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Abstract

Medical scans are extremely important for accurate di-
agnosis and treatment. To assist staff members in such cru-
cial tasks, developing a computer vision model that effi-
ciently processes a medical image and results in a gener-
ated report can be highly beneficial. Such a robust system
can not only act as a helping hand for professionals but also
eliminate the chances of error that might arise in the case
of in-experienced staff members. However, previous studies
lack focus on experimenting with the visual extractor, which
is of eminent importance. Keeping this in mind, we propose
a novel architecture of a modified HRNet which includes
added skip connections along with convolutional block at-
tention modules (CBAM). The entire architecture can be di-
vided into two components, the first being the visual extrac-
tor where the pre-processed image is fed into the HRNet
convolutional layers. Outputs of each down-sampled layer
are concatenated after passing through the attention mod-
ules. The second component includes the use of a memory-
driven Transformer that generates the report. We evaluate
our model on two publicly available datasets, PEIR Gross
and IU X-Ray, establishing new state-of-the-art for PEIR
Gross while giving competitive results for IU X-Ray.

1. Introduction

Medical images generated at pathology or radiology cen-
ters are used on a daily basis for accurate diagnosing of the
disease or infection in a human’s body. Almost every known
disease requires laboratory evidence for confirmation and
quick treatment. These scans are thus analysed by medical
professionals and textual reports Figure 1 are created, which
is often a tedious and time-consuming task. Given the num-
ber of patients in highly populated countries, the number
of medical practitioners usually have to complete writing
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Figure 1: Sample images from the PEIR Gross dataset. Cor-
responding generated reports are shown alongside the im-
age.

a pillar of reports in a limited amount of time. This can
also lead to inaccurate diagnosis and thus can be harmful
to the patient’s life. Another issue arises when the medical
practitioner has less experience, he or she may struggle to
study the medical images, making the task extremely time-
consuming.

With the recent advancements in the field of artificial in-
telligence in developing state-of-the-art models for assis-
tance in many day-to-day activities, deep learning would
definitely be a promising approach to help pathologists and
radiologists in diagnosing abnormalities and would also
lessen their burden.

A complete medical report consists of a medical im-
age along with a comprehensive explanation of the find-
ings, impressions, abnormalities, and deductions. For ex-
ample, as per [13] radiology reports should include nar-
rative descriptions/itemization of findings, measurements,
image annotations, key observations, inferences, and con-
clusions in addition to other components. These reports are
complex and cannot be generated by the usual image cap-
tioning approaches since those are suitable for short sen-
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Dataset Name Year #Images Tags #Reports Average Sentence Length

IU X-Ray 2015 7470 MESH & MTI extracted terms 3955 reports 35 words
PEIR Gross 2018 7442 TF-IDF caption words 7422 sentences 12 words

Table 1: Summary of Datasets used

tences. This problem is addressed by using a memory-
driven Transformer that is capable of generating detailed
reports. Another issue is localizing image regions that may
contain abnormalities and specifically addressing these re-
gions in the report [12]. This is tackled by using multiple
attention modules linking the visual extractor to the Trans-
former.

Overall, the main contributions of our work are:

• We propose MEDSKIP, a novel visual extractor that
incorporates skip connections and convolutional block
attention modules with HRNet [22], combined with a
memory-driven Transformer for medical report gener-
ation.

• We perform extensive experiments on two datasets to
show the effectiveness of the proposed method.

The paper consists of the following subsections: Sec-
tion 2 reviews related works. Section 3 introduces the basic
methodology. Section 4 presents the experimental results
and Section 5 concludes the paper.

2. Related Work
Image Captioning Image captioning is the task of auto-
matically generating text descriptions for images. With the
advent of deep learning, many works adopted a CNN-RNN
framework [24], where CNNs were used to encode visual
information and condition language generation while RNNs
(LSTM [10]) were used as language models. The success of
the attention concept [1] led to the addition of visual atten-
tion [8, 26] and visual as well as semantic attention [28] to
the CNN-RNN architecture. Furthermore, Krause et al. [14]
explored the use of hierarchical recurrent models to gener-
ate long paragraph captions.

More recently, the introduction of the Transformer [23]
has led to the use of Transformer-based models for image
captioning [9, 11, 4]. To balance features from the visual
and textual modalities, Chen et al. [2] equipped an encoder-
decoder attention mechanism with self-resurrecting acti-
vation units and leveraged pre-trained language models
(BERT [7], GPT-2 [19]) for their linguistic knowledge.

Medical Report Generation Earlier works like [20] used
a CNN-RNN framework that generated structured reports
for chest X-ray images by predicting tags. Jing et al. [12]

introduced a co-attention mechanism to localize abnormal
regions, with a pre-trained VGG network [21] to get vi-
sual features and a hierarchical LSTM model to generate
reports. Xue et al. [27] proposed a CNN-RNN architec-
ture combined with an attention mechanism that used the
encoding of an image and a generated sentence to guide the
generation of the next sentence.

Liu et al. [16] introduced a domain-aware report gen-
eration system that first predicts the topics for the report
and then conditionally generates sentences for these top-
ics. The system is fine-tuned using reinforcement learning
to improve the clinical accuracy of the generated reports.

Chen et al. [3] introduced a memory-driven Transformer
with relational memory to record information from previ-
ous generation processes and a memory-driven conditional
layer normalization to incorporate the relational memory
into the Transformer.

Compared to previous studies, the approach proposed in
this paper focuses on improving the extraction of visual fea-
tures by adding skip connections and attention modules to
the HRNet architecture, thereby leading to the generation of
more accurate medical reports.

3. Proposed Methodology

This section highlights the main pathway followed by
our model to learn pathology and radiology image datasets.

3.1. Visual Extractor

For a medical image I , the visual features X are ex-
tracted using a visual extractor. We use a modified HR-
Net [22] with skip connections and convolutional block at-
tention modules as our visual extractor, detailed below. The
extracted features are then used as inputs by the Trans-
former.

HRNet Ke Sun et al. [22] introduced HRNet for the
human pose estimation task. HRNet starts with a high-
resolution branch in the first stage. In every following stage,
a new branch is added to current branches in parallel with 1

2
of the lowest resolution in current branches. As the network
has more stages, it will have more parallel branches with
different resolutions, and resolutions from previous stages
are all preserved in later stages. It has performed extremely
well on semantic segmentation, instance segmentation, and
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Figure 2: Block diagram of the modified HRNet architecture. The output of each downsampling layer is extracted and passed
through CBAM modules (as depicted in green boxes). Results from each attention block are concatenated and fed into the
Transformer.

object detection tasks. We have used a modified pose HR-
Net as our visual extractor. We have made two changes to
HRNet’s standard architecture.

• Skip Connections: The residual branches of HRNet
with lower resolution run parallel to the branch with
the highest resolution. As each downsampling layer is
encountered, we extract the feature representation of
the downsampled block.

• Attention Module: The extracted features are then
fed into a simple convolutional block attention module
which tries to extract the most important features from
a feature representation. Once these features have been
passed through the attention modules, they are con-
catenated together to create a 2048 dimensional feature
vector.

Convolutional Block Attention Modules To inculcate
attention into our work, we used the convolutional block at-
tention module proposed by Sanghyun Woo et al. [25]. We
use this because the module can be used as an additional
plugin to our skip connections and it is end to end trainable.
The module can be divided into two parts which are spatial
and channel attention submodules. Given an intermediate
feature map F ∈ IRC×H×W as input, CBAM sequentially
infers a 1D channel attention map Mc ∈ IRC×1×1 and a 2D
spatial attention map MS ∈ IR1×H×W. The overall trans-
formation performed by the module can be summarized as:

F ′ = Mc(F )⊗ F (1)

F ′′ = Ms(F
′)⊗ F ′ (2)

where ⊗ denotes element-wise multiplication. F ′′ is the
final refined output after being processed by the attention
module.

3.2. Transformer

We adopt the Transformer model introduced by Vaswani
et al. [23]. Transformer is an encoder-decoder model where
the encoder contains stacked layers of self-attention and
feed-forward neural network, and the decoder uses self-
attention on words and cross-attention over the output of
the last encoder layer.

Encoder We use the standard encoder from Transformer
that operates directly on the visual features extracted by the
Visual Extractor 3.1. The encoding process can be formal-
ized as:

{h1,h2, ...,hS} = fe(x1, x2, ..., xS) (3)

where the outputs are the hidden states hi encoded from the
visual features xi from the visual extractor and fe(.) refers
to the encoder.

Decoder We use a modified version of Transformer’s de-
coder introduced by Chen et al. [3]. The modified decoder
contains a relational memory (RM) to facilitate learning
from patterns in reports and record key information of the
generation process. Further, a memory-driven conditional
layer normalization (MCLN) is proposed to incorporate re-
lational memory into the decoder. We refer the reader to
Chen et al. [3] for a detailed description of the memory-
driven decoder.

4. Experimental Results

The complete architecture of the CNN-Transformer
network used is given in Figure 2.

4.1. Dataset Details

• PEIR GROSS: The dataset was first introduced in [12]
wherein images were downloaded from the official
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Dataset Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE

PEIR Gross

LRCN [8] 0.261 0.184 0.136 0.088 0.135 0.254
SOFT ATT [26] 0.283 0.212 0.163 0.113 0.147 0.271

MLC+COATTENTION+LSTM [12] 0.300 0.218 0.165 0.113 0.149 0.279
R2GEN [3] 0.379 0.262 0.193 0.130 0.191 0.411

HRNET 0.312 0.189 0.132 0.083 0.126 0.308
MEDSKIP(Ours) 0.399 0.278 0.209 0.148 0.176 0.414

MEDSKIP + CBAM(Ours) 0.389 0.268 0.201 0.141 0.166 0.395

IU X-Ray

LRCN [8] 0.369 0.229 0.149 0.099 0.155 0.278
SOFT ATT [26] 0.399 0.251 0.168 0.118 0.167 0.323

R2GEN [3](Avg. of 3 runs) 0.428 0.272 0.196 0.151 0.177 0.350

HRNET 0.427 0.251 0.177 0.134 0.173 0.338
MEDSKIP(Ours) 0.467 0.297 0.214 0.162 0.187 0.355

MEDSKIP + CBAM(Ours) 0.467 0.303 0.210 0.155 0.197 0.371

Table 2: Comparison of the full model results on PEIR GROSS dataset (upper part) and IU X-Ray (lower part) with previous
works. Red denotes the best results and Blue represents the next highest value. The last 3 visual extractor models from
both datasets are the models that we have trained ourselves. R2GEN results were replicated using their code. The remaining
represent replicated results reported by Jing et al. [12].

website, also a digital library called The Pathology Ed-
ucation Informational Resource (PEIR) 1. Each image
is of 528 x 792 resolution. It consists of publicly ac-
cessible 7442 teaching images, spread across 21 pre-
defined subcategories. As mentioned in [12], the vo-
cabulary size of the total image captions is 4,452. It
is different from IU-XRAY as it has single sentences
as captions, unlike a report. Each image on average
contains a 12 word caption.

• IU X-Ray: The dataset [5] can be publicly accessed
through the Open Access Biomedical Image Search
Engine 2 . It consists of 7,470 frontal and lateral chest
X-rays along with their radiology report are divided
into four sections. The ‘comparison’ section lists pre-
vious information about the patient such as preced-
ing medical exams; the ‘indication’ section contains
symptoms or reasons of examination; the ‘findings’
section contains detailed radiology observations; and
the ‘impression’ section outlines the final diagnosis.
[18] reports that 104 reports contained no image, 489
were missing ‘findings’, 6 were missing ‘impression’,
and 25 were missing both ‘findings’ and ‘impression’.
Overall, it contains a total of 6674 training instances,
the rest being used for testing purposes.

The train-test-validation split for the PEIR Gross dataset
is 72:8:20 and for the IU X-Ray dataset is 70:10:20. The

1https://peir.path.uab.edu/wiki/Main page
2https://openi.nlm.nih.gov

details about the datasets have been summarized in Table 1
and in the supplementary material.

4.2. Experimental settings

Images are resized to 256 × 256 dimensions and then
random cropping is performed to bring down the size to
224 × 224. After performing randomized horizontal flip-
ping, the images are normalized, grouped into batches, and
are fed into the model. The model is compiled using Py-
Torch and a single Tesla K80 GPU has been used for train-
ing. The model has been trained for 20 epochs with a batch
size of 16 for each variation. The hyperparameters for train-
ing have been chosen after conducting extensive experi-
ments. The training is done using cross-entropy loss with
the ADAM optimizer and the learning rate as 1e-4 for all
the parameters. The value of β1 and β2, i.e. the parameters
used for calculating the moving average of the gradients and
its square are 0.999 and 0.9 respectively. The number of lay-
ers of the Transformer is 3 and beam search has been used
as the sampling method. The remaining hyperparameters of
the Transformer are the same as used in [3].

4.3. Evaluation Metrics

The performance of the aforementioned models is
evaluated using BLEU (Papineni et al. [17]), METEOR
(Denkowski and Lavie [6]) and ROUGE-L (Lin [15]) met-
rics.
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Figure 3: Visual results for MEDSKIP for PEIR Gross and IU X-Ray datasets respectively. Green box displays the prediction
whereas Blue box depicts the ground truth report.

4.4. Performance Evaluation

Table 2 summarises the results obtained by the differ-
ent visual extractor backbones on PEIR Gross and IU X-
Ray respectively. Our baseline network corresponds to HR-
Net, while our proposed network called MEDSKIP includes
the modifications of added skip connections. Additional
experiments with skip connections and integrated attention
modules (CBAM) were performed. Additional experiments
conducted on the HRNet baseline highlight the positive in-
fluence of skip connections and attention modules. Train-
ing the model on MEDSKIP resulted in a score of 0.399
BLEU-1 and 0.278 BELU-2 on PEIR Gross test dataset.
This alone beat the current state-of-the-art algorithms on the
PEIR Gross dataset. Similarly for the IU X-Ray dataset, the
model was able to achieve a BLEU-1 test score of 0.467
with MEDSKIP. Furthermore, all the variations using HR-
Net were tested similarly.

MEDSKIP outperforms HRNet for both datasets. How-
ever, CBAM doesn’t generalise well over different datasets.
Specifically, for PEIR Gross, MedSkip + CBAM performs
worse due to the different types of images (and different
body parts) present in the dataset. On the other hand, Med-
Skip + CBAM outperforms MedSkip for IU X-Ray. The
reason for this could be the fact that each report in IU X-
Ray contains two images, thus CBAM has more informa-
tion to attend on. Further, all the images in IU X-Ray are
uniform (chest x-rays) and make it easier for the model to
generalise.

4.5. Discussion and Comparison

We compare our models with those in previous studies,
including conventional image captioning models as well as
models proposed specifically for medical report generation.
The results are reported in Table 2 for PEIR Gross and IU
X-Ray. These results show that improved visual features
can lead to better-generated reports.

Works such as LRCN [8] and Soft Att [26] are specif-
ically used for generating short sentences, however using
a simple HRNet alone surpasses their results owing to its
dense layers. In [3], visual features have been provided lit-

tle importance, whereas in our work additional network at-
tributes have been introduced, results of which are reflected
in Table 2. For PEIR Gross, as compared to [12] CoAtt
module formed by combining both visual and semantic fea-
tures, we extract visual features alone from each down-
sampled branch which helps in accomodating significant ar-
eas in the images of the diverse range of affected body parts.
To take it one step further, in IU-XRAY dataset, CBAM
is needed to identify differences between similarly shaped
grayscaled chest images. It can be seen that slightly bet-
ter results for BLEU-1, BLEU-2, METEOR and ROUGE
metrics are obtained for the same with the integrated atten-
tion modules. As opposed to the hierarchical LSTM used
in [12], the memory driven transformer used [3] also helps
in scoring an efficient and effective approach towards gen-
erating longer reports (as compared to the image captioning
task).

5. Conclusion

In this study, we propose MEDSKIP network consisting
of a modified HRNet and added skip connections. Convo-
lutional Block Attention Modules were also integrated as
part of the visual extractor which helps the model learn spe-
cific features of the medical image. This is followed by
a memory-driven Transformer which gives us our gener-
ated report. A significant increase is observed in the case of
PEIR Gross dataset, which contains pathology images that
are not limited to just one organ where the model beats the
previous state-of-the-art values for all six metrics. For IU
X-Ray, it is able to achieve competitive results compared
to the previous state-of-the-art values. It can be seen that
MedSkip is capable of generalizing for all medical images
including body parts and radiology images.
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