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Abstract

In many real world medical image classification settings
we do not have access to samples of all possible disease
classes, while a robust system is expected to give high per-
formance in recognizing novel test data. We propose a gen-
eralized zero shot learning (GZSL) method that uses self
supervised learning (SSL) for: 1) selecting anchor vectors
of different disease classes; and 2) training a feature gener-
ator. Our approach does not require class attribute vectors
which are available for natural images but not for medical
images. SSL ensures that the anchor vectors are representa-
tive of each class. SSL is also used to generate synthetic fea-
tures of unseen classes. Using a simpler architecture, our
method matches a state of the art SSL based GZSL method
for natural images and outperforms all methods for medical
images. Our method is adaptable enough to accommodate
class attribute vectors when they are available for natural
images.

1. Introduction

Medical image classification is an important step in com-
puter aided diagnosis. In the present era, deep learning
methods have achieved state of the art results for many med-
ical image classification tasks such as diabetic retinopathy
grading[15], digital patholology image classification [26]
and chest xray images [ 18, 46], to name a few. Fully super-
vised learning (FSL) methods that achieve state of the art
results have access to disease classes (labels) in the train-
ing and test sets. However in many real-world scenarios we
may not have access to samples of all possible diseases. A
common scenario is the diagnosis of radiological images,
such as chest xrays. Unseen classes are generally classified
into one of the seen classes, resulting in wrong diagnosis
and treatment planning. For deployment in clinical settings
it is essential that a machine learning model learns to recog-
nize novel test cases.

Zero shot learning (ZSL) aims to learn plausible rep-

resentations of unseen classes from labeled data of seen
classes, and recognize unseen classes during test time. In
a more generalized setting we expect to encounter both
seen and unseen classes during the test phase, and a reli-
able model should accurately predict both classes. This is
a case of generalized zero shot learning (GZSL) which is
a challenging scenario since we do not want to predict un-
seen classes as one of the seen classes. We propose a GZSL
method for medical image classification using self super-
vised learning (SSL), demonstrate its effectiveness across
different datasets and also shows it’s applicability to natural
images.

GZSL has been a widely explored topic for natural im-
ages [14, 44, 51] where seen and unseen classes are charac-
terized by class attribute vectors. A model learns to corre-
late between class attribute vectors and corresponding fea-
ture representations. This gives a strong reference point
in synthesizing features of both seen and unseen classes,
since by inputting the class attribute vector of the desired
class the corresponding feature representation can be gen-
erated. However medical images do not have such well de-
fined class attributes since it requires high clinical expertise
and time to define unambiguous attribute vectors for differ-
ent disease classes. Hence it is not a straightforward task
to apply state of the art GZSL methods to medical image
classification. While this makes GZSL for medical images
a challenging task, it is nevertheless essential to tackle this
problem due to the potentially immense benefit.

Initial approaches to tackle ZSL [11, 49] learnt cross-
modal relationships between visual feature and semantic
embeddings (class attribute vectors). Subsequently, recent
generative approaches to GZSL [50, 14], used generative
adversarial networks (GANs) to optimize the divergence be-
tween the data distribution of seen classes and generated
features. Consequently, generators trained on seen class
features cannot accurately represent unseen classes. The
sub-optimal synthetic data does not lead to high perfor-
mance of such models. As an attempt to circumvent this
problem some methods [37, 31] utilize unlabeled data of
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unseen classes in a transductive way. However they require
two GANSs for seen and unseen classes as they do not con-
sider the relations between source and target domains.

However, methods leveraging transductive approaches
are particularly relevant for medical classification tasks
[47]. Absence of any supervised information from the un-
seen domain makes it very challenging to differentiate be-
tween disease labels, especially when many labels show
similar appearance to the untrained eye. In our method we
also leverage the unlabeled data of unseen classes as a guid-
ance to train our GZSL method.

Another tricky issue facing GZSL applications in gen-
eral and medical images in particular is the potentially large
semantic gap between images of different classes. Conse-
quently synthesizing such unseen class features from the
seen classes can be challenging. Leveraging unlabeled un-
seen class data (e.g., using anchors) can be effective in
bridging the semantic gap [47].In an attemp to address the
above challenges our paper makes the following contribu-
tions:

1. We propose a GZSL approach using self supervised
learning (SSL) for medical image classification. Our
method outperforms state of the art methods for multi-
ple medical image datasets, and matches their perfor-
mance on natural images.

2. We use SSL for: 1) deriving anchor vectors through
improved clustering; and 2) feature synthesis of seen
and unseen classes.

3. We achieve GZSL of medical images without using
class attribute vectors commonly used for natural im-
ages. This is important for real world clinical scenarios
where defining class attribute vectors is a time consum-
ing and expensive task.

2. Prior Work

(Generalized) Zero-Shot Learning: In Zero-Shot
Learning [49], the goal is to recognize classes not en-
countered during training. External information about the
novel classes may be provided in forms of semantic at-
tributes [24], visual descriptions [1], or word embeddings
[33]. Zero-shot learning has been addressed using Gener-
ative Adversarial Networks (GANSs) [50], Variational Au-
toencoders (VAE) [41] or both of them [51].

In generalized zero-shot learning (GZSL), the purpose
is to recognize images from known and unknown domains.
Many works [14, 44, 41, 50, 51] obtain impressive results
by training GANs in the known domain and generate unseen
visual features from the semantic labels. This allows them
to train a fully supervised classifier for two domains, which
is robust to the biased recognition problem. The work by

Huang et al. [17] describes a Generative Dual Adversar-
ial Network (GDAN) which couples a Generator, a Regres-
sor and a Discriminator. The interaction between the three
components produces various visual features conditioned
on class labels. Keshari et al. [21] use overcomplete dis-
tributions to generate features of the unseen classes, while
Min et al. [34] use domain aware visual bias elimination
for synthetic feature generation. Different from the above
works we achieve GZSL without the need for descriptive
class attribute vectors, but by specifying the class label of
the desired output feature. GZSL for medical image tasks
have seen limited applications such as registration [23] and
artefact reduction [13].

Self-Supervised Learning: These methods consist of
two main approaches; 1) pre-text tasks and 2) down-stream
tasks. Solving pre-text tasks learns a proper data represen-
tation, although the task itself may not be relevant, while
down-stream tasks are used to evaluate the quality of fea-
tures learned by self-supervised learning and are indepen-
dent of pre-text tasks. Contrastive learning approaches
such as MoCo [16] and SimCLR [12] are popular and give
state-of-the-art results for down-stream task-based meth-
ods. Self-supervised learning (SSL) also addresses labeled
data shortage and has found wide use in medical image
analysis by using innovative pre-text tasks for active learn-
ing [30], anomaly detection [0], data augmentation [28],
semi-supervised histology classification [27],stain normal-
ization [29] and registration [43]. Recent works also use
self supervision for domain adaptation [40] and perhaps the
first work to combine GZSL and SSL [47]. While our work
is inspired from [47] in using SSL for GZSL, and using
GAN:Ss for feature synthesis, there are significant differences
such as: 1) we do not use class attribute vectors for training.
Since medical images do not have defined class attribute
vectors we use a simpler architecture for GZSL. 2) [47] use
a single generator but two discriminators to differentiate be-
tween seen and unseen classes. However we make use of a
single generator and one discriminator to differentiate be-
tween all classes by leveraging anchor vectors; 3) We use a
SSL based clustering approach to derive the anchor vectors
of each class, including unseen classes. We use high level
knowledge of the number of classes as a supervisory signal.

3. Method
3.1. Method Overview

Figure 1 depicts our proposed workflow. In the first step
we generate anchor vectors (cluster centroids) by using SSL
within the SWAV clustering approach [10]. We have two
clustering stages: one for Seen class samples and second for
Unseen classes. Anchor vectors of the Seen class samples
are used to get SSL based loss terms for the second cluster-
ing stage. The second step involves feature generation that
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Figure 1. Architecture of proposed SC-GZSL method. In the first step we generate anchor vectors (cluster centroids) by using SSL within
the SWAV clustering approach [10]. We have two clustering stages: one for Seen class samples and second for Unseen classes. Feature
generation leverages one Generator and one Discriminator alongwith anchor vectors (from clustering) to derive SSL loss terms.

takes a noise vector and desired class label of output vector
to synthesize features. Anchor vectors from the clustering
stage are used to derive SSL based loss terms. Synthesized
and real features of unseen and seen classes are used to train
a softmax classifier for identifying different disease classes.

3.2. SSL Clustering To Obtain Anchor Vectors

Let the number of classes in the Seen set be ng, and
the number of classes in the Unseen set is nyy. We assume
that the total number of classes is known.We learn anchor
vectors of the different classes by using the SSL based on-
line clustering approach SwWAV (Swapping Assignments be-
tween multiple Views) [10], and introduce additional SSL
inspired loss terms. Typical offline clustering methods
[4, 9] alternate between cluster assignment and centroid up-
date. Since they require multiple passes over the dataset,
such methods are slow for online clustering. To overcome
the high training time and inspired by contrastive instance
learning [48], [10] enforce that different augmentations of
the same image are mapped to the same cluster. Multiple
image views are contrasted by comparing their cluster as-
signments instead of features.

We take the cluster centers to be class anchor vectors
since they give a reliable representation of the correspond-
ing class. We choose to compute the anchor vectors in
an online fashion since the number of unseen classes may
change in a dynamic way depending upon the specific use
case. Given image features x; and zs from two differ-
ent transformations of the same image, we compute their
cluster assignments ¢; and g5 by computing the distance
of the features to a set of K cluster centers ¢y, -, cx. A
“swapped” prediction problem is solved with the following
loss function:

E(It,.’L’S) = g(thS) + E(Z’S, Qt) (1)

where £(x, q) measures the fit between features x and as-
signment g. Thus we compare features x; and x5 using their
intermediate cluster assignments ¢; and g5 . If the two z’s
capture same information, we can predict the cluster assign-
ment from the other feature.

Online clustering: Given image I, it is transformed
to I+ using transformation ¢ from a set 7' of image trans-
formations. A non-linear mapping fy transforms I,,; to a
feature vector which is projected to the unit sphere, i.e.,
Tt = fo(@nt)/| fo(zne)lly- The cluster assignment g,
is computed by determining the distance of x,; to the set
of cluster centroids, cq, - - -, cx. C denotes a matrix whose
columns are ¢y, - - -, C.

Swapped prediction problem: Each term in Eq.1 repre-
sents the cross entropy loss between ¢ and the probability
obtained by taking a softmax of the dot products of x; and
all columns in C i.e.,

-
Zry C
exptik

S exp T

(@)
where 7 = 0.1 is the temperature parameter [48]. Comput-
ing this loss over all images and augmentations results in
the following loss function for swapped prediction:

N T
_ T, Clns T Cnt
Llonas) = - sz[n i Znal

A~T
logZexp< nt k) logZexp( "qck)]

This loss function is jointly minimized with respect to
the centroids in C' and parameters 6 of fy.

Uzt qs) = Zq logpi™), pi" =

3)
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Computing the cluster assignments: The clustering as-
signments g are computed in an online fashion using image
features within a batch. Since the centroids in C' are used
across different batches, SWAV clusters multiple instances
to their appropriate clusters. Given feature vectors X =

[1,---,2p], we map them to centroids C' = [c1,- -, ck]
using Q = [q1," -, ¢p], and we optimize @) to maximize
the similarity between X and C,
maxTr(QTCTX) + eH(Q), 4
wax Tr(QTCTX) + eH(Q) @

where H is the entropy function, H(Q) =
—2.i; QijlogQi; and € = 0.05 controls smoothness
of mapping. A high € could potentially results in a
trivial solution where all samples collapse into an unique
representation and are assigned uniformly to all prototypes.

Our Novel Contribution: We use the concept of an-
chor vectors to bridge the gap between seen and unseen
classes, which is determined by the following steps: As-
suming we have ng seen classes we first cluster the Seen
class images into ng clusters and obtain their centroids as
Cs =c1,: -, Cng. In the next pass we compute the clusters
Cu = Cpg+1," s Cng+ny Of the ny unseen classes using
the following additional constraints:

1. The centroids in Cg do not change since they have
been computed from the seen classes.

2. A self supervised constraint is added where the cen-
troids of the unseen classes are forced to be differ-
ent from the seen class centroids. This is done to ac-
count for the situation that some of the Unseen classes
may be semantically close to one or more Seen classes.
This may happen when images of different disease la-
bels have very similar appearance which can be a com-
mon occurrence for radiological images. This condi-
tion is implemented using:

Lgsr1 = min (Cosz'm(cg, C’lj]),cn) (5)

Here o1 = 0.15 is a parameter that determines the se-
mantic distance between the centroids, and CoSim de-
notes cosine similarity.

3. We add a second self supervised constraint that the
similarity of seen class sample, xls with its corre-
sponding class centroid C is higher than their simi-
larity w.r.t all Cé. This is achieved by randomly se-
lecting samples from the Seen class training set during
minibatch training and computing the different cosine
similarities. This constraint is implemented by

Lssr2 =
max (C’oSim(mg, C%) — CoSim(x, C},), 02> Yy
(0)

o9 = 0.25 controls the minimum degree of semantic
difference between different classes.

The final loss term for clustering the Unseen class sam-
PleS is ['Unseen = £($S, l't) +)\1LSSL1 _)\ZLSSL% where
L(xs,x) is defined in Eqn. 3. Ay = 1.1, Ay = 0.7 are the
weights. The ‘—A\oLggr2’ ensures that the loss term does
not increase arbitrarily which is possible for ‘+AyLggsy2’.

3.3. Feature Generation Network

Given the training images of Seen classes and unlabeled
images of the Unseen classes we learn a generator G :
E,Z — X, which takes a class label vector e € £ and
a Gaussian noise vector z € Z as inputs, and generates a
feature vector £ € X. The discriminator D : X, & — [0, 1]
takes a real feature x or synthetic feature = and correspond-
ing class label vector e¥ as input and determines whether the
feature vector matches the class label vector. The generator
G aims to fool D by producing features highly correlated
with e¥ using a Wasserstein adversarial loss[3]:

LwGaN = ménmng[D(z, e”)] — E[D(z,eY)]
—AE[(|VzD(@, ")l — 1)°]

where the third term is a gradient penalty term, and £ =
ar + (1 — a)Z. a ~ U(0,1) is sampled from a uniform
distribution.

3.3.1 Self Supervised Loss From Anchor Vectors

The discriminator D is a classifier that determines whether
the generated feature vector & belongs to one of the seen
classes. Since the unseen classes are not labeled we do not
have a data distribution for them and hence we use self su-
pervision to determine whether the generated feature vector
matches an unseen class. As the anchor vectors (i.e., the
cluster centers) are fixed, we calculate the cosine distance
between the generated vector & and the anchor vector cor-
responding to the desired class , i.e.

ESSL?) =1- C’oSim(i, Cy) (8)

If 2 truly represents the desired class y then the cosine sim-
ilarity between & and the corresponding anchor vector c,
should be highest amongst all K (= ng + ny) anchor vec-
tors, and the corresponding loss is lowest.

3.3.2 Classifier Loss

We expect that £° (synthesized feature vector for seen
classes) are predicted correctly by a pre-trained classifier
C'L with a loss defined as below

Lor = —Egs ysynp,. [log P(y°|7°,0c1)] )

where P(y°|Z°,0c1) is the classification probability and
Ocr denotes fixed parameters of the pre-trained classifier.
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3.4. Training and Implementation

The final loss function is defined as
L =Lwgan +AcrLcor +A3Lgsis (10)

where Ao, A3 are weights that balance the contribution of
the different terms. Once training is complete we specify
the label of desired class and input a noise vector to G which
synthesizes a new feature vector. We combine the synthe-
sized target features of the unseen class z* and real and
synthetic features of seen class 2, Z° to construct the train-
ing set. Then we train a softmax classifier by minimizing
the negative log likelihood loss:

. 1
2

(z,y)€(X,Y)

log P(y|z,0), Y

exp(ﬂsz)
where P(y|z,6) = 72?:‘1 be(egm)
ability and 6 denotes classifier parameters. The final class
prediction is by f(x) = arg max, P(y|z,§)

Implementation Details: We show results for natural
and medical images and compare with existing GZSL meth-
ods. Extending our method to natural images is straight-
forward where in we replace the class label vector e¥ with
the corresponding class attribute vectors. For feature ex-
traction, similar to [49], we use a pre-trained ResNet-101
to extract 2048 dimensional CNN features for natural im-
ages. The generator (G) and discriminator (D) are all mul-
tilayer perceptrons. G has two hidden layers of 2000 and
1000 units respectively while the discriminator D is imple-
mented with one hidden layer of 1000 hidden units. We
choose Adam [22] as our optimizer, and the momentum
is set to (0.9,0.999). The values of loss term weights are
Acr = 0.6,A3 = 0.9. Training the Swav Clustering al-
gorithm takes 12 hours and the feature synthesis network
for 50 epochs takes 17 hours, all on a single NVIDIA V100
GPU (32 GB RAM). PyTorch was used for all implementa-
tions.

is the classification prob-

3.5. Evaluation Protocol

The seen class S can have samples from 2 or more dis-
ease classes, and the unseen class U contains samples from
the remaining classes. We use all possible combinations of
labels in .S and U. Following standard practice for GZSL,
average class accuracies are calculated for two settings: 1)
S: training is performed on synthesized samples of S + U
classes and test on St.. 2) U: training is performed on syn-
thesized samples of S + U classes and test on U. We also
report the harmonic mean defined as

H:2><ACCUXACCS (12)
Acey + Aceg

where Accg and Accy denote the accuracy of images from
seen (setting S) and unseen (setting U) classes respectively:

4. Experimental Results
4.1. Dataset Description

We demonstrate our method’s effectiveness on natural
images and the following medical imaging datasets for clas-
sification tasks. Datasets with a minimum of 3 disease
classes (excluding normal label) were chosen to highlight
the performance of feature synthesis.

1. CAMELYON17 dataset [7]: contains 1000 whole
slide images (WSIs) with 5 slides per patient: 500
slides for training and 500 slides for test. Training set
has annotations of 3 categories of lymph node metas-
tasis: Macro (Metastases greater than 2.0 mm), Mi-
cro (metastasis greater than 0.2 mm or more than 200
cells, but smaller than 2.0 mm), and ITC (single tumor
cells or a cluster of tumor cells smaller than 0.2mm or
less than 200 cells). We extract 224 x 224 patches
from the different slides and obtain 130,000 tumor
patches and 200, 000 normal patches. We take a pre-
trained ResNet101 and finetune the last FC layer us-
ing the CAMELYONI16 dataset [5], which is closely
related but different from CAMELYON17. A base-
line fully supervised learning (FSL) method is imple-
mented' which is the top ranked in the leaderboard.

2. NIH Chest Xray Dataset: For lung disease classifi-
cation we adopted the NIH ChestXray14 dataset [46]
having 112, 120 expert-annotated frontal-view X-rays
from 30,805 unique patients and has 14 disease la-
bels. Original images were resized to 224 x 224. A
pre-trained resnet-101 was finetuned using the CheX-
pert dataset [ 1 8] and the chosen baseline FSL was from

[59].

3. CheXpert Dataset: We used the CheXpert dataset [ 18]
consisting of 224, 316 chest radiographs of 65, 240 pa-
tients labeled for the presence of 14 common chest
conditions. Original images were resized to 224 x 224.
A pre-trained resnet-101 was finetuned using the NIH
dataset [40] and the baseline FSL method was of [38]
which is ranked second for the dataset with shared
code.

4. Kaggle Diabetic Retinopathy dataset: has approx-
imately 35,000 images in the provided training set
[19]. Images are labeled by a single clinician with
the respective DR grade, out of 4 severity levels:
1- mild(2443 images), 2-moderate (5291 images), 3-
severe (873 images), and 4-proliferative DR (708 im-
ages). The normal class 0 has 25810 images. A pre-
trained resnet-101 was finetuned using [42] which has

Uhttps://grand-challenge-public.s3.amazonaws.com/evaluation-
supplementary/80/46fc579¢-51f0-40c4-bd1a-
7¢28e8033f33/Camelyon17 .pdf
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Figure 2. Feature visualizations for NIH ChestXray Dataset: (a) Seen+Unseen classes from actual dataset; distribution of synthetic samples

generated by (b) SC-GZSL; (¢c) SC-GZSL £ gs;.5;5 (d) SDGN [
(c) and (d) are quite different.

9939 color fundus images (2720 x 2720) from 2740 di-
abetic patients. Although the number of classes are dif-
ferent from Kaggle the features are accurate since the
end task is DR detection. The chosen baseline method
was of [2]. Original images were resized to 224 x 224.

5. Gleason grading challenge dataset > for prostate can-
cer (PCA) [20]. It has 333 Tissue Microarrays (TMAs)
from 231 patients and has 5 Gleason grades. Six
pathologists with 27,15, 1, 24, 17, and 5 years of expe-
rience annotated the data and majority voting was used
to construct the “ground truth label”. The training set
had 200 TMAs while the validation set had 44 TMAs.
A separate test set consisting of 87 TMAs from 60
other patients. Although a much larger dataset for PCA
using WSIs is available®, the data cannot be used for
external submissions*. The baseline FSL was the clas-
sification outcome of the top ranked method’. The fea-
ture extractor was a pre-trained ResNet101 finetuned
using the CAMELYON16 dataset [5]. Since both are
histopathology image datasets, the feature extractor is
quite accurate. The high dimensional images were di-
vided into 224 x 224 patches. The individual labels
patches from normal images were all ‘normal’. For
the diseased images (all Gleason grades except 1), the
labels of individual patches were obtained using the
multiple instance learning method of [8]. Thus we ob-
tained more than 5, 000 patches of each label.

Since we did not have labels of the organizer designated
test sets of all datasets, a 70/10/20 split at patient level was
done to get training, validation and test sets for NIH Chest
Xray, CheXpert and Kaggle DR datasets.

Zhtps://gleason2019.grand-challenge.org/Home
3https://www.kaggle.com/c/prostate-cancer-grade-
assessment/overview
“https://www.kaggle.com/c/prostate-cancer-grade-
assessment/discussion/201117
Shttps://github.com/hubutui/Gleason

]. Different colours represent different classes. (b) is closer to (a), while

For natural images we use the following five datasets: 1)
CUB [45], AwA1 [24], AwA2 [49], SUN [36], and FLO
[35]. CUB includes 11K images and 200 species of birds
labeled with 312-D attributes. AwA1 and AwA?2 consist of
50 kinds of animals described by 85- D attributes, contain-
ing 30K and 37K images respectively. SUN is a large-scale
scene attribute dataset, including 717 classes and 14K im-
ages with 102-D attributes. FLO con- sists of 8K images
from 102 flower classes. Adapting our method to natural
images is done by replacing the class vector (e) with the
class attribute vector.

4.2. Baseline Methods

We compare our method’s performance with the follow-
ing GZSL methods employing different feature generation
approaches such as CVAE or GANs: 1) CVAE based gener-
ation method of [17]; 2) over complete distribution (OCD)
method of [21]; 3) self-supervised learning GZSL method
of [47]; 4) FSL- Top performing FSL methods of corre-
sponding datasets. Following GZSL protocol we report
performance for Seen and Unseen classes. Our method
is denoted as SC-GZSL (Selfsupervised Clustering based
GZSL).

4.3. Visualization of Synthetic Image Features

Figure 2 (a) shows t-SNE plot of features from actual
data from the NIH chest Xray dataset where the different
classes are spread over a wide area, with slight overlap be-
tween some classes. Figure 2 (b) shows the distribution of
synthetic features generated by our method. Although the
corresponding clusters for the different classes have sepa-
rate locations in the two figures they are similar to that of
Figure 2 (a) in the sense that the different classes are simi-
larly separated. Figure 2 (c) shows the feature distribution
for our method without using self-supervision. The result-
ing distribution is compact without overlap between classes,
which is not representative of the real-world case. Clas-
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sifiers trained on such distributions perform poorly on un-
seen classes. Figure 2 (d) shows the feature distributions
using SDGN [47]. Although it also uses SSL the result-
ing feature representation is less accurate than our proposed
method which contributes to the corresponding inferior per-
formance.

4.4. Generalized Zero Shot Learning Results

Table | summarizes the results of our algorithm on nat-
ural images. The best performing method amongst all com-
peting methods is SDGN [47]. However we are able to out-
perform it despite using a much simpler architecture. A Mc-
Nemar’s statistical test [32] shows that the results between
SC-GZSL and SDGN is not very significant (p = 0.062),
except for the SUN dataset (p=0.01). This dataset is partic-
ularly challenging as demonstrated by the fact that accuracy
values are lower than other datasets.

The results for medical images shown in Table 2 shows
our proposed method outperforms all competing GZSL
methods including SDGN. This significant difference in
performance can be explained by the fact that the com-
plex architectures that worked for natural images will not
be equally effective for medical images which have less in-
formation. Absence of attribute vectors for medical images
is another contributing factor. The class attributes provide a
rich source of information about natural images which can
be leveraged using existing architectures. On the other hand
medical images require a different approach.

4.5. Ablation Studies

Table 2 also shows results for the following ablation
studies: 1) SCGZSL,zs,.,- SCGZSL without the loss
term Lgsr1 (Eqn.5) for obtaining the anchor vectors, 2)
SCGZSLy 245, - SCGZSL without the loss term Lggsr2
(Eqn.6) to get anchor vectors, 3) SCGZSL .- Using only the
baseline loss term £(zs, z¢) (Eqn.3) for clustering all seen
and unseen classes together, and no Lggy3 for feature syn-
thesis; 4) SCGZSL,, ¢ ,- SCGZSL without the loss term
Lssrs (Eqn.8) for training the feature synthesis network;
5) SCGZSL—onlyLgsgr3- SCGZSL using only Lggr3 for
feature synthesis without Lssr1.1, L5512

The first three ablation studies investigate the effect of
clustering on the final classification results. Their sig-
nificant performance degradation compared to SCGZSL
indicates the importance of our novel SSL based terms
(Lssr1,Lssr2) in obtaining accurate anchor vectors. The
baseline method, SCGZSL,, does not use any form
of self supervision and has lowest H values. Com-
pared to SCGZSL, we observe that excluding Lssr3
(SCGZSL 44 ,.5) leads to maximum reduction of H (more
than 3.5%) across all datasets . This indicates that Lggr3
makes the most significant contribution to our method’s per-
formance. The use of anchor vectors makes it easier to syn-

thesize features of unseen classes.

The influence of Lgsr1,Lssr2 is quantitatively sim-
ilar as shown by similar H values of SCGZSL, ;. ,>
SCGZSL,,zss;, across all datasets. However their differ-
ence in H values compared to SCGZSL is nearly 2.4%
which is significant (p = 0.01). Thus the use of self su-
pervision is an important factor in obtaining accurate anchor
vectors (cluster centroids). Although the baseline clustering
mechanism, SWAV, uses self supervision in the form of con-
trastive loss, including Lssr1 and Lggro sigificantly im-
proves clustering accuracy. Excluding both Lsg11, Lss12
and using the baseline SWAV (‘only wLggsr3’) gives signif-
icantly reduced H values for the different datasets despite
using Lggr3 for feature synthesis. This clearly indicates
the importance of having accurate anchor vectors for our
method. SCGZSL, can be considered as the most basic
method without using any of our proposed novel loss terms,
and unsurprisingly gives the worst results.

89
>88
©
3 87
o
<t
= 86
<
i}
= 85
L
s D
g 84 /‘)
s __|
T 83¢—
82‘
0.4 0.6 0.8 1 1.2 1.4 1.6
Values of Different A
()
20 |
oo, oo
T s9o.5 [
S
S sod = S —
= r = =
S 88.5
=1 T
3
= 88
a e
(se]
=1 87.5
87
Oo.1 0.2 0.3 0.4 0.5
Values of Different o

Figure 3. Hyperparameter Plots showing the value of H and clas-
sification accuracy for different values of;(a) A; (b) 0.

4.6. Hyperparameter Selection

For all the competing methods in the case of medical
images we start with the original values provided by the
authors and vary them in range = + 0.5z in steps of 2/10,
where x is the initial value. The best results are usually
obtained using author provided values for each method.

Figure 3 (a) shows the harmonic mean values for the NIH
Chest Xray dataset for different values of hyperparameters
A1, A2, A3, while Figure 3 (b) shows the corresponding plots
for different values of o1, 02. The \’s were varied between
[0.4 — 1.5] in steps of 0.05 and the performance on a sep-
arate test set of 10,000 images was monitored. We start
with the base cost function of Eqn. 7, and first select the
optimum value of A\;. A; values is fixed and we then deter-
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Natural Images
Method CUB AwAl AwA2 SUN FLO

S U H S U H S U H S 8] H S U H
f-Vaegan [51] | 65.1 614 63.2 - - - 88.6 84.8 86.7|419 606 496 | 872 787 82.7

GXE [25] 68.7 57.0 623 |89.0 877 884|900 80.2 848|581 454 51.0 - - -
SDGN [47] | 702 699 70.1 | 88.1 87.3 87.7|89.3 888 89.1 | 460 620 528|914 783 844

GDAN [17] | 66.7 393 495 - - - 67.5 32.1 435|899 381 534 - - -

OCDI[21] 599 448 513 - - - 73.4 595 657 | 429 448 438 - - -
SCGZSL 717 70.6 71.1 | 885 88.1 883|899 893 89.6| 503 621 556 |91.8 794 852

Table 1. GZSL Results For Natural Images: Average per-class classification accuracy (%) and harmonic mean (H) accuracy of generalized

zero-shot learning when test samples are from Seen(S) or Unseen (U) classes. Numbers for competing methods are taken from [47]. S, U
denote Accs, Accy.
Multiple Medical Image Datasets
Method CAMELYONI17 NIH Xray CheXpert Kaggle DR Gleason
S U H S U H S U H S 18] H S U H
f-VAEGAN [51] | 90.2 88.2 89.2 | 829 80.0 814|885 87.6 880|928 902 915|882 851 86.6
GDAN [17] 91.1 89.1 90.1 | 83.8 80.9 823|892 880 886|942 910 92.6 | 88.8 86 874
OCDI[21] 915 893 904 | 847 81.3 830|899 881 89.0 948 913 93.0| 892 869 88
SDGN [47] 92.1 895 90.8 | 844 81.1 827|902 882 892|950 919 934 | 90.0 87.8 88.9
SCGZSL 93,5 91.1 923|872 843 857 |91.8 894 90.6 | 96.1 932 947 | 92.1 895 90.8
FSL 9377 935 936|874 869 87.1|92.1 925 923|964 96.1 96.2 | 924 922 923
SCGZSL Ablation Studies
wlssii 912 88.7 899 | 845 821 833|891 869 880|922 896 909 903 869 88.6
wlssLo 90.8 88.1 894 | 840 822 831|888 862 875 |91.8 882 90.0 8.2 8 87.6
wlssrs 90.0 87.0 885|832 81.0 821 | 87.6 851 863 |90.1 867 884|884 855 869
only Lssr3 89.3 864 878|826 807 81.6|87.0 845 857|889 859 874|877 849 863
C 872 84.1 856 | 80.7 79.1 79.7 | 84.6 827 836|865 837 851|861 828 844

Table 2. GZSL Results For Medical Images: Average per-class classification accuracy (%) and harmonic mean accuracy of generalized
zero-shot learning when test samples are from Seen (Setting .S) or unseen (Setting U) classes. Results of ablation studies are also shown.

mine Ao, and then A3 by fixing A1, A2. The order in which
the parameters were set is important and we find the above
order as giving the best results. Similarly the value of o’s
were varied between [0.1,0.5] in steps of 0.05, and the re-
sulting classification accuracy of the Xray images was de-
termined. i.e., whether they were assigned to the correct
cluster (class).

Figure 4 shows, for the NIH Chest Xray and CAME-
LYONI17 dataset, the effect of adding synthetic samples on
Accg, Accy as a function of dataset augmentation factor.
Increasing synthesized examples increases Accy at a high
rate while reducing Accg, although at a lower rate. TSyn-
thetic samples improve discriminative power of classifiers
and reduce bias towards Seen classes.

5. Conclusion

We propose a GZSL approach for medical images with-
out relying on class attribute vectors. Our novel method can
accurately synthesize feature vectors of unseen classes by
employing self supervised learning at different stages such

Accuracy And Harmoni
e e
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(a)

racy And Harmonic Mean
NI

Accu
o

(b)
Figure 4. Value of accuracy and H when adding synthetic samples
to the dataset: (a) NIH dataset; (b) CAMELYONI17 dataset.

as anchor vector selection, and training the feature genera-
tor. Using self supervision allows us to bridge the seman-
tic gap between Seen and Unseen classes. The distribution
of synthetic features generated by our method are close to
the actual distribution, while removing the self-supervised
term results in unrealistic distributions. Experimental re-
sults show our method outperforms other GZSL approaches
in literature.
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