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Abstract

Combining datasets from multiple sites/scanners has
been becoming increasingly more prevalent in modern neu-
roimaging studies. Despite numerous benefits from the
growth in sample size, substantial technical variability as-
sociated with site/scanner-related effects exists which may
inadvertently bias subsequent downstream analyses. Such
a challenge calls for a data harmonization procedure which
reduces the scanner effects and allows the scans to be
combined for pooled analyses. In this work, we present
MISPEL (Multi-scanner Image harmonization via Structure
Preserving Embedding Learning), a multi-scanner harmo-
nization framework. Unlike existing techniques, MISPEL
does not assume a perfect coregistration across the scans,
and the framework is naturally extendable to more than two
scanners. Importantly, we incorporate our multi-scanner
dataset where each subject is scanned on four different
scanners. This unique paired dataset allows us to define and
aim for an ideal harmonization (e.g., each subject with iden-
tical brain tissue volumes on all scanners). We extensively
view scanner effects under varying metrics and demonstrate
how MISPEL significantly improves them.

1. Introduction

Modern neuroimaging studies frequently combine data
collected from multiple sites. This collective effort holds
promise to (1) increase the power of hypothesis tests in
studies, and (2) provide resources for confirmatory analyses
hypothesis generation for more specialized studies. How-
ever, these aggregated datasets often contain hidden techni-
cal variability as substantial biases which may obfuscate the
biological signals of clinical interest [19, 9, 18].

The technical variability in neuroimaging primarily

(a) GE (b) Philips (c) Prisma (d) Trio

Figure 1. Example of scanner effects. Top: a subject’s paired
axial slices, coregistered across the four different scanners (GE,
Philips, Prisma, and Trio) in our multi-scanner dataset. Bottom:
the corresponding intensity histograms (of whole scan) with iden-
tical axes. In this example of the paired slices, the scanner effects
are immediately noticed with the varying intensity histograms.

arises as intensity unit effects (varying image intensity
scales across different images) and scanner effects (system-
atically varying image characteristics across different im-
ages) [22]. Intensity unit effects have long been recognized
and are the subject of studies on intensity normalization.
The scanner effects is the issue studied in the harmonization
studies which aim to methodologically remove such vari-
ability [10, 5, 25]. Nonetheless, this is still a growing and
challenging topic due to two practical obstacles: (1) lack of
thorough understanding of how scanner effects appear on
images, and (2) lack of criteria for assessing scanner effects
and evaluating harmonization methods. Fig. 1 illustrates an
example from a multi-scanner dataset with scanner effects.

Our interest specifically lies in understanding the scan-
ner effects which appear in multiple forms beyond simple
intensity distribution shifts. For instance, contrast, reso-
lution, and noise were proposed as three possible changes
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caused by scanner effects [4]. Although studies incorporate
multi-scanner datasets, this has not been thoroughly investi-
gated, especially in a quantitative manner. For one, it is still
unclear how the scanner effects relate to various scanner
properties including software, hardware, acquisition pro-
tocol, and other unknown sources [5, 22]. Lack of stan-
dardized evaluation criteria is another common issue in the
current harmonization studies. Unfortunately, finding such
criteria is known to be demanding and has been addressed
as a hard problem in comparable harmonization studies in
other fields (e.g., genomics [3]). Moreover, in neuroimag-
ing, this is a unique challenge since typical multi-scanner
datasets inevitably introduce other types of variability. For
instance, when two images from two different subjects are
taken by two different scanners, disentangling the biologi-
cal and scanner variability becomes extremely challenging.

Hence, harmonization studies in neuroimaging partic-
ularly demands a systematic experimental setup to reveal
underlying scanner effects. One solution for solving both
issues is having cross-site/scanner traveling subjects and
studying a paired dataset. In such dataset, a set of cross-
scanner images with short time gaps, called paired images,
were collected for each subject. By construction, scanner
effects can be studied as the dissimilarity within paired im-
ages. For instance, harmonization methods can be evaluated
by measuring the similarity between the paired images.

From a methodological perspective, such notion of
paired data may directly dictate a family of methods to con-
sider. In particular, the paired and unpaired data is consid-
ered as the labeled and unlabeled data, respectively. Ac-
cordingly, the harmonization methods can be categorized as
supervised and unsupervised methods. While most of the
current harmonization methods are unsupervised, there ex-
ist two notable supervised methods: DeepHarmony [5] and
mica [22]. While DeepHarmony is a contrast harmonization
method with a network architecture limited to harmoniza-
tion for just two scanners, mica is a multi-scanner (i.e., more
than two) harmonization approach. Both of these methods
propose to harmonize images by adapting them to one of
the scanners, called target scanner. However, determining
the “best” scanner to adapt others to, could be another chal-
lenge on its own.
Contributions. This work makes the following contribu-
tions towards better understanding of the multi-scanner neu-
roimaging data harmonization. (1) We propose a multi-
scanner deep harmonization framework called MISPEL
(Multi-scanner Image harmonization via Structure Preserv-
ing Embedding Learning), which trivially generalizes to
more than two scanners while preserving the brain-specific
structure. (2) We introduce a unique paired multi-scanner
data on four different scanners which is the first study of
its kind to the best of our knowledge. (3) We extensively
assess the scanner effects and evaluate harmonization from

multiple different angles, only possible within paired data.
We make our code publicly available.1

2. Related Work

2.1. Intensity Normalization
Intensity normalization methods can partly remove scan-

ner effects, especially when this variability appears as sim-
ple linear intensity transformations. These methods assume
that the scanner effects can be removed as a global vari-
ability from images of all scanners [22]. Hence, these
methods can be applied to images of multiple scanners, but
they may not capture nonlinear or more complicated scan-
ner effects [22]. One example of such methods is White
Stripe [20], which systematically standardizes the white
matter intensity distributions and is shown to achieve har-
monization [7, 22]. Similarly, RAVEL [7] is a normaliza-
tion/harmonization method that removes the within-subject
variability of cerebrospinal fluid which is strongly related to
the scanner effect.

2.2. Harmonization
The following techniques aim to directly harmonize the

images which are largely be categorized into either unsu-
pervised methods with unpaired data or supervised methods
with paired data [5, 6, 26]
Unsupervised Harmonization. One may view harmoniza-
tion as an image-to-image (I2I) translation (synthesis) prob-
lem, i.e., synthesizing images from one scan to be similar to
the images from a target scanner [15]. This line of work
is sensible yet may be prone to unintentionally alter the
brain structure if the synthesis process which often involves
a deep neural network is left unconstrained. In response,
several approaches aimed to explicitly disentangle the struc-
tural and contrast information to only harmonizing the later
component [6, 26]. However, these methods need a cross-
modality paired data (e.g., each subject has both T1- and
T2-weighted MRs), rendering them situational. Further,
generative adversarial networks (GAN) based approaches
also appeared for both I2I translation [13, 12] and harmo-
nizing image-derived measures [25, 24], but they were fun-
damentally limited to two scanners or required an arbitrarily
chosen target scanner [12].
Supervised Harmonization. We note two approaches that
rely on a paired data. DeepHarmony [5] is an I2I harmo-
nization method with two U-Net networks for each of the
two scanners it can harmonize. The other method, mica
[22], is a voxel-wise multi-scanner harmonization method,
which adapts the cumulative distribution function (CDF) of
voxels of the images to the CDF of their corresponding vox-
els in the target scanner. While the former is fundamen-
tally limited to two scanners, the latter needs an arbitrarily

1https://github.com/Mahbaneh/MISPEL
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Figure 2. Illustration of MISPEL. For each of j = 1 : N input scans and for each of i = 1 : M scanners, Enci (U-Net) outputs
the corresponding latent embeddings: Zj

i = Enci(X
j
i ). The corresponding Deci (linear function) maps the embeddings to the output:

X̄j
i = Deci(Z

j
i ). Step 1 Embedding Learning: Enci=1:M and Deci=1:M are updated using the embedding coupling loss (Lcoup) and

the reconstruction loss (Lrecon). Step 2 Harmonization: Only Deci=1:M are updated using the harmonization loss (Lharm) and the
reconstruction loss (Lrecon). Refer to Alg. 1 for details on training.

chosen target scanner. The supervised methods requiring
a paired data may seem more situational than the unsuper-
vised ones, but the experimental benefits from the paired
images are highly valuable, especially in the current ex-
ploratory stage.

3. Methods

Our proposed framework, MISPEL, aims to harmonize
scans from multiple scanners with potential scanner ef-
fects. This addresses several key properties that a success-
ful and practical harmonization technique must possess: (1)
the paired images across different scanners should be suc-
cessfully harmonized, (2) the structural (anatomical) infor-
mation of the original brains could be preserved, and (3)
the framework should be generalized to any number of
scanners. MISPEL achieves these with a two-step train-
ing framework consisting of two modules: encoder and de-
coder. Alg. 1 and Fig. 2 describe our framework.

Notations and Assumptions. We consider M scanners for
the paired data where each subject is scanned on all M
scanners. The axial slices across all the subjects are com-
bined for a total of N scans for each scanner. The dataset
thus consists of Xj=1:N

i=1:M where Xj
i is the axial slice j from

scanner i, and i = 1 : M denotes i ∈ {1, . . . ,M}. We note
that for each subject, the scans are coregistered across the
scanners to the mean template. Thus, for each j, we assume
the scans Xj

1 , X
j
2 , . . . , X

j
M are anatomically similar and

have the same image size of H by W . The goal is to learn a

framework which derives X̄j=1:N
i=1:M where X̄j

1 , X̄
j
2 , . . . , X̄

j
M

are harmonized with no scanner effects.

3.1. Encoder-Decoder Unit

Encoder. For each scanner i, its encoder network Enci
decomposes each scan Xj

i to its set of latent embeddings
Zj
i = [Zj

i,1, . . . , Z
j
i,L] where Zj

i,l is the lth latent embedding
of Xj

i . The number of embeddings L is heuristically chosen
and fixed. We use a 2D U-Net [17] for each Enci, and the
latent embedding Zj

i,l ∈ RH×W is of size identical to Xj
i .

Decoder. After each Enci, its corresponding decoder net-
work Deci maps the latent embeddings Zj

i to the image
space X̄j

i . Since Zj
i and Xj

i have the same sizes, we let
Deci to be a linear function:

X̄j
i =

L∑
l=1

γi,lZ
j
i,l, (1)

where γi,l is the coefficient for Zj
i,l. Thus, each Deci learns

the set of linear combination coefficients γi,1, . . . , γi,L,
which is essentially a 1× 1 convolution.

3.2. Two-step Training for Harmonization

Note that each Enci-Deci setup achieves Xj
i → Zj

i →
X̄j

i only with respect to each scanner i and cannot achieve
harmonization by itself. Thus, producing X̄j=1:N

i=1:M which
are harmonized across M scanners requires a mechanism
to enforce such similarity. For instance, one may naı̈vely
train all Enci=1:M and Deci=1:M to directly impose X̄j

1 ≈
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Algorithm 1 MISPEL
Data:
- N axial slices (combined across all subjects) from each of
M scanners (each subject is coregistered across scanners)
Variables:
- i: Scanner index
- j: Slice index
- l: Embedding’s component index
- T1, T2: Max training iterations for Step 1 and Step 2
- H,W : Height and width of each scan
- Xj

i ∈ RH×W : Axial slice j from scanner i
- Zj

i,l ∈ RH×W : Latent embedding l of Xj
i

- Zj
i = [Zj

i,1, . . . , Z
j
i,L]: L latent embeddings of Xj

i

- X̄j
i ∈ RH×W : Harmonized Xj

i

Networks:
- Enci: Encoder U-Net for Xj

i → Zj
i

- Deci: Decoder linear map for Zj
i → X̄j

i

Algorithm:
1: procedure STEP 1: EMBEDDING LEARNING
2: for t = 1, . . . , T1 or until Xj

i ≈ X̄j
i do

3: for each slice j do
4: for each scanner i do
5: Zj

i ← Enci(X
j
i ) (embeddings)

6: X̄j
i ← Deci(Zj

i ) (reconstruction)
7: end for
8: Update Deci=1:M and Enci=1:M (Eq. (4))
9: end for

10: end for
11: end procedure (end Step 1)
12: procedure STEP 2: HARMONIZATION
13: for t = 1, . . . , T2 or until X̄j

1 ≈ · · · ≈ X̄j
M do

14: for each slice j do
15: for each scanner i do
16: Zj

i ← Enci(X
j
i ) (embeddings)

17: X̄j
i ← Deci(Zj

i ) (harmonization)
18: end for
19: Update only Deci=1:M (Eq. (6))
20: end for
21: end for
22: end procedure (end Step 2)

· · · ≈ X̄j
M with a loss function. However, in practice, the

coregistered scans exhibit small structural differences, and
this may not guarantee preserving the brain structure. Re-
call that the desired harmonization we seek must preserve
the structure while matching the intensities. As we show
next, we implement a two-step training which addresses
such issues: (1) first learning the embeddings with struc-
tural information, and (2) harmonizing the intensities with
the embeddings without altering the structures.

3.2.1 Step 1: Embedding Learning

Alg. 1 lines 1:11 show Step 1. For slice j and scanner i,
we first use the corresponding Enci for the input scan Xj

i

to compute its embeddings Zj
i . Then, using Deci, we also

compute the output X̄j
i . Then, we update Enci and Deci

via two loss functions.
Reconstruction Loss. To derive our embeddings, we train
Enci and Deci to accurately reconstruct the input: X̄j

i =

Enci(Deci(X
j
i ). We use the following reconstruction loss

which enforces each output X̄j
i to be similar to its input Xj

i :

Lrecon(X
j
i=1:M , X̄j

i=1:M ) =

M∑
i=1

MAE(Xj
i , X̄

j
i ) (2)

where MAE(Xj
i , X̄

j
i ) is the pixel-wise mean absolute er-

ror. Since each Deci is a linear combination of the embed-
dings, this reconstruction process forces the embeddings to
hold structural information as shown in Fig. 2.
Embedding Coupling Loss. We also incorporate a cou-
pling mechanism to ensure that the embeddings across
the scanners roughly capture similar characteristics of the
scans. Namely, we seek Zj

1,l ≈ · · · ≈ Zj
M,l for each l:

Lcoup(Z
j
1,l, . . . , Z

j
M,l) =

1

LP

L∑
l=1

P∑
p=1

var(Zj
1,l(p), . . . , Z

j
M,l(p))

(3)
where Zj

i,l(p) denotes the p’th element of Zj
i,l and var com-

putes the variance. Minimizing this loss “couples” the l’th
embeddings of M scanners. In practice, this loss only needs
to be weakly imposed throughout training without degrad-
ing the embedding quality.

The combined loss for Step 1 is

Lstep1 = λ1Lrecon(X
j
i=1:M , X̄j

i=1:M )+λ2Lcoup(Z
j
1,l, . . . , Z

j
M,l)
(4)

where λ1 > 0 and λ2 > 0 are the weights. For each of
j = 1 : N slices, we update Enci=1:M and Deci=1:M . We
repeat this for either T1 times or until the model accurately
reconstructs (i.e., Xj

i ≈ X̄j
i for all j).

3.2.2 Step 2: Harmonization

After Step 1, we continue with the Step 2 training (Alg. 1
lines 12:22.) Similar to Step 1, for each slice j and scanner
i, we derive the embeddings Zj

i and then the output X̄j
i . In

this particular training step, we update only Deci=1:M to
achieve harmonization with the following loss.
Harmonization Loss. We finally impose the image similar-
ity across the outputs X̄j

i=1:M across the scanners. Specifi-
cally, we consider all pairwise similarities:

Lharm(X̄j
i=1:M ) =

2

M(M − 1)

M∑
i=1

M∑
k=i+1

MAE(X̄j
i , X̄

j
k)

(5)
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Table 1. Scanner specifications
Scanner Name GE Philips Prisma Trio
Scanner Hardware DISCOVERY-MR750w 3T Achieva-dStream 3T Prisma-fit 3T Trio Tim 3T
Receive Coil 32Ch-Head MULTI-COIL BC 32Ch-Head
T1-w Sequence Type BRAVO ME-MPRAGE ME-MPRAGE ME-MPRAGE
Resolution (mm) 1.0× 1.0× 0.5 1.0× 1.0× 1.0 1.0× 1.0× 1.0 1.0× 1.0× 1.0
TE/∆TE (ms) 3.7 1.66/1.9 1.64/1.86 1.64/1.86
TR (ms) 9500 2530 2530 2530
TI (ms) 600 1300 1100 1200

which computes the MAE for all combinations of pairs.
One may concern about how a pixel-wise loss such as MAE
may inadvertently alter the structures to maximize the sim-
ilarity. We stress that only Deci=1:M are updated while
Enci=1:M are fixed. Thus, the intensities will be harmo-
nized by updating γi,l of the embeddings in Eq. (1), but the
structures are guaranteed to make no further changes since
the embeddings are fixed.

The final loss for Step 2 also incorporates the recon-
struction loss Lrecon to ensure the harmonized slices do not
overly deviate from their originals:

Lstep2 = λ3Lrecon(X
j
i=1:M , X̄j

i=1:M ) + λ4Lharm(X̄j
i=1:M )

(6)
where λ3 > 0 and λ4 > 0. Similar to Step 1, for each of
j = 1 : N slices, we update Deci=1:M . We repeat this for
either T2 times or until the harmonized images are similar
enough (i.e., X̄j

1 ≈ · · · ≈ X̄j
M for all j.). Once the train-

ing ends, the resulting outputs X̄j=1:N
i=1:M will be the desired

harmonized slices.

4. Experiments
We evaluate our method for harmonizing our in-house

four-scanner dataset. In this section, we (1) present the
dataset in detail, (2) describe the methods we compare
against and specify our training setup, and (3) thoroughly
assess the results from multiple different angles.

4.1. Multi-scanner Dataset

Acquisition and Demographics. We use our local dataset
consisting of N = 18 subjects, where each subject was
scanned for T1-weighted (T1-w) MRs on M = 4 different
3T scanners: General Electric (GE), Philips, Prisma, and
Trio (Table 1). The scans are at most four months apart only.
This unique paired subject dataset is close to an ideal sce-
nario where we can assume the biological variability is min-
imal. Thus, the detected variability primarily comes from
the scanner differences, and we can perform various direct
comparisons to evaluate harmonization. For instance, we
can expect the harmonized scans of each subject to result
in identical tissue volumes across the scanners. The me-
dian age in the sample was 72 years (range 51-78 years),
44% were males, and 44% were healthy subjects and the

rest were with Alzheimer’s disease.
Preprocessing. All images were preprocessed in R [16] us-
ing the preprocessing pipeline in [7]. In this pipeline, all im-
ages are first registered to a high-resolution T1-w image at-
las [14], using the non-linear symmetric diffeomorphic im-
age registration algorithm proposed in [2]. Then, the images
are corrected for spatial intensity inhomogeneity, using the
N4 bias correction method [21]. In the next step, images are
skull-stripped using the brain mask provided in [7]. As a fi-
nal preprocessing step, we scaled each image by dividing by
the image's average intensity. Throughout this manuscript,
these preprocessed images are referred to as RAW images
and are input into our models.

4.2. Models

We assess the scanner differences in four setups: (1)
RAW scans, (2) White Stripe [20], (3) RAVEL [7], and (4)
our model, MISPEL.
White Stripe. White Stripe (WS) is an intensity normal-
ization method for minimizing the discrepancy of intensi-
ties across subjects within brain tissue classes [20]. This
method can be compared to the methods of multi-scanner
harmonization as (1) scanner differences can appear in the
form of cross-scanner intensity discrepancy and thus inten-
sity normalization may result in harmonization in part, and
(2) this method can be applied to images of more than two
scanners.
RAVEL. RAVEL (Removal of Artificial Voxel Effect
by Linear regression) [7] is an intensity normaliza-
tion/harmonization method designed for removing inter-
subject technical variability that remained after WS inten-
sity normalization. In this method, it was assumed that the
variability imposed by scanners can be extracted from con-
trol voxels, cerebrospinal fluid (CSF) voxels, where inten-
sities are known to be disassociated with disease status and
clinical covariates. RAVEL is a voxel-wise technique for
removing scanner variability of images from multiple scan-
ners. We set the number of factors for scanner variability, b,
to 1 as suggested in the original work.
MISPEL. We set the hyper-parameters for our model as
follows. For Step 1, we fixed λ1 = 1 and trained for L ∈
{4, 6, 8} and λ2 ∈ {0.1, 0.2, 0.3, 0.4, 0.5}. We chose chose
L = 6, λ1 = 1, and λ2 = 0.3 based on the total loss
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(a) GM (b) WM (c) CSF

Figure 3. Volume distribution boxplots. In our paired data (i.e., each subject scanned on multiple scanners with little biological differ-
ences), identical volume distributions are expected across the scanners.

Figure 4. Visual assessment of a slice. Rows and columns corre-
spond to methods and scanners respectively.

and the quality of the reconstructed images. For Step 2, we
fixed λ3 = 1 and trained for λ4 = {1, 2, 3, 4, 5, 6}. We
chose λ3 = 1 and λ4 = 4 based on the total loss for this
step in addition to the quality of the harmonized images.
We trained on NVIDIA RTX5000 for T1 = 100 and T2 =
100 with the batch size of 4. ADAM optimizer [11] with a
learning rate of 0.001 was used for both steps. The training
took approximately 200 and 30 minutes for Step 1 and Step
2, respectively.

4.3. Results

With our specific paired sample, we expect the paired
scans to have little biologically meaningful differences.
Thus, any observed dissimilarity among paired images is
assumed to be scanner effect, and increasing their similarity
can be considered as achieving harmonization. We stud-

ied the similarity and dissimilarity of paired images using
three evaluation criteria: (1) visual quality, (2) image sim-
ilarity, and (3) volumetric similarity. The metrics requir-
ing pairwise scanner-to-scanner comparisons considered all
possible combinations of scanner pairs: {(GE, Philips),
(GE, Prisma), (GE, Trio), (Philips, Prisma), (Philips, Trio),
(Prisma, Trio)}. The statistical significance of comparisons
was studied using paired t-test, with p < 0.05 denoting the
significance. For segmentation, we performed a 3-class tis-
sue segmentation by running the FSL FAST segmentation
algorithm [23], by using Nipype package [8] and setting the
tissue class probability threshold to 0.8.

4.4. Visual Quality

We first visually assess the results in Fig. 4 showing an
example of a slice. From top row: (Row 1) RAW exhibits
scanner differences, mainly in contrast with Trio having the
lowest. (Row 2) White Stripe (WS) resulted in similar slices
while losing contrast. (Row 3) RAVEL also resulted in sim-
ilar slices with slightly improved contrast compared to WS.
(Row 4) MISPEL made the slices similar to each other by
adapting the contrasts of GE, Philips, and Prisma to the con-
trast which resembles that of Trio. We note that this does not
imply that we chose Trio as the target scanner to harmonize.
In fact, our method does not require us to predetermine a
specific scanner and naturally finds a middle ground which
the scanners harmonize toward. This may be a practical
advantage of our framework where the best scanner cannot
easily be defined, especially with multiple scanners.

4.5. Image Similarity

For evaluating the image similarity, we selected the mean
structural similarity index measure (SSIM) which measures
the similarity between two images in terms of luminance,
contrast, and structure. High SSIM implies higher similar-
ity between two images, with 1 the highest. Table 2 shows
the mean and standard deviation (SD) of cross-scanner
SSIM for all 6 pairwise combinations of scanners. RAW
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Table 2. Structural similarity index measures (SSIM) between scanners. Mean (and standard deviation) of the subjects is shown in
each comparison. Best SSIMs across methods are in bold. All three methods show statistically significant improvement over RAW.

Methods SSIM Between Scanners
GE-Philips GE-Prisma GE-Trio Philips-Prisma Philips-Trio Prisma-Trio

RAW 0.75 (0.04) 0.78 (0.04) 0.78 (0.05) 0.81 (0.03) 0.81 (0.03) 0.87 (0.04)
WS 0.79 (0.04) 0.80 (0.04) 0.80 (0.05) 0.83 (0.03) 0.83 (0.03) 0.89 (0.04)
RAVEL 0.79 (0.04) 0.80 (0.04) 0.80 (0.05) 0.83 (0.03) 0.83 (0.03) 0.88 (0.04)
MISPEL 0.84 (0.04) 0.85 (0.04) 0.86 (0.05) 0.87 (0.03) 0.87 (0.03) 0.91 (0.03)

Table 3. Mean absolute differences of volumes between scanners. Bold and ∗ indicate smallest mean across methods for each tissue
and significant difference with respect to RAW, respectively.

Tissue Methods Mean Absolute Differences of Volumes Between Scanners
GE-Philips GE-Prisma GE-Trio Philips-Prisma Philips-Trio Prisma-Trio

GM

RAW 30.01 (63.57) 81.53 (70.09) 59.72 (68.41) 63.67 (26.69) 41.20 (20.84) 24.28 (15.21)
WS 30.49 (65.35) 80.80 (71.20) 59.86 (69.71) 62.36 (26.20)∗ 40.47 (20.31) 23.72 (15.95)
RAVEL 19.70 (21.29) 55.48 (23.38) 37.56 (20.23) 55.23 (25.87)∗ 34.75 (19.81)∗ 22.32 (12.99)
MISPEL 21.12 (12.08) 10.35 (6.57)∗ 10.28 (7.21)∗ 25.08 (13.61)∗ 21.59 (12.95)∗ 8.44 (7.65)∗

WM

RAW 37.73 (68.01) 77.94 (68.61) 70.84 (64.01) 41.58 (24.04) 35.78 (22.87) 14.64 (12.25)
WS 36.22 (60.97) 69.43 (59.95)∗ 62.48 (56.05)∗ 35.13 (23.18) 30.04 (21.87) 14.50 (11.83)
RAVEL 36.19 (65.19) 57.65 (56.27)∗ 56.82 (62.49)∗ 28.30 (23.95)∗ 26.72 (20.31)∗ 13.80 (9.29)
MISPEL 19.03 (14.10) 14.88 (8.79)∗ 13.20 (12.82)∗ 24.80 (16.07)∗ 16.39 (12.33)∗ 14.77 (12.69)

CSF

RAW 39.16 (37.16) 27.59 (39.41) 41.05 (40.94) 19.52 (16.09) 15.43 (13.11) 15.89 (10.02)
WS 36.72 (28.91) 24.47 (31.44) 38.15 (32.99) 19.66 (15.65) 14.24 (12.64) 15.94 (10.31)
RAVEL 32.09 (18.92) 20.91 (19.93) 34.96 (21.49) 17.78 (16.05) 12.90 (12.50)∗ 16.50 (10.04)
MISPEL 14.74 (10.10)∗ 11.52 (10.10) 15.78 (8.51)∗ 14.61 (11.75) 12.96 (9.77) 10.26 (6.61)∗

images show the lowest SSIM in all pairs, implying the ex-
istence of the scanner effect. The pairs including GE typi-
cally show low SSIMs, while Prisma-Trio shows the high-
est SSIM. WS and RAVEL both improve the SSIMs. Our
method significantly improves the SSIMs across all combi-
nations, implying that the harmonized scans have become
more similar under this standard image quality measure.

4.6. Volumetric Similarity

The most practical benefit of harmonization is to enable
accurate multi-scanner neuroimaging analyses with reduced
scanner effect. Thus, it is crucial to evaluate the volumet-
ric similarity of the neuroimaging measures which become
the basis of numerous neuroimaging analyses. First, we ex-
tract the volumes of three brain tissue types: including gray
matter (GM), white matter (WM), and cerebrospinal fluid
(CSF). Then, we analyze their similarities across the scan-
ners in three ways: (1) volume distributions, (2) pairwise
volumetric differences, and (3) pairwise dice similarity co-
efficient (DSC).

4.6.1 Volume Distributions

We first look at the boxplots of the volumes of three tis-
sue types for all scanners in Fig. 3. For our paired data,
perfectly harmonized scans would show identical boxplots

across all scanners and all tissue types. First, we observe the
varying distributions of volumes of RAW. WS and RAVEL
do not bring the boxplots together across the scanners. On
the other hand, MISPEL reduces the differences in volumes
across the scanners, bringing the boxplots noticeably closer
to each other. We note that achieving similar volumetric
distributions across the scanners is a simple but crucial re-
quirement for any multi-scanner analysis. Otherwise, the
underlying scanner effects may lead to erroneous analyses
confounded by scanner types.

4.6.2 Volumetric Differences

Our paired multi-scanner dataset allows direct comparisons
of the volumes. In Table 3, we first observe the pairwise vol-
umetric differences by computing the mean absolute differ-
ence of volumes of each tissue type between two scanners
(e.g., mean of absolute difference of GM for each subject’s
scan from GE and Philips). Thus, the methods aim to reduce
these values compared to RAW. First, the non-zero differ-
ences for RAW data denoted the existing scanner effects.
All the methods generally improve over RAW in all tissue
types. In particular, MISPEL outperforms other methods in
15 out of 18 cases by large margins, often being the only sta-
tistically significant improvement. In Fig. 5, we also show
root mean square error (RMSE) computing the deviation of
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(a) GM (b) WM (c) CSF
Figure 5. Root mean square error (RMSE) bar plots. In our paired data, lower values of RMSE is expected which shows lower deviation
of measures across scanners.

(a) GM (b) WM (c) CSF
Figure 6. Dice similarity score (DSC) bar plots. In our paired dataset, larger values of DSC is expected as denotes more overlap of the
volume segmentations between scanners.

the pairwise volume differences across subjects. The low
RMSE is desired and shows the low spread of measures of
scanners from each other.

4.6.3 Dice Similarity Coefficient (DSC)
In our final evaluation, we assess the effect of harmoniza-
tion on tissue segmentation. Specifically, this provides fur-
ther insight into the tissue segmentation similarity which
the corresponding tissue volumes are derived from. The
segmentation similarity is measured using the Dice sim-
ilarity coefficient (DSC) which measures the amount of
overlap between two segmentations. In this paired dataset,
we would expect high overlap between the segmentations
from different scanners, leading to high DSC. In Fig. 6, we
see the DSC results for each tissue where MISPEL shows
statistically significant improvement over RAW, WS, and
RAVEL. Similar to previous evaluations, RAW GE shows
weak similarity against other scanners (i.e., low DSC for
GE-Philips, GE-Prisma, GE-Trio), but MISPEL effectively
harmonizes GE with comparable DSC.

5. Discussion and Conclusion

We proposed MISPEL, a multi-scanner deep harmo-
nization framework for removing scanner effects from im-
ages, while preserving their anatomical information. We
also assessed scanner effects and evaluated harmonization

from different aspects, using a unique paired multi-scanner
dataset. The results showed that MISPEL outperformed the
two well-known intensity normalization and harmonization
methods, White Stripe and RAVEL, resulting more consis-
tent tissue volumes and segmentations across all scanners.

We deem this work as a crucial first step towards our
continuous harmonization study and identify several future
steps to be taken. First, we believe it will be important
to validate our work under other standard tissue segmen-
tation tools such as statistical parametric mapping (SPM)
[1]. While we expect the benefits to vary across the tools,
such extensive assessments are crucial for a broader im-
pact. Further, we plan to seek further qualitative assess-
ments by expert neuroradiologists to clinically validate our
work. Lastly, we aim to investigate how our harmonization
framework may impact potential downstream analyses and
applications such as Alzheimer’s disease detection. We op-
timistically expect MISPEL to improve the statistical power
of various downstream statistical analyses, demonstrating
the practicality and significance beyond the presented eval-
uative measures.
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