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Abstract

Segmentation accuracy and generalization ability are es-
sential for deep learning models, especially in medical im-
age segmentation. We present a novel, robust yet straight-
forward loss function to boost model accuracy and gener-
alizability for medical image segmentation. We reformulate
the graph cuts cost function to a loss function for super-
vised learning. The graph cuts loss innately focuses on a
dual penalty to optimize the regional properties and bound-
ary regularization. We benchmark the proposed loss on six
public retinal vessel segmentation datasets with a compre-
hensive intra-dataset and cross-dataset evaluation. Results
reveal that the proposed loss is more generalizable, narrow-
ing the performance gap between different architectures.
Besides, models trained with our loss show higher segmen-
tation accuracy and better generalization ability than those
trained with other mainstream losses. Moreover, we extend
our loss to other segmentation tasks, e.g., left atrium and
liver tumor segmentation. The proposed loss still achieves
comparable performance to the state-of-the-art, demon-
strating its potential for any N-D segmentation problem.
The code is available at https://github.com/zzh
enggit/graph cuts loss.

1. Introduction
Deep learning models, especially the convolutional neu-

ral networks (CNNs), have made remarkable progress in
medical image segmentation [20]. CNN training typically
relies on a loss function to calculate errors in these pre-
dictions and ground truth. Regional loss functions, such
as cross-entropy (CE) [27], or Dice Coefficient (DC) [24],
or the combination of CE and DC [6], are commonly
used in various approaches by evaluating the pixel-wise
similarities. However, they still succumb to poor accu-
racy in complex medical images. For instance, the retinal
vessel appears as the thin elongated structure with vari-
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ation in width and length. Only relying on pixel-level
affinity, models easily result in disconnected and missing
segmentation [19]. As alternatives, a number of novel
losses [9, 19, 8, 14, 13, 1, 29] emerged, promoting model
accuracy for various challenging segmentation tasks. In ad-
dition to accuracy, generalizability is another essential abil-
ity for models, allowing accurate and robust segmentation
for cross datasets. Several works argue that CNN archi-
tecture optimization [15] and tricks of data normalization
and augmentation [5] benefit model generalizability. How-
ever, the effect of loss on model generalizability is rarely
explored. To our knowledge, existing losses typically only
focus on model accuracy but hardly ever investigate their
roles in model generalization ability.

Active-contour-based approaches [9, 19, 8] implemented
the variational energy functional as a loss function for su-
pervised learning. Their extra-introduced geometrical con-
straints are useful for medical images with complex struc-
tures, e.g., tubular/curvilinear structures. However, a draw-
back of most active-contour-based losses is their instabil-
ity in early training steps with random initialization [19].
In addition to the variational method, e.g., the active con-
tour model, another type of energy-based segmentation ap-
proach is the combinatorial model, which is optimized by a
cost function defined on a discrete set of variables [2]. One
typical representative is the graph cuts algorithm [3], which
also allows the unification of boundary cues, region cues,
and topological constraints as the active contour model.
Classical graph-cuts-based methods have shown their re-
markable potentials in challenging segmentation tasks, e.g,
vessel segmentation [28, 32, 12]. In this paper, we ask
and answer the following research questions: since works
of [17, 16, 9, 19, 8] combine the superiorities of classical ac-
tive contour models and modern learning-based models by
reformulating the curve-evolving energy functional to a loss
function, can we introduce the graph cuts cost function to a
loss function to integrate the advantages of classical graph
cuts methods and the learning-based models? Besides, will
the proposed loss do help to improve model accuracy and
generalizability?
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This paper pioneers implementing the graph cuts cost
function as a loss function and exploring the role of the
proposed loss in both model segmentation accuracy and
model generalization ability for medical image segmen-
tation. To learn the graph cuts (GC) loss function that
suits the supervision framework, we assume the graph is
constructed based on the probability prediction, and we
also redefine each edge cost within the graph. The pre-
sented GC loss function combines boundary regularization
with region-based properties in the same fashion as the
graph cuts cost function. We extensively evaluate the pro-
posed loss function on six public retinal vessel segmenta-
tion datasets through intra-dataset and cross-dataset valida-
tion. Results indicate that our loss is more generalizable
than other mainstream losses and can endow models with
higher accuracy and better generalizability. Furthermore,
additional experiments on other segmentation tasks, e.g.,
left atrium and liver tumor segmentation, show the GC loss
can be readily applied to other N-D segmentation problems.

2. Related Work
Loss for medical image segmentation. CE and DC are
widely used regional losses for pixel-wise classification by
measuring the region similarities between probability pre-
diction and corresponding ground truth. Since region-based
losses may not yield meaningful segmentation for com-
plex medical images, a number of losses are newly pro-
posed for various segmentation tasks. For instance, Chen
et al. [9] presented an active contour loss with an addi-
tional term of contour length, as pixel-wise losses would
lead to a noisy result with many contours in the background.
Some similar works also introduced active contour meth-
ods to losses [8, 17, 16, 19]. In [17] and [16], Mumford-
Shah functional was reformulated to a loss function, but
its application to biomedical segmentation was not inves-
tigated. Compared to [9], the approach of [8] added one
more curvature term as the geometrical constraint to im-
prove performance, and it was applicable to preserving the
connectedness and reducing the missing segmentation for
tabular structures. However, this loss introduced more than
one hyperparameter and was sensitive to the hyperparame-
ters. Different to [9, 8] that were based on the Chan-Vese
model [4], method of [19] was derived from the elastic in-
teraction model [33]. It was more stable during training and
also showed advantages in tackling the segmentation of vas-
cular structures. In addition, there are also some boundary-
based losses. Kervadec et al. [14] proposed a bound-
ary loss (BD) for highly unbalanced segmentation, trying
to solve the problem that regional losses would perform
poorly when the size of the target foreground region is much
less than the background size. Hausdorff Distance (HD)
loss [13] is another edge-based loss proposed for reducing
the metric of HD. Another recently proposed clDice [29]

Edge Weight For
fu, vg B{u,v} u, v 2 N
fs, 0g λ �R(As = 1) s 2 S
fs, 1g λ �R(As = 0) s 2 S

Table 1. Cost of every edge within the graph in our work.

focused on the topology for tubular structure segmentation.
It showed better topology-preserving than the DC loss, but
it was not compared with other existing losses. More losses
for medical image segmentation can be found in [22].
Graph cuts. We have witnessed the success of the graph
cuts algorithm in the past decades, the theory of which is
well suited for segmentation, where an undirected graph
G = hV,Ei is usually employed. G is defined as a set
of nodes V and a set of undirected edges E that connect
these nodes, and there are two particular nodes called ter-
minals in G. E consists of two types of undirected edges:
n-links (neighboring links) and t-links (terminal links), and
each e of E has a nonnegative cost. A cut is a sub-
set of edges C � E such that the background terminal
and object terminal could be separated on the included
graph G(C) = hV,E n Ci. The dedicated pioneer appli-
cation of graph cuts to segmentation should be the work
of Boykov et al. [3]. Given a 2D (or 3D) image I , let
S = (s1, s2, . . . , sn) denote the set of n pixels (or vox-
els) in I , andN = (fu, vg1 , fu, vg2 , . . . , fu, vgη) indicate
the set of η unpaired pairs of neighboring pixels (or voxels)
under a standard 8-neighborhood (or 26-neighborhood) sys-
tem. In a binary segmentation task, each pixel (or voxel) si
with value pi in S would be assigned to label 1 (object) or
label 0 (background). Let Ai denote the assignment of each
pixel (or voxel) si, and then there would be a one-to-one
correspondence between a vector A = (A1, A2, . . . , An)
and a segmentation result. The graph cuts cost E(A) con-
sists of a regional term λ � R(A) = λ �

∑
s∈S Rs(As),

where λ is a nonnegative coefficient, and a boundary term
B(A) =

∑
{u,v}∈N B{u,v} � δ(Au, Av), where δ(Au, Av)

equals 1 if Au 6= Av otherwise 0.

3. Graph Cuts Loss Function

To learn the graph cuts (GC) loss function that suits the
supervised learning, unlike [3], we assume the graph G is
based on the probability prediction I . An example of graph
G for a 2D 3 � 3 probability prediction I and its segmen-
tation in our study is shown in Fig. 1. To be specific, each
pixel s has two t-links fs, 0g and fs, 1g respectively con-
necting it to background terminal (label 0) and object termi-
nal (label 1), and each pair of neighboring pixels of fu, vg is
connected by an n-link. In our work, we redefine the costs
of edges in G, and details are shown in Table 1. In addi-
tion, the cost R(A) of each t-link is defined in Eq. (1). This
definition is proper because pixel value pi in prediction al-
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[25] José Ignacio Orlando, João Barbosa Breda, Karel Van Keer,
Matthew B. Blaschko, Pablo J. Blanco, and Carlos A. Bulant.
Towards a glaucoma risk index based on simulated hemody-
namics from fundus images. In Alejandro F. Frangi, Julia A.
Schnabel, Christos Davatzikos, Carlos Alberola-López, and
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