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1. Methods
1.1. Non-Image Features

A full description of the 18 non-image features used
alongside breast imaging can be seen in Table 1.

1.2. Fusion Model Variants

While we experimented with different fusion operations
to join information from different modalities, we also con-
ducted experiments to explore how best to optimize such a
multimodal network. To this end, we constructed a vari-
ant of the Learned Feature Fusion architecture that added
a fully-connected output layer with sigmoid activation from
both the 512 learned features from the image encoder and
512 learned features from the non-image encoder. This al-
lowed us to obtain three predictions of malignancy, one ob-
tained from image-only features (ŷi), one from non-image-
only features (ŷn), and one from fused image and non-
image features (ŷf ). The following two approaches repre-
sent two different ways of optimizing a network that fuses
multimodal information.

While the original Learned Feature Fusion model min-
imized the cross-entropy (CE) loss between the predicted
and known malignancy status, this version of Learned Fea-
ture Fusion permitted us to minimize the sum of three cross-
entropy losses

Lsum = CE(y, ŷi) + CE(y, ŷn) + CE(y, ŷf ), (1)

where y ∈ {0, 1} is the known malignancy status of a given
breast. We denote this approach [L,L]-Fusion∗.

Another training approach we employed was to optimize
the three subnetworks (image encoder, non-image encoder,
fusion parameters) independently. Specifically, after the
forward pass, we compute each subnetwork’s loss and back-
propagate that loss only to the given subnetwork’s learnable
parameters. We denote this approach [L,L]-Fusion†.

1.3. Training Details

Model weights and biases were randomly initialized with
PyTorch [6] default settings depending on the type of layer
(e.g., convolution vs. linear/fully-connected). All models
were trained with the Adam optimizer [4] with learning rate
1 × 10−4 and PyTorch’s default parameters β1 = 0.9 and
β2 = 0.99. We used a standard binary cross-entropy loss
with class weights corresponding to inverse frequency in
the training set (i.e., malignant cases were weighted 4.008
times more heavily than benign cases in the loss computa-
tion). We also applied label smoothing [9] with α = 0.1
(using the formulation in [5]) to reduce confidence in pre-
dictions and encourage better model calibration. No learn-
ing rate scheduling was applied, and models were trained
for up to 100 epochs. Training was terminated when the
validation AUC did not increase for 25 epochs consecu-
tively; model weights from the epoch with maximum val-
idation AUC were then saved for later evaluation. Each
model was trained on a single NVIDIA Tesla V100S GPU
on the Michigan State University High Performance Com-
puting Center.

All models that were trained on images used a ResNet50
[3] feature extractor with the first convolution operation
modified to accommodate a single-channel input image
(grayscale MIP). Models trained on images also used “on-
line” data augmentation via the Albumentations library [1],
where each image would be passed through the following
pipeline of transformations, each occurring with probabil-
ity 0.5: a horizontal flip, either a blur operation or random
contrast shift, an elastic deformation [8] with α = 10 and
σ = 5, a random scaling within the range 0.8-1.2 fol-
lowed by a resize back to 224 × 224, and a random rota-
tion between -20 and 20 degrees. Lastly, models trained on
images leveraged test-time augmentation (TTA) to improve
generalization by averaging the model’s predictions on five
transformed versions of each test set image. The data aug-
mentation pipeline for TTA was as follows: horizontal flip,
blur or random contrast shift, and random rotation (each as



Table 1: Description of non-image features.

Non-Image Feature Feature Type Description

Age Continuous Patient’s (integer) age at time of MRI study.
Breast Laterality Binary Whether the cropped MIP contains the left breast.
Breast Density Ordinal Mammographic breast density via BI-RADS assessment.
BPE Ordinal Breast parenchymal enhancement on the breast MRI study, as determined by a radiologist.
MRI Indication Categorical Clinical indication (e.g., screening or diagnostic evaluation) for MRI study.
MRI Software Version Categorical Vendor software used to generate 2D MIP image from DCE-MRI data.
MIP Max Intensity Continuous Maximum pixel intensity in cropped MIP image.
Pixel Dimensions Continuous Pixel Spacing DICOM field. Distance (mm) between adjacent pixels in original DICOM image.
MIP Height Continuous Height (mm) of cropped MIP before preprocessing.
MIP Width Continuous Width (mm) of cropped MIP before preprocessing.
Flip Angle Continuous Flip Angle DICOM field. Angle (degrees) to which magnetic vector is flipped from that of primary field.
Reconstruction Diameter Continuous Reconstruction Diameter DICOM field. Diameter (mm) of circular region containing all pixel data.
Precession Frequency Continuous Imaging Frequency DICOM field. Precession frequency (MHz) of the nucleus being targeted.
Echo Time Continuous Echo Time DICOM field. Time (ms) between the middle of excitation pulse and peak of resulting echo.
Repetition Time Continuous Repetition Time DICOM field. Time (ms) between the beginning of successive pulse sequences.
Echo Train Length Continuous Echo Train Length DICOM field. Lines in k-space acquired per excitation per image.
Field Strength Binary Magnetic Field Strength DICOM field. Field strength (Tesla) of MR magnet.
Shift Days Continuous Arbitrarily generated code used to anonymize the date of MRI study.

Basic description of all 18 non-imaging features used. Feature type describes the quality of each feature before preprocessing; after preprocessing,
all continuous variables remained continuous and all other variables were converted to categorical variables and one-hot-encoded. MIP = maximum
intensity projection, DICOM = Digital Imaging and Communications in Medicine.

described earlier). While these are random operations, all
random number-generating seeds were fixed so that each
model that used TTA was evaluated on the exact same set
of (transformed) test images.

1.4. Statistical Tests

As described in the pROC [7] documentation for the
roc.test function, we used a simple nonparametric test for
differences in both AUC and specificity at 95% sensitivity.
To compare modelsA andB by test AUC, we first establish
their performance on the original test set with AUCA and
AUCB , respectively. We then

1. Draw a stratified bootstrap sample of the test set (main-
taining the exact numbers of malignant and benign
cases observed in the test set),

2. Compute AUC for each model on the bootstrapped test
set,

3. Repeat steps 1-2 for 5,000 iterations,

4. Compute test statistic D = AUCA − AUCB

s , where s is
the standard deviation of the 5,000 differences in boot-
strapped AUC between models A and B,

5. Compare D to a standard normal distribution to obtain
a (two-tailed) significance level.

This procedure was chosen over the DeLong test because it
can be applied to metrics other than AUC. While results are

not shown, we found negligible differences in AUC hypoth-
esis tests between the DeLong test and the bootstrap method
described above.

1.5. Permutation Importance

As first described in the context of interpreting random
forests [2], we used a permutation-based feature importance
method to understand which non-image features are most
influential to model predictions. First establishing an ob-
served AUC on the original test set AUCbase, we would
then

1. Randomly permute (shuffle) the values of only feature
k in the test set,

2. Find AUCperm by computing AUC on the permuted
test data,

3. Compute feature importance

I =

(
− (AUCperm −AUCbase)

AUCbase

)
∗ 100,

the percent decrease in test AUC upon permuting fea-
ture k,

4. Repeat steps 1-3 for 30 iterations,

5. Repeat steps 1-4 for all non-image features k =
1, 2, . . . , 18.



Table 2: Breast cancer prediction results of Learned Feature Fusion model with different optimization approaches.

Best Run Five-Run Ensemble

Model AUC Specificity at
95% Sensitivity (%) AUC Specificity at

95% Sensitivity (%)

[L,L]-Fusion 0.898 [0.885, 0.909] 49.1 [38.8, 55.3] 0.903 [0.891, 0.914] 50.3 [44.2, 59.0]
[L,L]-Fusion∗ 0.900 [0.888, 0.911] 49.6 [44.1, 58.5] 0.906 [0.895, 0.917] 55.2 [46.6, 60.2]
[L,L]-Fusion† 0.894 [0.882, 0.906] 46.7 [40.3, 53.9] 0.905 [0.894, 0.916] 53.2 [46.5, 58.0]

Values represent the specified performance metric, and values in brackets represent 95% bootstrapped confidence
intervals obtained on the test set (N=4,909). Each model was trained five separate times; “Best Run” refers to
the single model realization with maximum validation AUC, and “Five-Run Ensemble” refers to an ensemble of
the five realizations of each model.
∗ Variant of [L,L]-Fusion trained on the sum of three subnetwork losses, as described in Section 1.2.
† Variant of [L,L]-Fusion with each subnetwork optimized independently, as described in Section 1.2.

This procedure produces 30 measures of feature importance
for each of the 18 features; however, we considered the ab-
solute median of the 30 iterations to be representative of
that feature’s importance for the purposes of ranking fea-
ture saliency in the main results. The intuition behind this
procedure is that shuffling a particularly important feature,
effectively “mismatching” patients to their data and destroy-
ing interaction effects between the permuted feature and
the others, would cause a notable change in model perfor-
mance, whereas shuffling a noisy feature would not drasti-
cally impact model performance.

2. Results
2.1. Optimization Method

Table 2 shows results of the Learned Feature Fusion
model variants, described in Section 1.2, compared to the
original [L,L]-Fusion. All three models use concatenation
as the fusion operation. The two approaches of minimizing
the sum of the three subnetwork losses ([L,L]-Fusion∗) and
of optimizing the three subnetworks independently ([L,L]-
Fusion†) were both competitive with the original [L,L]-
Fusion, especially upon ensembling. The five-run deep en-
sembles of both [L,L]-Fusion∗ and [L,L]-Fusion† reached
both higher AUC and specificity at 95% sensitivity than
the original [L,L]-Fusion, though these differences were not
found to be statistically significant (P > 0.05 for each test).
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