
Unsupervised 3D Shape Coverage Estimation with Applications to Colonoscopy
Supplementary Material

Yochai Blau, Daniel Freedman, Valentin Dashinsky, Roman Goldenberg, Ehud Rivlin
Google Research

{yochaib, danielfreedman, valkad, rgoldenberg, ehud}@google.com

In this supplemental we provide additional information
on the datasets and shape models used in the experiments,
data pre-processing, the network architecture, and model
training details.

A. Datasets and Data Preprocessing
A.1. Body Shapes Experiment (Section 4)

As mentioned in the main paper, we used a simplified
body shape model, which is based on the SMPL’s [5] PCA
shape decomposition: Aqi+b, where b ∈ R3n is the average
body shape mesh of n = 6890 vertices in a neutral (star-
shaped) pose, and A ∈ R3n×10 is composed of the 10 first
PCA vectors. We generated 2300 body shape meshes by
randomly sampling the ”intrinsic” shape parameters qi from
qi ∼ N (0, I).

For each body shape we generated a random camera path
on a unit sphere around the body mesh. The path is gener-
ated by a random walk of k = 5 steps on the sphere, from
a randomly selected initial position. At every step along
the path the camera is oriented to look at the center of the
sphere.

Depth images of 256× 256 resolution are rendered for a
virtual camera with 60-degree FOV, using a z-buffer algo-
rithm [6].

The list of mesh triangles visible in a virtual camera is
used to compute the ground-truth coverage rate as the ratio
between the visible and the total surface area.

A.2. Synthetic Colonoscopy Experiment (Section
5.1)

Given the 3D colon model, we randomly generated 32
camera paths through the colon. The “base” path is a cam-
era movement along the colon lumen, where the paths differ
by: (a) smooth camera movements in directions perpendic-
ular to the colon lumen, (b) smooth camera rotations, and
(c) changing velocity of camera movement along the “base”
path. Given the 3D model and camera poses along a path,
10K frames were rendered with Blender [7], where for each
such frame we retain RGB-D data. The camera intrinsics

were set to 256 pixels in each dimension and a view angle
of 1.22 radians.

The model is trained on 10 second long segments. We
randomly extract video segments by: (a) randomly drawing
a video, and (b) randomly drawing a start frame and taking
the following 300 frames. The segments are then uniformly
temporally downsampled so we are left with data samples
of N = 20 frames.

To compute the ground-truth coverage rates, we first
identify the 3D colon mesh faces within the segment us-
ing the formulation in [2] with ∆0 = ∆1 = 1.0. Then,
given the camera intrinsic matrix and camera pose in each
frame, we perform a perspective projection of the 3D colon
mesh onto the camera plane to identify which faces are in
the field-of-view. The set of all faces in the camera field-
of-view within the 300 segment frames are the seen faces.
The coverage rate is then computed by taking the ratio of
the seen faces area to area of all faces within the segment.

A.3. Real Colonoscopy Experiment (Section 5.2)

The model is trained on 200 frame segments. We ran-
domly extract video segments by: (a) randomly drawing a
video, and (b) randomly drawing a start frame and taking
the following 200 frames. The segments are then uniformly
temporally downsampled so we are left with data samples
of N = 50 frames.

As we only have RGB frames at hand, we estimate the
depth maps and camera poses using the unsupervised depth
and camera egomotion estimation framework of [1] (avail-
able on GitHub1). We retrained this model on colonoscopy
videos, using the default training and model parameters.

B. Shape Models
B.1. Body Shapes Experiment (Section 4)

As described in the main paper, for the body-shape ex-
periment only, we used the same 10-vector PCA approxi-
mation both for the data generation, as well as the shape

1https://github.com/tensorflow/models/tree/
archive/research/struct2depth

https://github.com/tensorflow/models/tree/archive/research/struct2depth
https://github.com/tensorflow/models/tree/archive/research/struct2depth

Figure S1. Left: “base” cylinder mesh of 1500 vertices. Other:
samples of perturbed cylinders used to derive the shape model.

1st 2nd 3rd 4th 5th

Figure S2. Visualization of the 5 shape model modes. In each
column, the coefficient of the i’th mode (in eq. (12)) is interpolated
between two values, while other coefficients are zeroed.

model. Having both the input and the estimated shapes pa-
rameterized using the same mesh allows for better visual-
ization of the results and easy estimation of the coverage
map accuracy (in addition to the coverage rate).

B.2. Colonoscopy Experiments (Section 5)

As described in the paper, we start with a cylinder mesh
of n = 1500 vertices, see Figure S1. This cylinder mesh
is formed by rings of 30 vertices, where 50 such equally
spaced rings form the cylinder. We generate m = 8000
perturbed meshes, see samples of perturbed meshes in Fig-
ure S1. Each perturbed cylinder is created by translating
a random ring of vertices in a direction perpendicular to
the cylinder main axis, and also gradually translating ad-
jacent rings so as to form a smooth perturbation. Each per-
turbed cylinder is represented by a vector v ∈ R3n of the
vertices’ coordinates. All m vectors are stacked in a ma-
trix V ∈ R3n×m, on which a PCA decomposition is per-
formed and the first k = 5 components are extracted. See
a visualization of these modes in Figure S2. Notice that
the modes appear to represent sinusoidal patterns with in-
creasing frequencies. The shape model is given by eq. (12),
where A ∈ R3n×k is composed from the top 5 PCA com-
ponents, and b ∈ R3n is the mean shape.

C. Surface Estimator Architecture
Here, we will provide additional details regarding the

surface estimator structure specified in Section 3.4. The net-
work consists of three building blocks (see Figure 3 in the
paper): (a) the depth map feature extractor, (b) the camera
pose feature extractor, and (c) the surface parameter regres-
sion net.

The Depth map feature extractor is a MobileNet [3] after
removing the top (classification) layer, with a depth multi-
plier α = 1.0 and resolution multiplier ρ = 1.0. A global
max-pooling is applied after the last convolutional layer. A
dropout rate of 0.001 is used. The network weights are ran-
domly initialized at the beginning of training.

The Camera pose feature extractor is an 8-layer fully-
connected net, see the detailed structure in Table S1. No-
tice the skip connection from the input to layer #5. The
Surface parameter regression net is an 8-layer 1D convolu-
tional network, see the detailed structure in Table S2. The
net output is a set of surface parameters: surface trans-
lation/rotation/scale parameters q̃t/q̃r/q̃s, and the intrinsic
shape parameters q̃i.

Two additional operations are performed on the surface
parameters. First, the final surface translation parameters
are given by qt = t̄+ q̃t, where t̄ is the mean camera trans-
lation2. That is, the net only needs to estimate the deviation
of the surface translation from the mean camera pose. Sec-
ond, the final intrinsic shape parameters are given by

qi = c× tanh(q̃i), (S1)

where c is a “clipping hyperparameter” which controls
the maximal absolute value of the intrinsic shape param-
eters. The other surface parameters are untouched, i.e.
qr = q̃r, qs = q̃s, and the final model outputs are the set
of surface parameters qt, qr, qs, qi which define the surface
intrinsic shape parameters along with the translation, rota-
tion and scale parameters.

D. Training Details
D.1. Body Shapes Experiment (Section 4)

Since the body-shape data was generated using a “met-
ric” depth rendering, the surface estimation model doesn’t
need to estimate the scale parameters, as the scale is 1 in all
dimensions by construction. Accordingly, for this experi-
ment the estimation model was simplified by excluding the
parts dealing with the scale estimation. The depth frames,
originally rendered in 256 × 256 resolution, were subsam-
pled to 32× 32 before being input to the network. As men-
tioned in the main paper, the network was trained using the
Adam optimizer [4] for 50 epochs, with a batch size of 4

2Concretely, t̄ = 1
N

∑N
i=1 ti where ti is the translation of the i’th

camera pose in the input sequence.

Layer Inputs
0 Input -
1 Dense(256, ReLU) 0
2 Dense(256, ReLU) 1
3 Dense(256, ReLU) 2
4 Dense(256, ReLU) 3
5 Dense(256, ReLU) 0, 4
6 Dense(256, ReLU) 5
7 Dense(256, ReLU) 6
8 Dense(256, None) 7

Table S1. Camera pose feature extractor architecture. The in-
puts column specifies which layers are connected to the input,
where if there are multiple such layers the tensors are concate-
nated. Dense(u, a) is a fully-connected layer with u units and
activation type a.

Layer
0 Input
1 Conv1D(16, 1, 3, ReLU)
2 Conv1D(32, 2, 3, ReLU)
3 Conv1D(64, 2, 3, ReLU)
4 Conv1D(128, 2, 3, ReLU)
5 Conv1D(256, 2, 3, ReLU)
6 Conv1D(512, 2, 3, None)
7 Global-Max-Pool-1D
8 Dense(nsurf-params, None)

Table S2. Surface parameter regression net architecture.
Conv1D(f , s, k, a) is a 1D convolutional layer with f filters, stride
of s, kernel size k, and an activation type a. Global-Max-Pool-1D
is a 1D global max-pooling layer. Dense(u, a) is a fully-connected
layer with u units and activation type a. nsurf-params is the total num-
ber of parameters defining the surface (both for the global geomet-
ric transformation and the intrinsic shape parameters, see Section
3.5).

(each data point includes 5 input depth frames), and learn-
ing rate of 2 · 10−4. The clipping hyperparameter in (S1)
was set to c = 5.0.

D.2. Synthetic Colonoscopy Experiment (Section
5.1)

As mentioned in the paper, the model was trained with
the Adam optimizer [4] for 10 epochs with a batch size of 8
and a learning rate of 2 · 10−4. The depth maps were (spa-
tially) downsampled to 32 pixels in each dimension before
being input to the network. The clipping hyperparameter in
(S1) was set to c = 20.0.

D.3. Real Colonoscopy Experiment (Section 5.2)

As mentioned in the paper, the model was trained with
the Adam optimizer [4] for 10 epochs with a batch size of 2
and a learning rate of 2 · 10−5. The depth maps were (spa-

tially) downsampled to 32 pixels in each dimension before
being input to the network. The clipping hyperparameter in
(S1) was set to c = 10.0.

D.4. Point Cloud Reconstruction

As part of our training scheme, we reconstruct a point
cloud from the input sequence of depth maps and camera
poses (see the “reconstruction” block in the diagram of Fig-
ure 2). Each depth map is “unprojected” separately in a dif-
ferentiable manner with the perspective transform function-
ality of the Tensorflow Graphics package3. Then, a point
cloud is “assembled” by translating and rotating each set
of “unprojected” 3D points according to the corresponding
camera pose.

D.5. Loss parameters

In all experiments, the hyper-parameter σ in the loss
function (11) is initialized to be the median distance be-
tween points in the shape model (for some canonical q), and
further fine-tuned on a validation set.

References
[1] Vincent Casser, Soeren Pirk, Reza Mahjourian, and Anelia

Angelova. Depth prediction without the sensors: Leveraging
structure for unsupervised learning from monocular videos. In
AAAI Conference on Artificial Intelligence, volume 33, pages
8001–8008, 2019. 1

[2] Daniel Freedman, Yochai Blau, Liran Katzir, Amit Aides, Ilan
Shimshoni, Danny Veikherman, Tomer Golany, Ariel Gordon,
Greg Corrado, Yossi Matias, and Ehud Rivlin. Detecting defi-
cient coverage in colonoscopies. IEEE Transactions on Med-
ical Imaging, 2020. 1

[3] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-
dreetto, and Hartwig Adam. Mobilenets: Efficient convolu-
tional neural networks for mobile vision applications. arXiv
preprint arXiv:1704.04861, 2017. 2

[4] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 2, 3

[5] Matthew Loper, Naureen Mahmood, Javier Romero, Ger-
ard Pons-Moll, and Michael J Black. SMPL: A skinned
multi-person linear model. ACM Transactions on Graphics,
34(6):1–16, 2015. 1

[6] W StraBer. Schnelle Kurven-und Flachendarstellung auf
graphischen Sichtgeraten. PhD thesis, 1974. 1

[7] Blender. https://www.blender.org/. 1

3https://www.tensorflow.org/graphics/api_docs/
python/tfg/rendering/camera/perspective

https://www.blender.org/
https://www.tensorflow.org/graphics/api_docs/python/tfg/rendering/camera/perspective
https://www.tensorflow.org/graphics/api_docs/python/tfg/rendering/camera/perspective

