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Abstract

Breast cancer diagnosis is inherently multimodal. To as-
sess a patient’s cancer status, physicians integrate imaging
findings with a variety of clinical risk factor data. Despite
this, deep learning approaches for automatic breast can-
cer classification often only utilize image data or non-image
clinical data, but not both simultaneously. In this work,
we implemented and compared strategies for the fusion of
imaging and tabular non-image data in an end-to-end train-
able manner, evaluating fusion at different stages in the
model (fusing intermediate features vs. output probabili-
ties) and with different operations (concatenation vs. addi-
tion vs. multiplication). This retrospective study utilized
dynamic contrast-enhanced MRI (DCE-MRI) data from
10,185 breast MRI examinations of 5,248 women. DCE-
MRIs were reduced to 2D maximum intensity projections,
split into single-breast images, then linked to a set of 18
non-image features including clinical indication and mam-
mographic breast density. We first trained unimodal base-
line models on images alone and non-image data alone. We
then developed three multimodal fusion models that learn
jointly from image and non-image data, evaluating per-
formance by area under the receiver operating character-
istic curve (AUC) and specificity at 95% sensitivity. The
image-only baseline achieved an AUC of 0.849 (95% CI:
0.834, 0.864) and specificity at 95% sensitivity of 30.1%
(95% CI: 23.1%, 37.0%), while the best-performing fusion
model achieved an AUC of 0.898 (95% CI: 0.885, 0.909)
and specificity of 49.1% (95% CI: 38.8%, 55.3%). Further-
more, all three fusion methods significantly outperformed
both unimodal baselines with respect to AUC and speci-
ficity at 95% sensitivity. This work demonstrates in our
dataset for breast cancer classification that incorporating
non-image data with images can significantly improve pre-
dictive performance and that fusion of intermediate learned
features is superior to fusion of final probabilities.

1. Introduction

In breast imaging, radiologists use heterogeneous infor-
mation from multiple sources to decide whether and to what
extent a patient exhibits risk for breast cancer [18, 16]. The
information available to radiologists may include imaging
findings, demographic and clinical data (age, gender, and
clinical indication), and information on cancer risk factors
(comorbidities, family history, and breast density [16]). De-
spite this, deep learning approaches to breast cancer diag-
nosis typically rely only on patient imaging or only on pa-
tient risk factors. Based on the assumption that imaging
features and clinical features offer independent diagnostic
value, a model that fuses and learns jointly from these dif-
ferent types of information may increase predictive perfor-
mance over a unimodal (single-source) approach.

Deep convolutional neural networks (CNNs) have been
successfully applied to a wide variety of tasks in medical
diagnostics, particularly for detecting breast cancer from
screening mammograms [17, 24, 23, 3] and diagnostic MRI
studies [12, 29, 30]. However, these efforts rarely take ad-
vantage of clinical risk factor data that is readily available
to the interpreting radiologist or metadata associated with
patient imaging. Some studies have created “multimodal”
inputs to CNNs by combining images of different modal-
ities [9, 27, 28] in an “early fusion” fashion. For the late
fusion approach, other have combined representations from
different imaging modalities [15, 31, 26] and others have
learned from both image and tabular patient data, but only
in a post-hoc manner that combines information from inde-
pendently trained models (i.e., an ensemble or multi-stage
model) [6, 1, 30, 22]. Recent work proposed an end-to-
end fusion method that combines histology images with ge-
nomic profiles for glioma survival prediction, observing sig-
nificant improvement over an image-only CNN baseline by
concordance index (from 0.75 to 0.826) [7]. Likewise, the
authors in [1] fused information from mammography with
clinical data in a two-stage fashion, seeing similar improve-
ments over a CNN baseline by AUC (from 0.88 to 0.91).
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These prior works, however, either (a) neglected an ex-
ploration of different strategies for merging heterogeneous
information or (b) developed fusion methods that rely on
combining independently trained models. Instead, we seek
a single architecture that can be optimized end-to-end to
learn jointly from image and non-image data.

In this work, we explore strategies for fusing information
from patient imaging with associated non-image data in an
end-to-end trainable manner, hypothesizing that non-image
features can add predictive value to a CNN that otherwise
could only accommodate images. As a use case, we train
and evaluate these methods on dynamic contrast-enhanced
MRI (DCE-MRI) images and associated clinical data for the
task of identifying breast cancer. We propose three intuitive
fusion methods and conduct a feature importance analysis
to illustrate which non-image features are most critical to
automatic breast cancer prediction; we follow this up with
additional experiments to uncover the best way to fuse in-
formation from two modalities and the best way to optimize
such a network.

2. Materials and Methods

2.1. Data Collection and Description

In this retrospective, institutional review board-approved
study (Fred Hutchinson Cancer Research Center proto-
col #7339), we curated fully anonymized data from 5,248
women who underwent 10,185 breast cancer examinations
at the University of Washington from July 2005-November
2015. Each patient received a DCE-MRI exam, 76.5% of
patients also received a mammogram, and 26.8% under-
went a breast tissue biopsy. If a patient had a pathology-
confirmed breast cancer at the time of examination or re-
ceived a cancer diagnosis within 12 months after MRI, that
breast was labeled “Malignant;” all other breasts were la-
beled “Benign.” Additional features such as patient age,
clinical indication for MRI (e.g., high risk screening, diag-
nostic evaluation, assess extent of disease, or other), and
background parenchymal enhancement (BPE) from MRI
were collected as well. Each DCE-MRI data set was re-
duced to a 2D maximum intensity projection (MIP) image
of the peak contrast enhanced minus background image us-
ing vendor software. MRI performed post-biopsy could po-
tentially have susceptibility artifacts or other signal changes
from biopsy clips, presenting the biasing effect that clip arti-
facts could be strongly associated with malignancy. The use
of MIP images reduces this bias, as clip artifacts are gener-
ally not visible in MIPs that only capture areas of contrast
enhancement.

Since breast cancer diagnosis is a breast-specific task,
we consider each breast to be an individual case for the pur-
poses of model training and evaluation. We first ensured
that all breasts in our study cohort had a Breast Imaging-

Reporting and Data System (BI-RADS) assessment of 1-6
(information not used for training) and were given a breast
cancer status within 12 months of MRI examination. We
then removed all breasts from studies with corrupted im-
age files or observed artifacts in the DCE-MRI; artifacts oc-
curred mostly due to failure in the MIP generation process,
as evidenced by high intensity regions visually not consis-
tent with vascular patterns. From this set of 17,046 breasts
from over 5,000 women, we then processed the MIPs as de-
scribed below, linking them to a set of non-image features to
create a multimodal data set of imaging and tabular clinical
information.

2.2. Data Preparation

After DCE-MRI data sets were reduced to 2D MIP im-
ages by vendor software, MATLAB (Mathworks, Natick,
MA) was used to preprocess MIPs for model training and
evaluation. Each image was cropped to split the MIP into
two single-breast images, and then the top 0.5% of pixel
intensities of each image were clipped, assuming these ex-
treme values represented noise due to artifacts. Lastly, each
image was resized to 224 x 224 pixels and its intensity val-
ues were linearly normalized to the interval [0, 1]. Along-
side these image processing steps, basic information from
the images — such as the total width and height (in mm) and
MRI system software version — were appended to the list
of non-image features. These steps produced a final data
set of 17,046 breast images, each with an associated vector
of 18 tabular features (see Supplemental Materials for full
description). We denote these tabular features, containing
clinical and MRI acquisition information, as ‘“non-image”
features because they are not radiomic features derived from
the image itself.

Next, continuous-valued non-image features were stan-
dardized, and categorical and ordinal features were di-
chotomized into binary variables via dummy coding; this
produced a total of 33 non-image inputs. To learn from a
sufficient proportion of malignant breasts, we obfuscated
non-image features that were directly linked to the final
breast cancer status. While BI-RADS assessments were not
used as inputs, breasts with a BI-RADS 6 assessment are
known to have cancer prior to examination, meaning the
patient’s “Assess Extent of Disease” indication would be
highly correlated with a malignant outcome; for BI-RADS
6 cases, we replaced the indication from “Assess Extent of
Disease” uniformly at random with one of the other three
indications: “Screening,” “Diagnostic,” or “Other.” This ef-
fectively changed the indication feature such that the re-
maining “Assess Extent of Disease” cases were those in
which we observed a previous positive biopsy for cancer
in the contralateral breast. Missing values of age, BPE, and
mammographic breast density (if mammography not per-
formed) were then imputed with the median age and most
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Figure 1: Diagram of fusion architectures that learn jointly from breast imaging and tabular non-image features. Probability
Fusion (A) fuses information at the output level; Feature Fusion (B) fuses learned image features with non-image features;
Learned Feature Fusion (C) fuses learned image features with learned non-image features. The baseline Image-Only and
Non-Image-Only models are seen, respectively, in the blue and green regions of panel A; that is, the unimodal baseline
architectures are components of the Probability Fusion architecture. Dashed boxes represent feature vectors, with the number
inside representing the size of that vector. “FC-n” represents a fully-connected layer with n hidden units. The symbol gy
represents a predicted probability of malignancy within the next 12 months.

frequently observed breast density and BPE in the training
set. Finally, we randomly assigned 10,466 cases for training
(61.4%), 1,671 cases for validation to mitigate overfitting
(9.8%), and 4,909 cases for testing (28.8%), ensuring that
each patient appeared in only one of the three sets.

2.3. Deep Learning Model Architectures

To evaluate if fusion of image and non-image features
can improve breast cancer prediction, we first established a
baseline image-only and non-image feature-only approach.
Our Image-Only model consisted of ResNet50 [10], adapted
to accommodate a single-channel input, with two fully-
connected layers followed by a single output neuron replac-
ing the original classification head. Our Non-Image-Only
model was a simple feedforward neural network with two

fully-connected layers followed by a single output neuron
(Figure 1A).

We explore three primary approaches to fuse image-
dervied features with tabular non-image features, varying
at what stage in the multimodal architecture features are
fused. The first, Probability Fusion, considers the output
probabilities of an image-only and non-image-only model
as inputs to a fully-connected layer that produces a final pre-
diction; observe that Probability Fusion contains the base-
line Image-Only and Non-Image-Only models within itself
(Figure 1A). Feature Fusion learns a vector of 2,048 fea-
tures from a breast image, and concatenates the 33 non-
image inputs onto that extracted feature vector before learn-
ing jointly from image and non-image features to produce
a final prediction (Figure 1B). Lastly, Learned Feature Fu-
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sion simultaneously learns features from the breast image
and non-image features, then concatenates learned feature
vectors from each modality before learning from this com-
bined vector to produce a final prediction (Figure 1C). The
latter two methods allow for the model to directly learn in-
teractions between image and non-image features, while the
former only fuses information at the prediction level.

2.4. Model Nomenclature

In one survey of multimodal machine learning tech-
niques [4], the authors provide a taxonomy for fusion ap-
proaches, which we find to be limited in expressive power.
For example, what we call Feature Fusion and Learned Fea-
ture Fusion would be indistinguishable under their frame-
work — they would both be categorized as “model-agnostic,
early fusion.” A more recent review of techniques specifi-
cally for fusing medical imaging with tabular clinical data
[13] provides a more comprehensive naming scheme; under
their system, Probability Fusion would be called “Late Fu-
sion,” Feature Fusion would be called “Joint Fusion — Type
II,” and Learned Feature Fusion would be called “Joint Fu-
sion — Type 1.” While expressive enough to capture the ap-
proaches examined here, these names do not communicate
what exactly is being fused or how features from differ-
ent modalities are being fused (concatenation, averaging,
etc.). To propose a flexible naming system for “late fu-
sion” methods, we first observe that there are three types
of features one could combine during training: probabili-
ties (P), learned features (L), and semantic features (S). Us-
ing brackets to represent concatenation, Probability Fusion
could be called [P,P]-Fusion (concatenating probabilities
from the two modalities), Feature Fusion could be called
[L,S]-Fusion (concatenating learned image features with
semantic non-image features), and Learned Feature Fusion
could be called [L,L]-Fusion (concatenating learned image
features with learned non-image features).

2.5. Experiments Varying Fusion Operation

While the main fusion experiments use concatenation
to fuse information from different modalities, the architec-
tures presented in Figure 1 are general enough to accomo-
date other fusion operations. To understand how the fusion
operation impacts predictive performance, we also trained
variants of the Learned Feature Fusion model that, instead
of concatenating features from each modality, elementwise
add (called L+L-Fusion) and multiply (called Lx L-Fusion)
feature vectors. A full description of auxiliary experiments
involving different ways to train this multimodal architec-
ture (optimizing each subnetwork — image encoder, non-
image encoder, fusion head — separately vs. optimizing the
entire network with a single loss expression) can be found
in the Supplemental Materials.

Table 1. Characteristics across training, validation, and test sets.

Training Set Validation Set Test Set
Cases 10,466 1,671 4,909
Age (yr)* 515+ 11.1 51.9+£10.7 51.5+11.5
Laterality
Left 5,229 (50.0%) 842 (50.4%) 2,476 (50.4%)
Right 5,237 (50.0%) 829 (49.6%) 2,433 (49.6%)
MRI Indication
Other 1,075 (10.3%) 175 (10.5%) 557 (11.3%)
Screening 6,906 (66.0%) 1,150 (68.8%) 3,186 (64.9%)
Diagnostic 1,135 (10.8%) 152 (9.1%) 566 (11.5%)
Assessextentof 350 (15 90y 104(11.6%) 600 (12.2%)
disease
Breast Density
Entirely fatty 207 (2.0%) 28 (1.7%) 116 (2.4%)
Scattered density 2,157 (20.6%) 374 (22.4%) 880 (18.0%)

Heterogeneously

6,953 (66.4%) 1,071 (64.1%) 3,285 (67.0%)

dense

Extremely dense 1,149 (11.0%) 198 (11.8%) 628 (12.8%)
BPE

Minimal 6,132 (58.6%) 1,002 (60.0%) 2,819 (57.4%)

Mild 2,563 (24.5%) 382 (22.9%) 1,241 (25.3%)

Moderate 1,169 (11.2%) 208 (12.4%) 561 (11.4%)

Marked 602 (5.8%) 79 (4.7%) 288 (5.9%)
Positive Biopsy ' 2,090 (20.0%) 325 (19.4%) 1,006 (20.5%)

A “case” is a single-breast MIP image and associated vector of non-image
features. Unless indicated otherwise, values represent numbers of cases
and values in parentheses represent percentages out of the total number of
cases in a given set.

* Values represent mean =+ standard deviation.

T Denotes a biopsy-proven malignancy within 12 months post-MRI.

2.6. Experimental Setup and Analysis

We trained the five architectures described in Section
2.3 and the two variants described in Section 2.5 to predict
breast cancer status, comparing the performance of fusion
models to the baseline Image-Only and Non-Image-Only
models by (a) AUC and (b) specificity at 95% sensitivity,
when evaluated on the test set. All models were trained
with randomly initialized weights under identical training
regimes: the same optimizer, learning rate, data augmenta-
tions, early stopping schedule, efc. (see Supplemental Ma-
terials for details). Models were created and trained in Py-
Torch version 1.4.0 [19].

We used the pROC package [21] in R version 4.0.0 [20]
to compute nonparametric confidence intervals and con-
duct significance tests used to assess model performance.
All confidence intervals were obtained with 5,000 stratified
bootstrap samples of the test set via the percentile method.
A simple nonparametric test for difference in means (see
Supplemental Materials for details) was used to determine
the significance of differences in model performance; this
method was chosen over the popular DeLong test so that it
could be applied to metrics other than AUC. A P-value less
than 0.05 was selected to demonstrate a statistically signifi-
cant effect.

Lastly, for the five trained models described in Section
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Table 2. Breast cancer prediction results of multimodal fusion models and their unimodal baselines.

Best Run Five-Run Ensemble
Image Non-Image Specificity at Specificity at
Model Inputs?  Inputs? AUC 959 Sensitivity (%) AUC 959 Sensitivity (%)
Image-Only v 0.849 [0.834, 0.864] 30.1 [23.1, 37.0] 0.860 [0.845, 0.873] 33.2[27.4,39.7]
Non-Image-Only v 0.807 [0.791, 0.823] 27.7[22.3, 33.9] 0.806 [0.790, 0.821] 29.5[20.5, 34.4]
Probability Fusion v v 0.888 [0.875, 0.899] 48.2[42.2,53.5] 0.888 [0.876, 0.899] 51.3[45.2,56.2]
Feature Fusion v v 0.894 [0.882, 0.905] 46.5[40.5, 51.1] 0.901 [0.890, 0.913] 47.3 [42.6, 55.0]
Learned Feature Fusion v v 0.898 [0.885, 0.909] 49.1 [38.8, 55.3] 0.903 [0.891, 0.914] 50.3 [44.2, 59.0]

Values represent the specified performance metric, and values in brackets represent 95% bootstrapped confidence intervals obtained on the test set
(IN=4,909). Each model was trained five separate times; “Best Run” refers to the single model realization with maximum validation AUC, and “Five-
Run Ensemble” refers to an ensemble of the five realizations of each model.

2.3, we conducted a feature importance analysis to assess
which non-image features were most influential to each
model. We used a permutation-based measure of perfor-
mance (as first described in [5]), where we randomly shuf-
fled the values of a single feature in the test set, generated
new predictions for the permuted test data, and recalculated
AUC. The “importance” of that feature was then the per-
cent reduction in test AUC upon permutation — the intuition
being that permuting an important feature will result in an
appreciable change in model performance (see Supplemen-
tary Materials for details). Code will be available at https:
//github.com/gholste/breast_mri_fusion.

3. Results
3.1. Study Cohort

The training, validation, and test sets consisted of cases —
single-breast (unilateral) images with associated non-image
features — with roughly equal composition with respect to
age, clinical indication, mammographic breast density, and
biopsy-confirmed cancer status (Table 1). The training set
contained 10,466 cases from 3,015 women (aged 51.5 £+
11.1 years [mean =+ standard deviation]), roughly 20% of
cases having biopsy-confirmed breast cancer within a year
of examination. About 77.4% of training images contained
dense breasts, as observed on mammography (BI-RADS C
or D), and 83.1% exhibited low BPE (minimal or mild).
Further, after obscuring patients’ “Assess Extent of Dis-
ease” status for the ipsilateral breast as described earlier,
about 13% of cases came from patients with known cancer
in the contralateral breast.

3.2. Model Results

All five deep learning architectures were trained end-to-
end for a maximum of 100 epochs, restoring model weights
from the epoch with the highest AUC on the validation set.
Additionally, each model was trained five separate times
with different random number-generating seeds so that we
could consider ensembles of each model across five unique
random weight initializations (“runs”). The run with high-
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Figure 2: Comparison of model performance on breast can-
cer prediction for all five model architectures considered.
Non-Image-Only was only trained on tabular clinical fea-
tures and Image-Only was only trained on breast images,
while the remaining fusion models were trained on both
images and clinical features. Fusion models significantly
outperformed Image-Only and Shallow-Only with respect
to AUC (P < 0.001 for each test). AUC = area under the
receiver operating characteristic curve.

est maximum validation AUC is used for all analysis pre-
sented in the text, but ensemble results can be found in Ta-
bles 2 and 4.

Overall, models trained on both patient imaging and as-
sociated non-image features outperform their image-only
and non-image feature-only counterparts by both AUC and
specificity at 95% sensitivity (Table 2, Figure 2). The base-
line Image-Only model achieved an AUC of 0.849 (95% CI:
0.834, 0.64), while the Non-Image-Only model achieved an
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Figure 3: Example true negative (A), false positive (B),
false negative (C), and true positive (D) cases according
to the Image-Only model, where the “positive” class rep-
resents a pathology-confirmed cancer diagnosis in that par-
ticular breast within 12 months of MRI. Each image is a
fully preprocessed MIP of the DCE-MRI study, and predic-
tions were made at an operating threshold of 0.5. While
the unimodal Image-Only model misclassified the images
in panels B and C, every fusion model reversed these errors,
correctly classifying image B as benign and image C as ma-
lignant with the aid of shallow clinical features. MIP = max-
imum intensity projection, DCE-MRI = dynamic contrast-
enhanced MRIL

AUC of 0.807 (95% CI: 0.791, 0.823). As for fusion mod-
els trained on both images and tabular features, Probability
Fusion achieved an AUC of 0.888 (95% CI: 0.875, 0.899),
Feature Fusion achieved an AUC of 0.894 (95% CI: 0.882,
0.905), and Learned Feature Fusion achieved an AUC of
0.898 (95% CI: 0.885, 0.909). We also find that, at a highly
sensitive operating point, fusion approaches decrease the
false positive rate when compared to unimodal baselines;
namely, specificity at 95% sensitivity improves from 30.1%
(95% CI: 23.1%, 37.0%) in the Image-Only model to as
high as 49.1% (95% CI: 38.8%, 55.3%) in the Learned
Feature Fusion model. Each fusion approach significantly
outperformed the Image-Only baseline with respect to AUC
(P < 0.001 for each test) and specificity at 95% sensitivity
(P < 0.01 for each test).

To offer additional context to the clinically relevant goal
of specificity at a high sensitivity, the Learned Feature Fu-
sion model correctly identifies 743 more benign cases (out

Table 3. Feature importance summary of top non-image features.

Permutation Importance (Rank)

Non-Image Non-Image-  Probability ~ Feature Learned
. X Feature
Feature Only Fusion Fusion ,
Fusion
MRI Indication 21.26 (1) 8.29 (1) 5.72 (1) 7.17 (1)
MRI Software
Version 2.71(2) 1.14 (2) 0.354) 0.96 (3)
Age 2.55@3) 0.64 (5) 0.93 (2) 1.74 (2)
MIP Height 1.81 (5) 0.33 (6) 0.55(3) 0.80 (4)
Precession
Frequency 1.01 (8) 1.11 (3) 0.31(5) 0.31(7)
MIP Max
Intensity 2.50 (4) 0.21 (8) 0.00 (18) 0.31 (8)
BPE 1.33(7) 0.14 (10) 0.23 (6) 0.11 (13)
Reconstruction
Diameter 0.13 (15) 0.31 (7) 0.03 (13) 0.44 (5)
Pixel Dimensions 1.60 (6) 0.83 (4) -0.00 (17) -0.05(17)
Repetition Time 0.69 (10) 0.11 (11) 0.18 (7) 0.15 (10)
Breast Density 0.45 (13) 0.16 (9) 0.16 (8) 0.29 (9)

Values represent median percent reduction in AUC (“permutation impor-
tance”) upon permuting the values of the specified feature in the test set 30
times. Values in parentheses represent the rank of the specified feature with
respect to absolute permutation importance relative to all 18 non-image fea-
tures for the specified model. Features are sorted by increasing rank prod-
uct, the geometric mean of each feature’s importance ranks across the four
models trained on shallow features. A full description of all 18 non-image
features can be found in the Supplemental Materials. MIP = maximum in-
tensity projection, AUC = area under the receiver operating characteristic
curve.

of the total 3,903 present in the test set) than the Image-
Only baseline, representing a 63% increase in specificity.
Furthermore, at a given threshold, both false positive and
false negative predictions by the Image-Only model are of-
ten corrected by fusion methods (Figure 3). Though the
Image-Only model misclassified the breast in Figure 3B as
malignant (§ = 0.834 probability of malignancy), all fusion
methods were able to remedy this error: Probability Fu-
sion producing § = 0.434, Feature Fusion § = 0.340, and
Learned Feature Fusion § = 0.252. Similarly, the Image-
Only model misclassified the breast in Figure 3C as benign
(g = 0.438), but with the context that this patient was 77
years old with a diagnostic indication and dense breasts ac-
cording to previous mammography, all fusion methods out-
put an increased predicted probability of cancer: Probabil-
ity Fusion producing § = 0.691, Feature Fusion y = 0.742,
and Learned Feature Fusion {j = 0.956.

Comparing fusion approaches to one another, Learned
Feature Fusion is the best-performing model with respect
to AUC and specificity at 95% sensitivity. Learned Fea-
ture Fusion significantly outperforms Probability Fusion by
AUC (P = 0.003) but does not significantly outperform
Feature Fusion (P = 0.247). In summary, the two models
that merge intermediate features (before the output and af-
ter the input level) outperform the model that merges output

3299



Table 4. Breast cancer prediction results of Learned Feature Fusion model with different fusion operations.

Best Run Five-Run Ensemble
Specificity at Specificity at
Model AUC 95% Sensitivity (%) AUC 95% Sensitivity (%)
[L,L]-Fusion  0.898 [0.885,0.909]  49.1[38.8,55.3]  0.903[0.891,0.914]  50.3 [44.2, 59.0]
L+L-Fusion 0.895[0.883,0.906]  49.0[41.3,554]  0.902[0.890,0.913]  49.1[40.7, 57.3]
LxL-Fusion 0.893[0.881,0.905]  50.8[45.7,55.0]  0.896[0.884,0.907]  50.3 [42.8, 56.9]

Values represent the specified performance metric, and values in brackets represent 95% bootstrapped confi-
dence intervals obtained on the test set (N=4,909). Each model was trained five separate times; “Best Run”
refers to the single model realization with maximum validation AUC, and “Five-Run Ensemble” refers to an

ensemble of the five realizations of each model.

probabilities before learning a final decision. There were in-
sufficient data to demonstrate a significant difference with
respect to specificity at 95% sensitivity (P > 0.5 for each
test), suggesting that all fusion models were comparably
specific at a very sensitive operating point.

3.3. Feature Importance Analysis

To obtain a permutation-based measure of feature im-
portance, we permuted the values of each feature 30 times
to find the resulting decrease in test set AUC upon permu-
tation. Applying this method to the four models that used
non-image features yields the feature importance ranking
seen in Table 3. Overall, we found that clinical indication,
MRI system software version, and age were the most im-
portant variables across all four models that were trained
on non-image data. The Non-Image-Only model, in partic-
ular, relies heavily on clinical indication and displays gen-
erally greater absolute importance values than the three fu-
sion models for virtually every feature. Additionally, we
found that BPE from the DCE-MRI was ranked higher in
importance than mammographic density by rank product,
which is consistent with recent evidence that BPE is more
strongly associated with breast cancer risk than mammo-
graphic breast density [2, 8].

3.4. Fusion Operation

While all models presented above fused features by
concatenation, one can integrate information from multi-
ple modalities with a variety of other operations. Results
from variants of the Learned Feature Fusion model that
elementwise added (L+L-Fusion) and elementwise multi-
plied (LxL-Fusion) learned features can be found in Ta-
ble 4. These models performed comparably with the
concatenation-based version of Learned Feature Fusion,
and have the advantage of slightly fewer learnable param-
eters. While the single-run performance metrics of L+L-
Fusion and LxL-Fusion did not reach those of the original
[L,L]-Fusion, there was not enough evidence to conclude a
significant difference in performance by AUC or specificity

at 95% sensitivity (P > 0.05 for each test).

4. Discussion

Utilizing a large breast MRI database, we demonstrated
that multimodal fusion models that learn jointly from breast
images and non-image features significantly outperformed
image-only and non-image feature-only models for auto-
mated breast cancer prediction. Furthermore, fusion models
that allowed for interactions between learned image features
and non-image features outperformed the approach of com-
bining output probabilities from an image-only and non-
image-only model. Therefore, our results suggest that in-
corporating readily available metadata associated with pa-
tient imaging can significantly improve predictive perfor-
mance in deep-learned approaches for automated diagnos-
tics.

A feature importance analysis revealed that clinical indi-
cation, patient age, and MRI version were the most salient
features for breast cancer prediction in both non-image-
only models and fusion models that learned from images
as well. Furthermore, other than knowledge of clinical indi-
cation, the relative importance ranking of non-image fea-
tures varied across the different models, suggesting that
some non-image features have information that can be par-
tially learned directly from the images; this follows intuition
that some non-image features may be highly correlated with
image-derived features, offering less predictive value in fu-
sion models. This, in addition to the fact that non-image
features are simply not “competing” with image features in
a unimodal model, may explain why the Non-Image-Only
model exhibits greater absolute importance values than fu-
sion models for nearly every feature. We recognize that our
finding that MRI software version, independent of images,
is related to malignancy status is not a clinically relevant
finding and will not translate to other datasets and clini-
cal environments. We present the results here in an effort
to show that there can be confounding effects in the data,
likely due to biased data collection.

While other studies have combined image data with clin-
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ical information — even utilizing richer data such as lab
results and genomic profiles — they often fuse these data
sources by combining separately trained models [33, 4] or
by training a model in multiple stages [0, |] (not end-to-
end). Some studies have proposed end-to-end solutions that
fuse image and non-image features [7, 11, 32, 25], seeing
similar improvements in predictive performance, but these
approaches can be unintuitive or neglect the multitude of
ways in which one could combine information from differ-
ent modalities. Our main contribution is the examination of
three straightforward methods of fusing features from dif-
ferent modalities, as well as follow-up experiments to un-
derstand the best operations to join information from dif-
ferent modalities. Among end-to-end fusion approaches for
the task of breast cancer classification, we found that fus-
ing output probabilities was inferior to fusing intermediate
learned features from each modality. Furthermore, we find
that there is no apparent performance difference between
combining learned image features with learned non-image
features and combining learned image features with the raw
semantic non-image features. Lastly, supplementary exper-
iments revealed that optimizing such a multimodal archi-
tecture in ways other than computing a single cross-entropy
loss term produces competitive results, especially upon en-
sembling.

While models were trained with a large multimodal data
set, this study was limited due to its retrospective design
based on data from a single institution; future work would
be needed to evaluate if our trained models generalize to
data from other sites. Likewise, non-image features were
missing from about 2.3% of all cases, requiring imputation
that may confound results. As for model architectures and
training, in order to compare models as fairly as possible,
we kept all hyperparameters fixed and only explored a small
fraction of possible variations in model design. As with any
deep learning study, more optimal hyperparameter tuning
and architecture design choices may produce slightly differ-
ent results than those presented here. Lastly, this study used
a single 2D MIP image to summarize a multi-series breast
MRI acquisition. Models that could incorporate volumet-
ric MRI data or additional sequences from the breast MRI
exam would likely further increase predictive performance.

5. Conclusion

In conclusion, we examined three general deep learn-
ing approaches for combining information from breast MRI
studies with non-image clinical features, finding that each
fusion approach significantly outperformed an image-only
and non-image-only model for breast cancer prediction.
These results suggest that researchers intending to train a
deep learning system on patient imaging should consider
what additional information is already available to them, in-
cluding standard demographic and risk factor data collected

at the time of breast imaging. Even with basic non-image
information, one may be able to significantly improve pre-
dictive performance with one of the fusion approaches pre-
sented here.
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