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Abstract

Segmentation accuracy and generalization ability are es-
sential for deep learning models, especially in medical im-
age segmentation. We present a novel, robust yet straight-
forward loss function to boost model accuracy and gener-
alizability for medical image segmentation. We reformulate
the graph cuts cost function to a loss function for super-
vised learning. The graph cuts loss innately focuses on a
dual penalty to optimize the regional properties and bound-
ary regularization. We benchmark the proposed loss on six
public retinal vessel segmentation datasets with a compre-
hensive intra-dataset and cross-dataset evaluation. Results
reveal that the proposed loss is more generalizable, narrow-
ing the performance gap between different architectures.
Besides, models trained with our loss show higher segmen-
tation accuracy and better generalization ability than those
trained with other mainstream losses. Moreover, we extend
our loss to other segmentation tasks, e.g., left atrium and
liver tumor segmentation. The proposed loss still achieves
comparable performance to the state-of-the-art, demon-
strating its potential for any N-D segmentation problem.
The code is available at https://github.com/zzh
enggit/graph cuts loss.

1. Introduction
Deep learning models, especially the convolutional neu-

ral networks (CNNs), have made remarkable progress in
medical image segmentation [20]. CNN training typically
relies on a loss function to calculate errors in these pre-
dictions and ground truth. Regional loss functions, such
as cross-entropy (CE) [27], or Dice Coefficient (DC) [24],
or the combination of CE and DC [6], are commonly
used in various approaches by evaluating the pixel-wise
similarities. However, they still succumb to poor accu-
racy in complex medical images. For instance, the retinal
vessel appears as the thin elongated structure with vari-
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ation in width and length. Only relying on pixel-level
affinity, models easily result in disconnected and missing
segmentation [19]. As alternatives, a number of novel
losses [9, 19, 8, 14, 13, 1, 29] emerged, promoting model
accuracy for various challenging segmentation tasks. In ad-
dition to accuracy, generalizability is another essential abil-
ity for models, allowing accurate and robust segmentation
for cross datasets. Several works argue that CNN archi-
tecture optimization [15] and tricks of data normalization
and augmentation [5] benefit model generalizability. How-
ever, the effect of loss on model generalizability is rarely
explored. To our knowledge, existing losses typically only
focus on model accuracy but hardly ever investigate their
roles in model generalization ability.

Active-contour-based approaches [9, 19, 8] implemented
the variational energy functional as a loss function for su-
pervised learning. Their extra-introduced geometrical con-
straints are useful for medical images with complex struc-
tures, e.g., tubular/curvilinear structures. However, a draw-
back of most active-contour-based losses is their instabil-
ity in early training steps with random initialization [19].
In addition to the variational method, e.g., the active con-
tour model, another type of energy-based segmentation ap-
proach is the combinatorial model, which is optimized by a
cost function defined on a discrete set of variables [2]. One
typical representative is the graph cuts algorithm [3], which
also allows the unification of boundary cues, region cues,
and topological constraints as the active contour model.
Classical graph-cuts-based methods have shown their re-
markable potentials in challenging segmentation tasks, e.g,
vessel segmentation [28, 32, 12]. In this paper, we ask
and answer the following research questions: since works
of [17, 16, 9, 19, 8] combine the superiorities of classical ac-
tive contour models and modern learning-based models by
reformulating the curve-evolving energy functional to a loss
function, can we introduce the graph cuts cost function to a
loss function to integrate the advantages of classical graph
cuts methods and the learning-based models? Besides, will
the proposed loss do help to improve model accuracy and
generalizability?
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This paper pioneers implementing the graph cuts cost
function as a loss function and exploring the role of the
proposed loss in both model segmentation accuracy and
model generalization ability for medical image segmen-
tation. To learn the graph cuts (GC) loss function that
suits the supervision framework, we assume the graph is
constructed based on the probability prediction, and we
also redefine each edge cost within the graph. The pre-
sented GC loss function combines boundary regularization
with region-based properties in the same fashion as the
graph cuts cost function. We extensively evaluate the pro-
posed loss function on six public retinal vessel segmenta-
tion datasets through intra-dataset and cross-dataset valida-
tion. Results indicate that our loss is more generalizable
than other mainstream losses and can endow models with
higher accuracy and better generalizability. Furthermore,
additional experiments on other segmentation tasks, e.g.,
left atrium and liver tumor segmentation, show the GC loss
can be readily applied to other N-D segmentation problems.

2. Related Work
Loss for medical image segmentation. CE and DC are
widely used regional losses for pixel-wise classification by
measuring the region similarities between probability pre-
diction and corresponding ground truth. Since region-based
losses may not yield meaningful segmentation for com-
plex medical images, a number of losses are newly pro-
posed for various segmentation tasks. For instance, Chen
et al. [9] presented an active contour loss with an addi-
tional term of contour length, as pixel-wise losses would
lead to a noisy result with many contours in the background.
Some similar works also introduced active contour meth-
ods to losses [8, 17, 16, 19]. In [17] and [16], Mumford-
Shah functional was reformulated to a loss function, but
its application to biomedical segmentation was not inves-
tigated. Compared to [9], the approach of [8] added one
more curvature term as the geometrical constraint to im-
prove performance, and it was applicable to preserving the
connectedness and reducing the missing segmentation for
tabular structures. However, this loss introduced more than
one hyperparameter and was sensitive to the hyperparame-
ters. Different to [9, 8] that were based on the Chan-Vese
model [4], method of [19] was derived from the elastic in-
teraction model [33]. It was more stable during training and
also showed advantages in tackling the segmentation of vas-
cular structures. In addition, there are also some boundary-
based losses. Kervadec et al. [14] proposed a bound-
ary loss (BD) for highly unbalanced segmentation, trying
to solve the problem that regional losses would perform
poorly when the size of the target foreground region is much
less than the background size. Hausdorff Distance (HD)
loss [13] is another edge-based loss proposed for reducing
the metric of HD. Another recently proposed clDice [29]

Edge Weight For
{u, v} B{u,v} u, v ∈ N
{s, 0} λ ·R(As = 1) s ∈ S
{s, 1} λ ·R(As = 0) s ∈ S

Table 1. Cost of every edge within the graph in our work.

focused on the topology for tubular structure segmentation.
It showed better topology-preserving than the DC loss, but
it was not compared with other existing losses. More losses
for medical image segmentation can be found in [22].
Graph cuts. We have witnessed the success of the graph
cuts algorithm in the past decades, the theory of which is
well suited for segmentation, where an undirected graph
G = 〈V,E〉 is usually employed. G is defined as a set
of nodes V and a set of undirected edges E that connect
these nodes, and there are two particular nodes called ter-
minals in G. E consists of two types of undirected edges:
n-links (neighboring links) and t-links (terminal links), and
each e of E has a nonnegative cost. A cut is a sub-
set of edges C ⊂ E such that the background terminal
and object terminal could be separated on the included
graph G(C) = 〈V,E \ C〉. The dedicated pioneer appli-
cation of graph cuts to segmentation should be the work
of Boykov et al. [3]. Given a 2D (or 3D) image I , let
S = (s1, s2, . . . , sn) denote the set of n pixels (or vox-
els) in I , andN = ({u, v}1 , {u, v}2 , . . . , {u, v}η) indicate
the set of η unpaired pairs of neighboring pixels (or voxels)
under a standard 8-neighborhood (or 26-neighborhood) sys-
tem. In a binary segmentation task, each pixel (or voxel) si
with value pi in S would be assigned to label 1 (object) or
label 0 (background). Let Ai denote the assignment of each
pixel (or voxel) si, and then there would be a one-to-one
correspondence between a vector A = (A1, A2, . . . , An)
and a segmentation result. The graph cuts cost E(A) con-
sists of a regional term λ · R(A) = λ ·

∑
s∈S Rs(As),

where λ is a nonnegative coefficient, and a boundary term
B(A) =

∑
{u,v}∈N B{u,v} · δ(Au, Av), where δ(Au, Av)

equals 1 if Au 6= Av otherwise 0.

3. Graph Cuts Loss Function

To learn the graph cuts (GC) loss function that suits the
supervised learning, unlike [3], we assume the graph G is
based on the probability prediction I . An example of graph
G for a 2D 3 × 3 probability prediction I and its segmen-
tation in our study is shown in Fig. 1. To be specific, each
pixel s has two t-links {s, 0} and {s, 1} respectively con-
necting it to background terminal (label 0) and object termi-
nal (label 1), and each pair of neighboring pixels of {u, v} is
connected by an n-link. In our work, we redefine the costs
of edges in G, and details are shown in Table 1. In addi-
tion, the cost R(A) of each t-link is defined in Eq. (1). This
definition is proper because pixel value pi in prediction al-
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Figure 1. An example of graph G for a 2D 3 × 3 probability prediction I and its segmentation. The cost of every edge is reflected by the
thickness of the edge. The regional terms in Eq. (1) define the costs of t-links. The boundary term in Eq. (2) defines the costs of n-links.

ready shows the probability of assigning si to object (label
1). And the cost B{u,v} of each n-link is defined in Eq. (2),
in which dist(u, v) measures the distance between paired
pixels, and if |pu − pv| is small, B{u,v} would be large, so
this function penalizes a lot for discontinuities. A feasible
cut C in our work should serve exactly one t-link at each s
and include {u, v} if and only if u, v are t-linked to different
terminals.

Rs(As = 1) = − log pi Rs(As = 0) = − log (1− pi)
(1)

B{u,v} ∝ exp(− (pu − pv)2

2σ2
) · 1

dist(u, v)
(2)

Due to the supervision framework in our study, for a
given probability prediction I , we already know the ground
truth and the corresponding cut C. For instance, assume
we own the truth label as illustrated in Fig. 1(d), then in
order to get this expected segmentation, we would strictly
require the cut C in Fig. 1(c) to cut the graph. Gener-
ally, given an n × n ground truth T and its correspond-
ing specific cut C̃, let M = (m1,m2, . . . ,mK) be a set
of all K possible n × n probability prediction images of
T , and F = (C1, C2, . . . , CL) be a set of all L feasible
cuts of each mi. Thus, each mi to yield T would cost en-
ergy Ei(A(C̃). Besides, we can immediately get that if and
only if mi equals the ground truth T , then R(A) = 0 and
|pu − pv| = 1 as δ(Au, Av) = 1 in B(A), such that en-
ergy Ei(A(C̃) would be minimum. Thus, by minimizing
Ei(A(C̃), we would get mi that is closest to the ground
truth. Let yi denote each pixel value of ground truth T , and
then we get the GC loss function LossGC :

LossGC = λ ·R(A) +B(A) (3)

where

R(A) = −
n∑
i=1

[yi · log pi + (1− yi) · log (1− pi)] (4)

B(A) ∝
∑

{u,v}∈N

exp(− (pu − pv)2

2σ2
) · 1

dist(u, v)
·δ(yu, yv)

(5)
and

δ(yu, yv) =

{
1, if yu 6= yv
0, otherwise.

(6)

There are two coefficients (λ and σ) in the combinatorial
framework. The coefficient λ in Eq. (3) controls the balance
between the region penalty R(A) and the boundary penalty
B(A), while the parameter σ in Eq. (5) can be estimated as
‘camera noise’ [3]. As introducing more than one parameter
would make models sensitive to parameter setting, it would
also be more difficult to search an optimal group of param-
eters than a single optimal parameter. Thus, to eliminate σ,
we make an approximation for the boundary term as

B(A) =
∑

{u,v}∈N

{1− |pu − pv|} · δ(yu, yv) (7)

By observing the form of the GC loss function, we can
find its region termR(A) in Eq. (4) is equal to binary cross-
entropy (BCE). That is to say, through learning from the
graph cuts cost, the GC loss has one more boundary term
B(A) than CE. It is worth mentioning that the method of [7]
for instance segmentation similarly combined the region
and boundary penalties. However, its strategy was ad hoc
and was realized by extracting the region and edge simul-
taneously via two different branches in a multi-task setting.
By contrast, our loss is derived from a cost function and can
be integrated into any semantic segmentation model. Due
to the different approaches and utilization, comparison with
this method is out of the scope of this paper.

4. Experiments
This section elaborates the following experiments: we

first performed a thorough intra-dataset and cross-dataset
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Figure 2. Visual comparisons. From top to bottom, we show the results of intra-dataset validation on the combined SDC dataset, the results
of cross-dataset validation on the IOSTAR dataset, the LES-AV dataset, and the HRF dataset. All predictions are obtained using U-Net. It
can be noted that our loss can better detect small retinal vessels than other mainstream losses.

evaluation for the proposed GC loss on the retinal vessel
segmentation task. Then we extended the GC loss to 3D
left atrium and liver tumor segmentation to explore its ap-
plicability to other organs and structures. All experiments
relied on the Pytorch platform and an NVIDIA 1080ti GPU.

4.1. Retinal Vessel Segmentation

Datasets and metrics. We combined the STARE
dataset [11], the DRIVE dataset [31]1 and the CHASEDB1
dataset [26]2 to produce a more general dataset (SDC) with
more samples for intra-dataset validation, inspired by [5].
The formed SDC dataset comprised 88 images and was ran-
domly split into 58/15/15 for intra-dataset training, valida-
tion, and test. We then directly fed the IOSTAR dataset [35],
the HRF dataset [18], and the LES-AV dataset [25] to the
previously trained models for cross-dataset evaluation. The
IOSTAR dataset comprises 30 fundus images with a resolu-
tion of 1024 × 1024 pixels. The HRF dataset consists of 45
fundus images with a resolution of 3504× 2336 pixels. The
LES-AV dataset combines 21 typical fundus images with a
resolution of 1620 × 1444 pixels and one pathological im-
age with a resolution of 1958 × 2196 pixels. We utilized
seven different metrics, including Dice, the 95th percentile
of Hausdorff Distance (HD95), the newly introduced pixel-
wise measure clDice [29] for tubular structure segmenta-
tion, Specificity, Sensitivity, Accuracy, and AUC.
Implemention details. We compared the proposed GC
loss with other state-of-the-art losses: CE, DC, the

1We used the first annotations.
2We used the first annotations.

pixel-wise clDice loss [29] for topology-preserving, the
active-contour-like losses (the elastic interaction-based loss
(EIB) [19], the active contour loss (AC) [9], and the ac-
tive contour loss with Euler’s Elastica (ACE) [8]3), the
boundary-based losses (the HD loss [13] and the BD
loss [14]). Due to the training instability of AC, HD,
and BD, we combined them with DC via a rebalanced-
increasing-parameter training strategy, following [14]. We
chose U-Net [27] and pre-trained VGG-16 [30] based
FCN [21] as our segmentation backbones in this part of the
experiment in order to investigate the loss generalizability
to different architectures with either training from scratch or
fine-tuning. During the experiment, all images were resized
to the resolution of 448 × 448 pixels. Data augmentation
of image flipping, scaling, shifting, and color jittering [10]
were utilized. All models were trained with the Adam op-
timizer, the batch size 8, and the maximum epoch 600. For
a fair comparison, we searched the optimal learning rate in
[10−1, 10−2, 10−3, 10−4] for each loss function as [13, 8].
The learning rate was divided by 10 when the validation
performance did not improve over 20 epochs. The train-
ing process was early stopped when the learning rate was
smaller than 10−7.
Ablation study. λ in Eq. (3) controls the balance between
the region and boundary properties. There would be only
a boundary term contributing to the constraints when λ is
0, and GC would be approximately the same as CE when λ
grows to infinite. Based on the SDC dataset and the back-

3As the ACE loss was quite sensitive to parameter setting in our exper-
iment, we do not report its results in this paper for a fair comparison.
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Figure 3. Ablation study on different λ, using U-Net and the SDC
dataset with five metrics. By considering overall metrics, the opti-
mal λ of GC for retinal vessel segmentation ranges from 3 to 9.

bone U-Net, we ran several ablations to analyze the effect
of different λ on the loss performance, as shown in Fig. 3,
where five metrics are reported. We can observe that the
worst result occurs due to the lack of region information.
The GC loss starts to achieve meaningful results when λ is
larger than 0. It can be found that Dice, clDice, and HD95
reach relatively stable and optimal when λ ranges from 3 to
9. In addition, we can reveal the advantage of the combina-
torial framework by focusing on the changes in Sensitivity
and Specificity. The values of Specificity show a slight and
continuous increase, whereas the values of Sensitivity de-
crease in a more obvious way, with the increment of λ from
1 to infinite. Coupled with the analysis of visual examples
of CE and GC in Fig. 2, we can conclude that adding the
boundary regularization benefits the detection of small ves-
sel areas as it improves Sensitivity via increasing true pos-
itives. Nevertheless, it may also influence Specificity as it
may introduce more false positives. Fortunately, results tell
us that the advantage outweighs the disadvantage, as GC (λ
= 5) only owns 0.3% lower Specificity but 4% higher Sensi-
tivity than CE. To this end, by considering overall metrics,
the optimal λ of GC for retinal vessel segmentation approx-
imately ranges from 3 to 9.
Intra-dataset validation. Intra-dataset validation results
are illustrated in Table 2, where we report results of other
mainstream losses and our loss with λ equaling 5, 7, and 9.

First, let us focus on CE and GC. A major observation
could be that GC guides models to obtain higher Sensitiv-
ity than CE, which further confirms the conclusion drawn
from the ablation study. To be specific, when λ is set as 5,
U-Net-GC improves approximately 4% in Sensitivity and
owns only 0.3% lower Specificity than U-Net-CE. Simi-
larly, FCN-GC achieves about 3% higher Sensitivity and
only 0.4% lower Specificity than FCN-CE. A detailed com-

Figure 4. Comparison of Sensitivity and Specificity obtained by
CE and GC on the validation set during training. The backbone
is U-Net. GC majorly improves Sensitivity compared to CE but
slightly influences Specificity in the meantime.

parison of Sensitivity and Specificity obtained by CE and
GC on the validation set during training is shown in Fig. 4.
We can note that GC majorly improves Sensitivity com-
pared to CE but slightly influences Specificity.

Then let us pay attention to model segmentation accu-
racy guided by these losses. DC yields higher Sensitiv-
ity than CE for both U-Net and FCN. The clDice loss ob-
tains the highest clDice scores for both two nets, demon-
strating its efficiency for topology-preserving. However,
results reflect a limitation that the clDice loss may over-
look other metrics. EIB and AC are both active-contour-
based losses, but their performance is quite different for
this dataset. To be specific, EIB gets considerably higher
scores of Dice, clDice, and Sensitivity and lower HD95 val-
ues than AC, but its AUC score is much lower than that
of AC. The gap between their performance should be at-
tributed to the different baseline approaches, as AC was de-
rived from the region-based model [4] while EIB was in-
spired by the elastic-interaction-based approach [33]. HD
and BD are both boundary-based losses. Though U-Net-
HD and FCN-BD respectively bring the highest Sensitiv-
ity, their overall performance is not as good as ours. By
contrast, it can be observed that for both two nets, our loss
achieves the best scores of Dice and HD95 and also reaches
the best or the second-best scores of clDice, Accuracy, and
AUC among all losses.

Moreover, there are also apparent gaps between the re-
sults of the two nets trained with the same loss. For ex-
ample, FCN-DC achieves about 4% higher Sensitivity than
U-Net-DC. FCN-CE brings about 2% higher Sensitivity
than U-Net-DC. The Dice score of FCN-clDice is about
5% lower than that of U-Net-clDice. The AUC score of
FCN-EIB is about 4% lower than that of U-Net-EIB. FCN-
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Dataset Network Loss Dice ↑ HD95 ↓ clDice ↑ Specificity ↑ Sensitivity ↑ Accuracy ↑ AUC ↑
DC 79.94 (1.02) 5.28 (1.07) 80.03 (1.51) 98.26 (0.23) 78.52 (3.09) 96.42 (0.08) 97.84 (0.22)
CE 79.52 (0.94) 7.00 (1.94) 78.68 (1.56) 98.64 (0.05) 75.22 (1.83) 96.47 (0.12) 97.73 (0.37)

clDice 80.03 (0.20) 4.98 (0.34) 81.60 (0.20) 97.68 (0.13) 82.52 (0.67) 96.25 (0.07) 96.93 (0.20)
EIB 79.61 (0.57) 3.52 (0.20) 80.70 (0.47) 98.62 (0.08) 75.54 (1.25) 96.48 (0.08) 90.97 (1.41)
AC 76.08 (2.72) 7.77 (2.65) 76.01 (2.53) 98.69 (0.20) 69.69 (5.10) 96.01 (0.33) 96.31 (1.12)
HD 76.77 (1.28) 5.78 (0.98) 78.48 (1.42) 96.54 (0.16) 83.98 (1.34) 95.35 (0.27) 97.22 (0.44)
BD 76.48 (1.11) 11.07 (0.80) 75.85 (0.42) 98.17 (0.65) 73.63 (2.34) 95.88 (0.38) 95.89 (0.45)

GC (λ = 5) 80.68 (0.32) 3.25 (0.17) 80.79 (0.39) 98.33 (0.07) 79.12 (0.09) 96.55 (0.07) 97.80 (0.24)
GC (λ = 7) 80.23 (0.54) 3.79 (0.40) 80.39 (0.77) 98.38 (0.15) 78.09 (1.54) 96.50 (0.08) 97.83 (0.15)

U-Net

GC (λ = 9) 80.29 (0.27) 3.79 (0.30) 80.45 (0.29) 98.54 (0.18) 77.04 (1.62) 96.56 (0.02) 97.99 (0.18)
DC 79.03 (0.70) 4.56 (0.21) 80.44 (0.49) 97.34 (0.27) 82.81 (1.06) 95.98 (0.19) 97.19 (0.24)
CE 80.72 (0.36) 4.45 (0.14) 80.20 (0.24) 98.55 (0.01) 77.63 (0.52) 96.62 (0.05) 98.28 (0.04)

clDice 75.28 (0.66) 5.09 (0.21) 80.68 (0.22) 95.61 (0.33) 86.91 (0.74) 94.78 (0.23) 93.50 (0.33)
EIB 78.47 (0.10) 3.82 (0.05) 79.58 (0.10) 98.51 (0.08) 74.48 (0.47) 96.29 (0.03) 87.33 (0.88)
AC 77.04 (0.29) 5.21 (0.48) 79.06 (0.99) 96.57 (0.46) 84.14 (2.48) 95.41 (0.20) 96.79 (0.10)
HD 78.49 (0.36) 4.48 (0.23) 79.93 (0.23) 97.16 (0.25) 83.03 (1.03) 95.84 (0.14) 96.64 (0.47)
BD 68.57 (1.70) 4.98 (0.18) 78.43 (0.11) 92.86 (0.79) 89.29 (0.77) 92.50 (0.65) 94.89 (0.18)

GC (λ = 5) 80.70 (0.15) 3.01 (0.08) 80.07 (0.01) 98.16 (0.08) 80.22 (0.74) 96.50 (0.00) 98.14 (0.04)
GC (λ = 7) 80.43 (0.36) 3.19 (0.12) 80.06 (0.35) 98.32 (0.10) 78.70 (1.17) 96.51 (0.03) 98.07 (0.11)

SDC

FCN

GC (λ = 9) 80.78 (0.23) 3.19 (0.04) 80.51 (0.17) 98.33 (0.04) 79.16 (0.57) 96.57 (0.03) 98.21 (0.03)
Table 2. Intra-dataset validation on the generated SDC dataset, where the best and second best results are marked in bold red and black.
We report the average (standard deviation) results based on three runs.

Dataset Network Loss Dice ↑ HD95 ↓ clDice ↑ Specificity ↑ Sensitivity ↑ Accuracy ↑ AUC ↑
DC 76.26 (0.67) 6.48 (0.38) 82.28 (0.48) 97.81 (0.14) 77.85 (0.23) 96.22 (0.14) 97.65 (0.08)
CE 75.34 (0.95) 8.04 (0.76) 80.81 (0.98) 98.39 (0.08) 72.27 (1.91) 96.31 (0.09) 97.61 (0.21)

clDice 76.20 (0.24) 6.39 (0.41) 83.58 (0.43) 97.32 (0.09) 81.23 (1.07) 96.04 (0.01) 96.67 (0.24)
EIB 77.13 (0.20) 5.37 (0.24) 82.55 (0.36) 98.40 (0.19) 74.96 (1.38) 96.53 (0.07) 91.18 (1.21)
AC 73.65 (1.06) 7.80 (1.21) 80.05 (0.97) 98.43 (0.29) 69.45 (3.53) 96.13 (0.03) 96.13 (0.65)
HD 70.86 (2.36) 9.56 (2.39) 77.99 (2.81) 95.35 (0.70) 85.03 (0.43) 94.53 (0.64) 96.99 (0.42)
BD 72.02 (2.38) 12.96 (0.90) 78.09 (1.37) 97.41 (0.72) 73.65 (1.77) 95.52 (0.58) 95.43 (0.76)

GC (λ = 5) 76.95 (0.48) 5.19 (0.38) 81.98 (0.50) 98.22 (0.14) 76.04 (0.45) 96.45 (0.11) 97.11 (0.27)
GC (λ = 7) 77.19 (0.31) 5.17 (0.30) 82.45 (0.20) 98.11 (0.33) 77.17 (2.88) 96.44 (0.08) 97.45 (0.22)

U-Net

GC (λ = 9) 76.05 (0.23) 5.49 (0.12) 81.73 (0.19) 98.35 (0.16) 73.65 (1.44) 96.38 (0.05) 97.48 (0.33)
DC 75.89 (0.71) 5.84 (0.37) 82.66 (0.39) 97.17 (0.35) 81.75 (1.46) 95.94 (0.22) 97.29 (0.27)
CE 76.17 (0.32) 6.27 (0.10) 81.34 (0.28) 98.54 (0.16) 72.44 (1.64) 96.46 (0.02) 98.24 (0.01)

clDice 72.61 (0.61) 5.79 (0.32) 83.19 (0.19) 95.59 (0.20) 86.75 (0.38) 94.89 (0.17) 93.64 (0.17)
EIB 76.04 (0.13) 5.30 (0.27) 81.79 (0.47) 98.39 (0.21) 73.31 (1.71) 96.39 (0.06) 86.96 (0.93)
AC 73.58 (0.53) 5.89 (0.50) 81.13 (1.10) 96.56 (0.33) 82.05 (2.78) 95.40 (0.12) 96.73 (0.13)
HD 75.39 (0.61) 5.62 (0.22) 81.91 (0.23) 97.18 (0.30) 80.90 (1.12) 95.88 (0.19) 96.67 (0.60)
BD 65.86 (2.04) 5.91 (0.25) 79.58 (0.52) 93.10 (1.02) 88.88 (1.71) 92.77 (0.81) 95.30 (0.20)

GC (λ = 7) 76.56 (0.58) 5.53 (0.34) 80.73 (0.48) 98.17 (0.24) 75.74 (2.58) 96.38 (0.04) 97.88 (0.13)
GC (λ = 7) 76.43 (0.49) 5.27 (0.06) 81.29 (0.22) 98.26 (0.19) 74.86 (1.92) 96.40 (0.06) 97.86 (0.15)

IOSTAR

FCN

GC (λ = 9) 76.29 (0.19) 5.21 (0.22) 81.33 (0.09) 98.38 (0.15) 73.76 (1.12) 96.42 (0.05) 97.97 (0.04)
Table 3. Cross-dataset validation on the IOSTAR dataset, where the best and second best results are marked in bold red and black. We
report the average (standard deviation) results based on three runs.

AC even achieves about 14% higher Sensitivity than that of
U-Net-AC. FCN-HD owns approximately 2% higher Dice
score than U-Net-HD. U-Net-BD yields about 8% higher
Dice than FCN-BD. The above evidence indicates that other
losses are easy to get turbulent results when integrated into
different networks. On the contrary, the GC loss guides U-
Net and FCN to yield much closer metric values, where all
the percentage differences are within about 1%.

This intra-dataset evaluation reveals that our loss is more
generalizable to different architectures and further boosts
model accuracy in most metrics than other losses.

Cross-dataset validation. To explore whether the proposed
loss could promote model generalizability, we further con-
ducted three cross-dataset experiments. We directly em-
ployed the models trained with the utilized losses to pre-
dict the IOSTAR dataset, the HRF dataset, and the LES-AV
dataset without any operation.

Validation results of the IOSTAR dataset are illustrated

in Table 3. Interestingly, we can note that, for this dataset,
the models trained with different losses achieve similar
rankings to the SDC dataset. For instance, U-Net and FCN
trained with our loss still achieve the best scores regarding
Dice and HD95 and the second-best performance in some
other metrics. The two nets integrated with the clDice loss
also bring the highest clDice scores. In addition, FCN-CE
still obtains the highest Specificity, Accuracy, and AUC. Al-
most all models do not show apparent degrade and upgrade
in rankings on this dataset compared to the SDC dataset.
This phenomenon may be attributed to the similar data dis-
tributions between the two datasets.

Major performance turbulences on the LES-AV dataset
and the HRF dataset could be observed in Table 4 and Ta-
ble 5. One of the apparent changes is that the models
trained with GC beat the models guided by the clDice loss to
achieve the highest clDice score on the two datasets. It may
demonstrate that, compared to the clDice loss, the GC loss
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Dataset Network Loss Dice ↑ HD95 ↓ clDice ↑ Specificity ↑ Sensitivity ↑ Accuracy ↑ AUC ↑
DC 78.09 (1.53) 20.00 (4.03) 77.52 (1.96) 98.62 (0.01) 76.94 (2.23) 97.20 (0.15) 97.29 (0.37)
CE 77.53 (1.54) 22.68 (5.22) 76.36 (2.42) 98.87 (0.32) 73.82 (4.51) 97.23 (0.14) 97.31 (0.46)

clDice 76.92 (0.94) 22.61 (4.05) 78.00 (1.28) 98.21 (0.01) 78.79 (1.36) 96.95 (0.10) 94.62 (1.35)
EIB 80.22 (1.45) 11.13 (2.37) 80.07 (1.80) 99.09 (0.14) 76.09 (3.17) 97.58 (0.13) 92.73 (1.41)
AC 72.30 (5.50) 28.60 (7.39) 71.49 (5.13) 98.97 (0.22) 65.79 (9.03) 96.82 (0.38) 93.45 (2.72)
HD 71.27 (2.56) 15.98 (3.23) 74.10 (2.53) 96.80 (0.36) 80.65 (1.94) 95.75 (0.44) 96.46 (0.64)
BD 72.36 (2.31) 36.74 (9.66) 70.78 (3.06) 98.63 (0.36) 68.38 (4.50) 96.65 (0.27) 92.29 (1.86)

GC (λ = 5) 80.90 (0.72) 8.37 (0.87) 81.42 (0.67) 98.56 (0.24) 82.14 (1.34) 97.48 (0.15) 97.98 (0.06)
GC (λ = 7) 79.66 (0.62) 13.44 (0.41) 79.76 (0.57) 98.68 (0.09) 78.91 (0.32) 97.38 (0.09) 97.70 (0.23)

U-Net

GC (λ = 9) 78.82 (0.35) 17.02 (1.54) 78.41 (0.43) 98.75 (0.15) 76.93 (0.91) 97.33 (0.08) 97.05 (0.81)
DC 78.05 (0.80) 8.89 (0.18) 81.05 (0.31) 97.78 (0.19) 84.28 (0.50) 96.90 (0.16) 97.65 (0.33)
CE 80.98 (0.25) 10.66 (0.25) 81.19 (0.17) 98.72 (0.11) 80.61 (0.71) 97.54 (0.05) 98.55 (0.04)

clDice 73.41 (0.72) 9.54 (1.23) 81.49 (0.52) 96.39 (0.23) 87.83 (0.73) 95.83 (0.18) 94.06 (0.28)
EIB 80.53 (0.47) 7.47 (0.14) 80.86 (0.29) 98.95 (0.09) 77.77 (0.51) 97.55 (0.07) 88.76 (0.88)
AC 74.83 (0.34) 9.93 (1.58) 79.86 (1.16) 97.01 (0.32) 85.15 (2.10) 96.24 (0.16) 96.80 (0.13)
HD 77.08 (0.84) 8.31 (0.81) 80.53 (0.61) 97.56 (0.26) 84.58 (1.12) 96.71 (0.19) 97.29 (0.41)
BD 66.53 (2.06) 9.70 (0.42) 79.63 (0.37) 94.53 (0.65) 88.32 (0.47) 94.14 (0.57) 95.11 (0.21)

GC (λ = 5) 81.52 (0.25) 5.52 (0.72) 82.05 (0.30) 98.55 (0.04) 83.16 (0.49) 97.54 (0.03) 98.59 (0.09)
GC (λ = 7) 81.48 (0.14) 6.58 (0.21) 81.60 (0.37) 98.72 (0.12) 81.45 (1.20) 97.59 (0.04) 98.47 (0.08)

LES-AV

FCN

GC (λ = 9) 81.24 (0.20) 7.36 (0.57) 81.86 (0.51) 98.61 (0.11) 82.07 (1.03) 97.54 (0.05) 98.56 (0.10)
Table 4. Cross-dataset validation on the LES-AV dataset, where the best and second best results are marked in bold red and black. We
report the average (standard deviation) results based on three runs.

Dataset Network Loss Dice ↑ HD95 ↓ clDice ↑ Specificity ↑ Sensitivity ↑ Accuracy ↑ AUC ↑
DC 69.82 (0.71) 7.73 (1.78) 74.68 (1.67) 96.05 (0.61) 79.64 (2.94) 94.79 (0.35) 95.87 (0.37)
CE 71.10 (0.56) 9.70 (2.54) 73.49 (2.21) 96.87 (0.40) 76.54 (3.16) 95.30 (0.15) 95.52 (0.58)

clDice 67.59 (0.87) 6.79 (0.79) 75.94 (0.51) 94.96 (0.36) 82.51 (1.04) 94.00 (0.28) 94.27 (0.60)
EIB 73.92 (0.29) 4.26 (0.22) 77.15 (0.93) 96.61 (0.09) 83.21 (0.97) 95.58 (0.04) 94.67 (0.55)
AC 71.38 (0.21) 10.60 (2.95) 71.61 (2.68) 97.50 (0.71) 72.79 (5.07) 95.59 (0.26) 93.19 (1.90)
HD 63.12 (1.56) 7.17 (1.10) 72.94 (1.53) 93.70 (0.34) 81.56 (1.41) 92.76 (0.39) 94.83 (0.38)
BD 65.09 (3.66) 13.89 (1.52) 70.20 (1.03) 95.70 (1.34) 73.41 (1.85) 93.98 (1.12) 91.25 (0.47)

GC (λ = 5) 72.70 (0.34) 3.85 (0.33) 77.18 (0.37) 96.14 (0.09) 84.28 (0.61) 95.23 (0.07) 96.95 (0.08)
GC (λ = 7) 72.04 (0.61) 4.91 (0.96) 76.35 (0.56) 96.23 (0.20) 82.48 (1.52) 95.17 (0.13) 96.63 (0.23)

U-Net

GC (λ = 9) 72.94 (0.75) 6.02 (0.68) 75.78 (0.58) 96.77 (0.18) 80.33 (0.75) 95.50 (0.16) 96.45 (0.27)
DC 66.06 (1.18) 6.19 (0.27) 73.04 (0.70) 94.80 (0.50) 80.76 (0.93) 93.71 (0.40) 94.65 (0.12)
CE 71.84 (0.39) 6.67 (0.38) 74.35 (0.13) 96.76 (0.19) 78.52 (0.65) 95.35 (0.13) 96.23 (0.09)

clDice 59.75 (0.79) 6.19 (0.30) 72.52 (0.27) 92.14 (0.39) 83.33 (0.48) 91.46 (0.32) 90.37 (0.36)
EIB 71.68 (0.37) 5.44 (0.17) 73.64 (0.55) 96.87 (0.08) 77.56 (0.83) 95.37 (0.05) 90.58 (0.68)
AC 63.93 (0.52) 6.66 (0.81) 70.97 (1.36) 94.27 (0.55) 79.88 (2.30) 93.16 (0.33) 93.21 (0.35)
HD 65.28 (1.32) 5.93 (0.30) 72.35 (0.48) 94.58 (0.49) 80.59 (0.49) 93.50 (0.42) 93.96 (0.36)
BD 51.84 (1.85) 5.57 (0.11) 68.11 (0.41) 88.24 (1.09) 84.70 (0.49) 87.98 (0.97) 89.80 (0.30)

GC (λ = 5) 72.35 (0.16) 3.83 (0.17) 75.05 (0.24) 96.30 (0.15) 82.53 (0.74) 95.23 (0.08) 96.43 (0.10)
GC (λ = 7) 72.19 (0.08) 4.13 (0.09) 74.83 (0.35) 96.44 (0.08) 81.30 (0.44) 95.27 (0.04) 96.33 (0.08)

HRF

FCN

GC (λ = 9) 72.45 (0.27) 4.39 (0.11) 75.21 (0.46) 96.51 (0.04) 81.24 (0.23) 95.33 (0.05) 96.44 (0.11)
Table 5. Cross-dataset validation on the HRF dataset, where the best and second best results are marked in bold red and black. We report
the average (standard deviation) results based on three runs.

potentially guides models to learn a more generalized reti-
nal vessel representation and better preserve topology for
unseen datasets. Moreover, the two nets trained with our
loss also reach the best or the second-best scores in most
other metrics. Besides, the models trained with EIB realize
comparable segmentation accuracy to ours in terms of some
metrics. Specifically, EIB brings competitive Dice, clDice,
Specificity, and Accuracy scores when integrated into U-
Net and FCN for both two datasets. However, it could not
achieve the same accuracy in HD95, Sensitivity, and AUC
as the GC loss. In addition, U-Net and FCN trained with
our loss still obtain closer results on these two datasets.

This cross-dataset analysis reflects that our loss can fur-
ther benefit model generalization ability than other losses.

Qualitative comparison. Fig. 2 shows some examples for
visual comparisons. It can be observed that the DC loss
achieves more visually acceptable results than the CE loss
for these cases. The segmented vessels of the clDice loss

show better connectivity than that of other losses. The EIB
loss performs better than the AC loss, especially in detect-
ing small vessels. The HD loss tends to bring more false
positives than the other losses, while the BD loss yields the
fewest true positives. It is clear to see that the proposed GC
loss can better detect small retinal vessels than other losses.

4.2. Other Segmentation Tasks

Datasets. To evaluate the applicability of the proposed loss
to other segmentation tasks, we further extended the GC
loss to 3D with the consideration of a 26-neighborhood sys-
tem. We respectively evaluated our loss on the left atrium
(LA) segmentation challenge dataset4 that comprises 100
3D MR training cases, and the liver tumor segmentation
(LiTs) challenge dataset5 including 118 training scans.

4https://atriaseg2018.cardiacatlas.org/
5https://competitions.codalab.org/competitions/
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Implemention details. We chose V-Net [24] as the 3D seg-
mentation backbone in this part of the experiment. For the
LA dataset, we followed the implementation of [34, 23]
to employ heart-centered crop and z-score normalization
for all cases. We respectively trained the models with 16
and 80 samples and then evaluated them with 20 samples
to explore the robustness of the proposed loss to different
training sizes. For the LiTs dataset, we also pre-processed
the scans with liver-centered crop and z-score normaliza-
tion and split the set into 90/28 for training and validation
as [23]. We empirically set λ to 5 for the GC loss following
the previous 2D retinal vessel segmentation.
Validation results. Experiment results are described in Ta-
ble 6, where we also report results of some previous meth-
ods using various losses, such as BD, HD, and the signed
distance function (SDF) loss.

We can note that GC is robust to the different training
sizes of the LA dataset. When trained with 16 samples,
GC achieves the highest Dice score and the second-lowest
HD95 value among all approaches. Similarly, GC still ob-
tains better results than CE in Dice and HD95, and it also
gets a higher Dice score than DC and the combination of
DC and CE with 80 training scans. As the training size in-
creases, the gap among loss performance is narrowed.

When evaluated on the LiTs dataset, we found a limita-
tion of GC, and let us discuss it. As mentioned above, GC
is a combinatorial framework including a region term, i.e.,
CE, and a boundary regularization term. It inherits the ad-
vantage of the boundary term but also the disadvantage of
CE. Concretely, it cannot also well handle the unbalanced
segmentation as CE. As the liver tumors characterize unbal-
anced distributions, CE and GC can not efficiently play their
roles when the tumor areas are much smaller than the back-
ground. To address this problem, we tried the trick of ap-
plying another region indicator for GC, and it worked. Pre-
cisely, similar to HD and BD, we also used the rebalanced-
increasing-parameter training strategy to combine DC with
GC. This strategy enabled GC to achieve the highest Dice
score than other approaches, as illustrated in Table 6. As we
can see, combining DC and GC obtains about 1.6% higher
Dice score than the combination of DC and CE and im-
proves about 5.3% Dice compared to the single DC loss.

5. Computational Efficiency
Our approach requires O(n2) computational complexity

for a 2D n × n image. During our experiment, the train-
ing time for a batch size of 8 and a resolution of 448 ×
448 pixels was about 0.24s for GC, which was very close
to the clDice loss (0.22s) and AC (0.18s) and faster than
HD (0.45s) and BD (0.46s) that was without pre-computed
level-set function but was slower than CE (0.07s) and DC
(0.09s). Thus, the computation cost of our loss is in the
medium compared with the mainstream losses. Since the

Dataset Method Dice ↑ HD95 ↓

LA (80)

DC + CE [34] 91.14 5.75
DC∗ 91.43 (0.17) 5.39 (0.40)
CE∗ 91.02 (0.18) 6.25 (1.26)
GC (λ = 5)∗ 91.68 (0.39) 5.98 (1.97)

LA (16)

DC + CE [23] 84.4 20.1
BD [23] 85.0 20.8
HD [23] 85.5 15.9
SDF [23] 84.2 13.5
M† + SDF + L1 + L2 [23] 84.5 24.7
R† + SDF + L1 + L2 [23] 85.1 16.7
CE∗ 82.79 (2.48) 15.28 (0.67)
DC∗ 84.31 (0.68) 14.93 (0.54)
GC (λ = 5)∗ 86.66 (0.61) 13.51 (2.97)

LiTs

DC + CE [23] 51.0 43.6
BD [23] 52.5 26.3
HD [23] 52.0 28.8
SDF [23] 47.6 31.1
M† + SDF + L1 [23] 48.1 31.5
M† + SDF + L2 [23] 47.1 25.5
R† + SDF + L1 [23] 48.4 32.2
R† + SDF + L2 [23] 48.6 31.0
DC∗ 47.33 (0.35) 34.46 (3.94)
DC + GC (λ = 5)∗ 52.64 (0.81) 40.76 (1.33)

Table 6. Quantitative validation on the LA dataset and the LiTs
dataset using V-Net-like architectures. The best results are marked
in bold black. M† and R† mean the Multi-heads and Rec-branch
architectures in [23], respectively. ∗ indicates the reimplemented
methods in our study. We report the average (standard deviation)
results based on three runs.

inference time is naturally not associated with the loss, we
do not report it here.

6. Conclusion

In this paper, we proposed a novel graph cuts (GC) loss
function to promote model segmentation accuracy and gen-
eralization ability for medical image segmentation, inspired
by the combinatorial graph cuts cost function. The GC
loss innately comprised the region and boundary penalties.
We pioneered exploring the role of the proposed loss in
both model segmentation accuracy and model generaliza-
tion ability via the retinal vessel segmentation task. Com-
pared to the state-of-the-art, the GC loss was more general-
izable to model architectures and further boosted model ac-
curacy and generalizability. Furthermore, we extended the
GC loss to 3D left atrium and liver tumor segmentation to
show that it could be applied to any N-D segmentation prob-
lem. In addition to providing a competitive alternative loss
to enrich the loss repository, we hope our approach could
inspire the work related to model generalizability.
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