3.5. Optimisation.

Our model optimization is performed in a two-step pro-
cess during model training. The domain discriminator is
first optimized by minimizing the loss Ladv(D) while the
generator is frozen. The generator is then subsequently op-
timized by optimizing the joint loss Ljoint, defined as:

Ljoint(xHE , xLC , ξ, θ) =

Lseg(XHE , θ) + αLD(XLC , ξ, θ) + βLadv(G)
(5)

where the hyperparameters α and β determine the strength
of segmentation and domain calibration respectively.

4. Experiments and Results
4.1. Datasets.

We have two different datasets acquired from two differ-
ent clinical studies, examples of which can be seen in Fig.
4. HE and LC images were acquired from a clinical US
scanner and a POC probe respectively described in Table
1, along with the distribution of scans used for training and
testing. The difference in image quality is apparent in Fig.
4. This includes reduced imaging contrast between tissues
of high echogenicity (fetal skull) and low echogenicity (in-
ternal brain tissue), reduced clarity of internal brain struc-
tures such as the cerebellum and ventricles, reduced edge
sharpness as can be seen from the boundary of the skull.
All of these features are clinically used for determination
of TCD and HC. Furthermore, image resolution is reduced
and there is increased noise in LC images. We used TC
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Figure 4: Examples of fetal brain biometry planes acquired by different devices and pixel intensity distributions. HE scanner: GE Vo-
luson E8, LC probe: Konted C10R. TC: Transcerebellar planes, TV: Transventricular planes, TT: Transthalamic planes, UEP: Upper
Extreme Point, LEP: Lower Extreme Point, TCD: Transcerebellar Diameter, HC: Head Circumference, BPD: Biparietal Diameter, and
OFD: Occipito-Frontal Diameter.

Table 1: Dataset description for training and evaluation of our model. Planes are split between test and training on a subject basis to prevent
data leakage.

No. of Subjects Acquisition Device Training (Seg. Labels) Testing (Biometry [mm])
TC Planes TC Planes (HC) TT/TV Planes (TCD)

HE Dataset 540 GE Volusen E8 519 (Labelled HC & TCD) - -
LE Dataset 560 Konted GEN1 C10R 418 (Unlabelled) 387 (Labelled) 526 (Labelled)

planes from the HE dataset segmented with HC and TCD
measurement points along with unlabelled TC planes from
the LC dataset to train our model. The performance of our
model was then evaluated by comparison between biometry
from inferred segmentations and the biometry extracted by
an expert sonographer.

Images from each source differed in input resolution
(784×1008 px HE, 228×378 px LC). All images were re-
sized to 448×576px. Ground truth pixel maps for the fetal
skull were labelled xi ∈ {0, 1} for pixels inside and out-
side the skull respectively. For TCD estimation, instead of
labelling the entire cerebellum, a Gaussian kernel was cen-
tered on the sonographer annotated key points i.e. UEP and
LEP used as the ground truth for training. As seen in table
2, we achieve mean TCD error of 2.43 mm and mean HC
error of 1.65mm on the best performing model.

4.2. Network Training.

Our model was implemented with pytorch 1.4.0 and
trained on a single Quadro RTX 5000 GPU. G(θ) was opti-

mized with Nesterov accelerated SGD with an initial learn-
ing rate of 0.1, momentum of 0.9 and a weight decay of
10−3. D(ϕ) was optimized with Adam with an initial learn-
ing rate of 10−4 and weight decay of 10−4. Both D(ϕ) and
G(θ) were optimized for 70 epochs with a minibatch size
of 4. Both learning rates were multiplied by a factor of 0.1
after epochs 40 and 60. Grid search was performed on a
logarithmic scale for α and β; α = 10−1 and β = 10−3

gave the best performance.

4.3. Results and Ablation Study

To better understand the individual contributions from
each component of our model, we perform an ablation study
which composed of three settings: 1) we train the segmenta-
tion network with labelled HE images and the directly apply
to LC images at test time; 2) we investigate domain adap-
tation from either feature or output space by applying ad-
versarial training; 3) in addition to domain adaptation, we
incorporate the self-paced unsupervised branch for segmen-
tation calibration. We show in Table 2 ( 1 , 2 ) which are
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Table 2: Ablation study of our method and comparison to SOTA for HC and TCD estimation on LC test dataset. Mean Absolute Error
(MAE) ± std is reported.

Method Aug. DC, Adpt. Loss, Adpt. Space SC
TCD

(mean ± SD [mm])
HC

(mean ± SD [mm])
1 W/o ✓, Weak - - 46.63±8.64 36.27±7.81
2 W/o ✓, Strong - - 30.96±7.46 22.52±7.54
3 DC ✓, Asymmetrical ✓, V-GAN Loss, out. space - 13.80±3.91 10.21±3.63
4 DC ✓, Asymmetrical ✓, LS-GAN Loss, feat. space - 8.64±1.42 6.53±1.11
5 DC ✓, Asymmetrical ✓, LS-GAN Loss, out. space - 7.93±1.64 4.31±1.25
6 DAC ✓, Asymmetrical ✓, LS-GAN Loss, feat. space ✓ 4.62±0.46 3.26±0.43
7 DAC ✓, Asymmetrical ✓, LS-GAN Loss, out. space ✓ 2.43±0.37 1.65±0.31

CycleGAN [25] ✓, Asymmetrical ✓, Cycle-GAN Loss, in. space - 14.79±3.20 9.69±3.19
CyCADA [10] ✓, Asymmetrical ✓, CyCADA Loss, in.&feat. space - 7.28±2.72 5.65±2.25
UCMDA [7] ✓, Asymmetrical ✓, Adversarial loss, in feat. space - 8.13±2.30 6.74±2.19
SIFA [2] ✓, Asymmetrical ✓, SIFA Loss, in.&feat.&out. space - 8.69±1.21 6.32±1.04

* Note: W/o: Without Adaptation; DC: Domain Calibration; SC: Segmentation Calibration; DAC: Dual Adversarial Cali-
bration.

Figure 5: Biometry distributions on LC test dataset from different
models numbered 1-7 as in Table 2. (a) predicted HCs (b) pre-
dicted TCDs for different models. GT: expert manual biometry.

models trained with HE images directly evaluated on LC
images. Direct estimation of biometries from LC images
from a model trained with HE images performs poorly as
expected due to the substantial domain shift. Inclusion of
adversarial calibration ( 3 , 4 , 5 ) significantly improves
biometry estimation. We also find that training with a LS-

GAN adversarial loss outperforms a Vanilla GAN loss, and
adversarial calibration on the output space leads to better
localization compare to feature space ( 5 , 7 vs. 4 , 6 ),
which suggests that the output manifold is a suitable rich
environment for domain calibration. Further addition of ad-
versarial segmentation calibration ( 6 , 7 ) leads to the best
performance with MAE of 1.65mm for HC and 2.43mm for
TCD estimation.

Also, as can be seen in Fig. 5 (a) and (b), without domain
adaptation i.e. 1 , 2 , there are a number of outliers and
the biomertry is significantly out of the distribution com-
pared to the expert’s manual biometry for both the HC and
TCD. By incorporating the adversarial training 3 , 5 , the
model’s predicted distribution is shifted towards the ground
truth. DAC 7 results in the most closed distribution to the
expert biomerty. Additionally, we found HC predicted by
DAC model tends to be better agreed with expert measure-
ments, compared to TCD and the HC mean absolute error
is smaller than TCD’s. This may because the appearance of
the TCD landmark is prone to be affected by image quality
and artefacts, however, the skull signal is bright and consis-
tent, which is less affected by the imaging quality changes.

4.4. Comparison with SOTA.

We compare our proposed model with current SOTA in
the lower rows of Table 2. We found that domain adapta-
tion methods that adapt from the input space (CycleGAN
[25]) give a high estimation error, as only style is preserved
by internal image content and anatomies are not well con-
served, especially for TC images. Taking into account the
feature space (CyCADA [10]) leads to better performance,
but continues to misjudge points of the cerebellum. We
also investigated the SOTA methods for unsupervised cross-
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Figure 6: Example outputs from different models numbered 1-7 as in Table 2, evaluated on LC test images (Blue box: TCD, purple box:
HC). The GT column represents the ground truth.

modality domain adaptation, UCMDA and SIFA [7, 2].
UCMDA[7] proposed a domain critic module (DCM) that
minimizes difference between domains in the feature space.
SIFA uses a shared encoder and performs domain adapta-
tion in the output space, and use cycle-GAN based iden-
tity loss to learn domain invariant features. We find that
these cross modality models not necessarily works on our
intra-modality adaptation task and underperform compared
to our best performing model 7 . This may because intra-
modality domain shift is relatively moderate compared to
cross-modality and the cross-modality models are too com-
plex to fit on the moderate domain shift. Our proposed DAC
design focus on aligning the intra-modality domain shift
by simply incorporating a self-paced distribution alignment
process. The self-paced calibration helps to align the intra-
domain feature space and make models more robust against
artefacts and variation in imaging quality, introduced by LC
probes.

4.5. Qualitative Results.

As shown in Fig. 6, without domain or segmentation ad-
versarial calibration, models ( 1 , 2 ) fail to localize at least
one of the TCD measurement points and fail to segment the
skull for HC. We find that including domain calibration ( 3 ,
5 ) leads to noisy probability maps for the TCD measure-

ment points, but the final prediction (after non-maximum
suppression) become more accurate. Using a LS-GAN loss
leads to smoother adversarial calibration for domain adap-

tation and which leads to more localized prediction of the
TCD measurement points ( 5 vs. 3 ). In addition to domain
calibration, we find that segmentation calibration (reflected
in Table2 5 vs. 7 ) increases the performance of TCD esti-
mation more than HC estimation. This suggests that adver-
sarial segmentation perturbation helps the network to local-
ize of small targets in a noisy environment. Our complete
model 7 outperforms all of the above. It correctly iden-
tifies the TCD measurement points and segments the fetal
skull, even in challenging examples.

5. Conclusion
This paper addresses the problem of domain adaptation

from clinical high-end ultrasound images to low cost point-
of-care ultrasound images with greater varied imaging qual-
ity and increased noise. We proposed a novel dual adver-
sarial calibration framework which enables the network to
learn invariant features to both image types, and leverages
high-end ultrasound images to enable a solution for accu-
rate automatic biometry on LC US images. Our approach
outperforms current SOTA for domain calibration and semi-
supervised learning methods applied to this task.
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