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Abstract

Due to the large memory footprint of untrimmed videos,
current state-of-the-art video localization methods operate
atop precomputed video clip features. These features are
extracted from video encoders typically trained for trimmed
action classification tasks, making such features not neces-
sarily suitable for temporal localization. In this work, we
propose a novel supervised pretraining paradigm for clip
features that not only trains to classify activities but also
considers background clips and global video information to
improve temporal sensitivity. Extensive experiments show
that using features trained with our novel pretraining strat-
egy significantly improves the performance of recent state-
of-the-art methods on three tasks: Temporal Action Local-
ization, Action Proposal Generation, and Dense Video Cap-
tioning. We also show that our pretraining approach is ef-
fective across three encoder architectures and two pretrain-
ing datasets. We believe video feature encoding is an impor-
tant building block for localization algorithms, and extract-
ing temporally-sensitive features should be of paramount
importance in building more accurate models. The code
and pretrained models are available on our project website.

1. Introduction
Video understanding is thriving in the computer vision

community, and it manifests in several challenging tasks
such as action classification [13, 34, 41, 69], activity local-
ization [16, 36, 86], and video captioning [25, 53, 71, 88].
Yet, the success of video research has been lagging behind
that of its counterpart in the image domain. In many aspects,
this is due to the exponentially larger amount of data in
videos compared to images, not fitting in commodity hard-
ware. Image encoders have the privilege to process batches
of complete images at once, thus exploiting the rich contex-
tual information from all pixels. Empowered by such capa-
bility, many image models are trained in an end-to-end man-
ner for complex tasks such as object detection [59, 60, 67],
semantic segmentation [10, 23, 26], and image caption-
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Figure 1: Temporally-Sensitive Pretraining (TSP). We train
video encoders to be temporally-sensitive through a novel super-
vised pretraining paradigm. A fixed-sized clip is sampled from an
untrimmed video and passed through the encoder to obtain a local
clip feature (blue). A global video feature (red) is pooled from the
local features of all clips in the untrimmed video. The local and
global features are used to train the encoder on the task of clas-
sifying the label of foreground clips (action label) and classifying
whether a clip is inside or outside the action (temporal region).

ing [4, 84, 48]. In contrast, the long and variable length
of untrimmed videos makes it impractical to encode a com-
plete video on current hardware accelerators [76]. While a
few recent localization works [44, 87] attempt to train end-
to-end for untrimmed video tasks, such as temporal action
localization, they need to resort to aggressive spatial and
temporal downsampling to remain computationally practi-
cal. Instead, most state-of-the-art localization methods for
untrimmed videos choose to learn models atop precomputed
clip features [27, 42, 81, 85].

In this work, we focus on improving the precomputed
features used for temporal localization tasks, which we de-
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fine as tasks that require predictions related to the time
dimension of the video. Specifically, we target three im-
portant localization problems: Temporal Action Localiza-
tion (TAL), Action Proposal Generation (Proposals), and
Dense Video Captioning (Dense-Captioning). State-of-the-
art methods for these localization tasks use features ex-
tracted from video encoders typically pretrained for the
task of Trimmed Action Classification (TAC) on large-scale
datasets, such as Kinetics [32] and Sports-1M [31]. How-
ever, this pretrained representation is not necessarily suit-
able for localization tasks. In particular, we observe that
TAC-pretrained features tend to be temporally-insensitive,
i.e. background (no action) segments can have quite sim-
ilar representations to foreground (action) segments from
the same untrimmed video. We provide an analysis study of
TAC-pretrained features in Section 5 that shows evidence of
the high cosine similarity between features of background
and foreground clips. These temporally-insensitive features
make it harder for the localization algorithm to learn the tar-
get task, and thus, negatively impact the final performance.

To circumvent these drawbacks, we propose a novel,
supervised pretraining paradigm for video clip represen-
tation that not only trains to classify foreground activities
but also considers background clips and global video in-
formation to improve temporal sensitivity. We refer to
our pretraining approach as Temporally-Sensitive Pretrain-
ing (TSP). Figure 1 gives an overview of TSP. We con-
duct extensive experiments to show that features extracted
by clip encoders pretrained with TSP are more discrimi-
native, and that training state-of-the-art localization algo-
rithms atop TSP features results in significant performance
gains on three temporal localization tasks: TAL, Propos-
als, and Dense-Captioning. Moreover, TSP gives consis-
tent performance boosts regardless of the video encoder ar-
chitecture, pretraining dataset, or the localization algorithm
learned atop our features. Interestingly, we observe that lo-
calization performance on short instances greatly improves
when using TSP pretrained features. This aligns well with
our hypothesis that temporally-sensitive features allow lo-
calization algorithms to draw sharper contrast between fore-
ground and background context in long untrimmed videos.

Contributions. (I) We propose TSP, a temporally-sensitive
supervised pretraining task for video encoders. TSP trains
an encoder to explicitly discriminate between foreground
and background clips in untrimmed videos. (II) We show
with comprehensive experiments that using features pre-
trained with the TSP task significantly improves perfor-
mance across three video localization problems. Addition-
ally, we show the generalization capability of our pretrain-
ing strategy on three encoder architectures and two pretrain-
ing datasets. We also demonstrate consistent performance
gains for multiple localization algorithms trained on the
same target problem. (III) We provide an extensive analy-

sis study of our features. Interestingly, we observe that TSP
pretraining boosts temporal action localization performance
on short action instances. The study also demonstrates that
our features are in fact temporally-sensitive and can encode
background clips differently from foreground clips.

2. Related Work

Action recognition. Large-scale video datasets, such as
UCF-101 [66], Sports-1M [31], and Kinetics [32], have ac-
celerated the development of action classification models.
Simonyan and Zisserman [65] introduced a two-stream en-
coder to represent appearance with RGB frames and motion
with stacked optical flow vectors. Wang et al. [74] proposed
the Temporal Segment Network (TSN) encoder to capture
long-term temporal information. Pretrained on TAC, TSN
along with other recent architectures (e.g. R(2+1)D [70],
I3D [8], and C3D [68]) have become the de facto feature
extractors for temporal action localization (TAL) [57], ac-
tion segmentation [15], and event captioning [80]. Since
TAC-pretraining is not necessarily suitable for these local-
ization tasks, we propose a pretraining that learns from both
foreground and background clips in untrimmed videos.

Temporal action localization and proposal generation.
Many algorithms have been developed for TAL [2, 11, 21,
62, 83]. While the majority has been on fully-supervised
TAL [22, 38, 40, 44, 47], recent works have also studied
TAL under weak supervision [37, 46, 54, 55, 63], single-
frame supervision [49], and self-supervision [30]. The first
generation of algorithms applied complex action classifiers
in a sliding window fashion [14, 52]. To alleviate the expen-
sive cost of sliding an action classifier over long videos, the
second generation of algorithms [6, 18, 42, 43, 64, 85] fol-
lowed a two-stage approach that first learns action proposals
to limit the number of candidates passed to the action classi-
fier. A third set of algorithms jointly learn action proposals
and action classifiers in one stage [9, 79, 81, 87]. A few
works [44, 87] learn TAL end-to-end by drastically down-
sampling videos to be computationally practical, e.g. PBR-
Net [44] uses only 3 frames per second on ActivityNet and
SSN [87] uses only 9 clips per proposal. In contrast, most
state-of-the-art methods build atop precomputed features
from TAC-pretrained encoders. Since experiments show
that such features are not best suited for TAL and Proposals,
we propose to replace them with temporally-sensitive pre-
trained features that can significantly boost performance.

Dense video captioning. Krishna et al. [35] introduced
the task of Dense-Captioning along with the ActivityNet
Captions benchmark. Dense-Captioning aims at both lo-
calizing and textually describing all events in a video. This
problem branched out from video captioning [75, 82, 56],
where a full video is captioned without localizing events.
[35] uses a variant of DAPs [12] to generate proposals and
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employs an LSTM-based captioning module to describe
these proposals. Subsequent works use bidirectional atten-
tive fusion [72], masked transformers [89], and reinforce-
ment learning [39, 51, 77]. A line of multi-modal Dense-
Captioning methods combine visual cues with signals from
audio [58], speech/subtitles [61], or both [27, 28]. Similar
to TAL and Proposals, Dense-Captioning algorithms rely
on temporally-insensitive TAC-pretrained features, which
do not perform as well as the TSP pretrained ones.

3. Technical Approach
3.1. Traditional Pretraining Strategies

Since it is impractical to fit entire untrimmed videos
into commodity GPUs without drastically downsampling
space or time, current state-of-the-art localization algo-
rithms share a common practice in that they do not fine-
tune their video encoders directly on the target task (e.g.
TAL). Instead, they use pretrained encoders as fixed feature
extractors [27, 42, 81, 85]. Trimmed action classification
(TAC) has been the traditional approach to pretrain these
encoders. The TAC task aims to classify clips from short
videos, where the action spans the entire video. While TAC
has been successful in providing features that discriminate
between different action classes, it often fails to distinguish
between the action instance and its nearby background con-
text. For example, recent diagnostic studies [1] have shown
that state-of-the-art TAL methods are quite sensitive to the
context around action instances and that their inability to
distinguish between an action and its temporal background
context is the main roadblock to improving localization per-
formance. We argue that the features used in these state-
of-the-art localization methods, pretrained on TAC, are a
source of such confusion. Thus, we propose to depart from
the traditional strategy and render the features temporally-
sensitive through a novel pretraining task.

3.2. How to Incorporate Temporal Sensitivity?

A limiting aspect of TAC-pretrained encoders is that they
only learn from positive samples (foreground/action clips).
Intuitively, learning from negative samples (background/no
action clips) is expected to improve the temporal discrimi-
native ability of these encoders. Given an untrimmed video,
a good encoder for localization problems should be able
to distinguish between the semantics of different actions
as well as between actions and their background context.
Intuitively, clip features that have an idea of whether the
clip is inside or outside an action can directly help lo-
calization methods find better activity/proposal boundaries
for TAL and Proposals and find better captions for Dense-
Captioning. Thus, we propose to pretrain encoders on the
task of (1) classifying the label of foreground clips and (2)
classifying whether a clip is inside or outside the action.

3.3. Temporally-Sensitive Pretraining (TSP)

Input data. We pretrain our model using untrimmed videos
with temporal annotations. The encoder is learned in an
end-to-end fashion from the raw video input. In particu-
lar, given an untrimmed video, we sample a fixed-size in-
put clip X of size 3×L×H×W , where 3 refers to the RGB
channels, L is the number of frames, and H and W are the
frame height and width. We assign X two labels: (1) the ac-
tion class label yc if this clip is from a foreground segment,
and (2) the binary temporal region label yr that indicates
if the clip is from a foreground/action (yr = 1) or back-
ground/no action (yr = 0) region of the video.
Local and global feature encoding. Let E be the video
encoder that transforms a clip X into a feature vector f of
size F . We refer to f as the local clip feature. Let {Xi} be
the set of clips from an untrimmed video. We refer to the
max-pooled feature fg = max(E(Xi)) as the global video
feature (GVF). Given only a short clip X, it is challenging to
classify whether X is inside or outside an action. The chal-
lenge stems from the fact that we only have access to local
context, while the task we wish to solve inherently requires
global understanding of the video content. To overcome this
challenge, we combine the GVF with the local clip feature
to better learn the task. We can think of the GVF as a condi-
tioning vector for deciding foreground vs. background. We
study other GVF pooling functions in the appendix.
Two classification heads. We employ two classification
heads to pretrain the encoder. Specifically, the first head
(action label head) consists of a fully-connected (FC) layer
Wc of size F ×C, where C is the number of action classes
in the dataset. Wc transforms the local features f to an
action label logits vector ŷc. The second head (temporal
region head) is an FC layer Wr of size 2F×2, which takes
as input the concatenation of the local and global features,
f ⊕ fg , to produce a temporal region logits vector ŷr.
Loss. We optimize our loss for each input clip X:

loss =

{
αrL(ŷr, yr) + αcL(ŷc, yc), if yr = 1

αrL(ŷr, yr), otherwise,
(1)

where L is the cross-entropy loss and (αc, αr) are trade-off
coefficients to weigh the losses of the two heads. The loss
is the sum of the two head losses when the clip is from the
foreground, i.e. yr = 1, and is the loss from the second head
when the clip is from the background.
Optimization details. Temporally annotated video datasets
have a natural imbalance between the temporal duration of
foreground vs. background. To mitigate this imbalance, we
subsample clips from videos in such a way that we train
on the same number of foreground and background clip
samples. We initialize our encoder weights with those pre-
trained on Kinetics-400 [32]. Many of the recent video ar-
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chitectures have publicly released their Kinetics-pretrained
weights, and we make use of these models in our experi-
ments. Ideally, we wish to backpropagate the loss (Equa-
tion 1) through the GVF portion of our model. However,
and as mentioned earlier, it is impractical to treat entire
untrimmed videos in commodity GPUs. Thus, we freeze
the GVF during training, i.e. we precompute the GVF of
each video from the Kinetics-pretrained initialized encoder.

4. Experiments
4.1. Experimental Settings

Pretraining datasets. To pretrain with our TSP strat-
egy, we need a dataset of untrimmed videos with tempo-
ral boundary annotations. Thus, we leverage two standard
datasets: ActivityNet v1.3 [7] and THUMOS14 [29]. Ac-
tivityNet: This dataset has 20K untrimmed videos and 200
activity classes. It is split into training, validation, and test-
ing subsets, where the testing subset labels are withheld for
an annual challenge. Following standard practices, we use
the training subset (10024 videos) to train and the validation
subset (4926 videos) to test. THUMOS14: This dataset has
1010 validation and 1574 testing videos annotated with 101
sport-related action classes at the video-level. Among these
videos, only 200 validation and 213 testing videos have
temporal annotations for 20 sport actions. We use these 200
validation videos to train and the 213 testing videos to test.
Encoder architectures. We conduct experiments using two
architectures: ResNet3D and R(2+1)D [70]. We select these
backbones for their recognized good performance, speed,
and efficiency. ResNet3D: This is the 3D version of the
2D ResNet [24] CNN for images. ResNet3D is composed
of a series of 3D convolution layers with residual skip con-
nections. In our experiments and for simplicity, we consider
the 18-layer variant of ResNet3D. R(2+1)D: This encoder is
also a ResNet-based backbone. It decomposes each spatio-
temporal 3D convolution kernel into a 2D (spatial) and a 1D
(temporal) convolution. Compared to ResNet3D, R(2+1)D
is more efficient and light-weight, and it has been shown to
maintain high performance on video tasks. In our experi-
ments, we use the 18 and 34-layer versions of R(2+1)D.
Implementation details. In order to cope with the di-
versity of video formats present in ActivityNet and THU-
MOS14, we re-encode all videos in MP4 format with a con-
stant frame rate of 30 fps. We sample clips of L = 16
frames with a stride of 2 frames, such that each clip cov-
ers a temporal receptive field of approximately one sec-
ond. While keeping the aspect ratio fixed, frames are re-
sized such that the smallest dimension is 128 pixels and
then cropped to H × W = 112 × 112 pixels, randomly in
training but deterministically centered during testing. The
videos are split into temporally contiguous segments, rep-
resenting foreground (action) and background (no action)

content. We select 5 clips per segment, sampled randomly
(temporal jittering) during training and uniformly in testing.
We set αc = αr = 1 in Equation (1), and use a distributed
SGD optimizer with different learning rates per module:
10−4 for the video encoder and a grid search among [0.002,
0.004, 0.006, 0.008, 0.01] for the two classification heads.
We train for 8 epochs with a batch size of 32 clips per GPU.
We use two V100 GPUs and scale the learning rate linearly
with the number of GPUs. We use a linear learning rate
warm up strategy over the first 2 epochs and decay factor
of γ = 0.01 at epochs 4 and 6. We select the best model
among learning rates and training epochs based on the aver-
age validation clip accuracy of the two classification heads.

Baselines. We compare our pretraining approach with TAC
pretraining. In particular, we consider the following base-
lines: TAC on Kinetics, TAC on ActivityNet, and TAC on
THUMOS14. The models from the second and third base-
lines are finetuned from a Kinetics-pretrained model.

Target tasks and evaluation metrics. We consider three
localization tasks to evaluate TSP pretrained features: TAL
on both ActivityNet and THUMOS14, Proposals on Activi-
tyNet, and Dense-Captioning on ActivityNet Captions [35].
For the TAL tasks, the performance is measured using the
mean Average Precision (mAP) metric, where a predicted
temporal segment is considered a true positive, if it satisfies
a temporal Intersection over Union (tIoU) threshold with a
ground truth instance of the correct action label. Follow-
ing standard practice, we use the average mAP over tIoUs
[0.5 : 0.05 : 0.95] as the main metric for ActivityNet and
the mAP at tIoU=0.5 (mAP@0.5) for THUMOS14. For the
Proposals task, the main evaluation metric is the area un-
der the curve (AUC) of the average recall (AR) vs. average
number of proposals per video. Following common prac-
tice in ActivityNet, we limit the number of proposals to 100
per video when computing the AUC. We also report AR
at 1, 10, and 100 proposals as additional metrics. Follow-
ing common practice in the Dense-Captioning task, we use
BLEU@3, BLEU@4, and METEOR averaged over tIoUs
[0.3, 0.5, 0.7, 0.9] to evaluate performance.

Algorithms for the target tasks. In order to showcase the
benefits of TSP pretrained features compared to the base-
lines, we retrain a variety of state-of-the-art algorithms for
each target task atop features extracted from TSP pretrained
encoders as well as the baseline encoders. We select the al-
gorithms based on (1) their strong performance on the target
tasks and (2) the availability of open-sourced code. Here,
we briefly discuss each algorithm and how we apply it to our
features. It is essential to note that we do not innovate in any
of these algorithms, and we use their default hyperparame-
ter settings unless otherwise stated below. We simply swap
the visual features they originally use with ours or those of
the encoder baselines we compare against. G-TAD [81]: We
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Table 1: Effects of TSP on target tasks. We compare features pretrained with our TSP task vs. those pretrained with TAC on Kinetics
and TAC on ActivityNet. We use R(2+1)D-34 encoders and pretrain on ActivityNet. We use G-TAD [81], BMN [42], and BMT [27] as
algorithms for the ActivityNet TAL, Proposals, and Dense-Captioning tasks, respectively. The column corresponding to the main evaluation
metric for each task is highlighted in grey and the best performance is in bold. TSP significantly outperforms the baselines on all tasks.

Video Task Temporal Action Localization Action Proposal Generation Dense Video Captioning
Feature Pretraining 0.5 0.75 0.95 Avg. AR@1 AR@10 AR@100 AUC BLEU@3 BLEU@4 METEOR

TAC on Kinetics 48.54 34.24 7.85 33.32 34.19 57.52 75.56 67.91 3.42 1.58 8.17
TAC on ActivityNet 49.76 34.87 8.65 34.08 34.67 57.89 75.65 68.08 3.63 1.74 8.21
TSP w/o GVF 51.45 36.87 9.11 35.75 34.97 59.35 76.47 68.88 3.75 1.83 8.42
TSP on ActivityNet 51.26 37.12 9.29 35.81 34.99 58.96 76.63 69.04 4.16 2.02 8.75

use G-TAD for TAL on both ActivityNet and THUMOS14.
G-TAD originally uses a Kinetics-pretrained TSN [74] en-
coder to extract RGB and Flow features, then trains on their
concatenation. For G-TAD on THUMOS14, we increase
the very small default learning rate by ×10 (i.e. to 0.0004)
to speed up the training. BMN [42]: BMN is used for both
Proposals and TAL on ActivityNet. BMN did not release
code for THUMOS14, and it uses the same precomputed
features as G-TAD. P-GCN [85]: We employ P-GCN for
TAL on THUMOS14. P-GCN did not release code for Ac-
tivityNet. P-GCN extracts features from an RGB and Flow
I3D Kinetics-pretrained encoder. Then, two RGB and Flow
localization models are trained independently and their re-
sults are combined at inference time. We keep the Flow
model unchanged and only retrain the RGB model with our
features. BMT [27]: BMT is used for the Dense-Captioning
task on the ActivityNet Captions dataset. BMT uses visual
and audio features. The visual features are the summation
of RGB and Flow features from I3D Kinetics-pretrained en-
coders, and the audio features are from a VGG-like encoder
pretrained on AudioSet [19]. We keep the audio features as
is and replace the visual features with ours.

4.2. Ablation Study

Here, we extensively ablate TSP along four dimensions:
target localization task, encoder architecture, localization
algorithm, and pretraining dataset.

Study 1: Effects of TSP on target tasks. This study aims
to compare features pretrained with TSP vs. those pretrained
with the baselines, TAC on Kinetics and TAC on ActivityNet,
on multiple target tasks. Specifically, we pretrain with the
ActivityNet dataset and use an R(2+1)D-34 for the base-
line encoders as well as our own. We use G-TAD, BMN,
and BMT as the algorithms for the ActivityNet TAL, Pro-
posals, and Dense-Captioning tasks, respectively. Table 1
summarizes the results. Observations: (I) TAC on Activi-
tyNet outperforms TAC on Kinetics for all three tasks. This
makes sense given the fact that the former baseline is pre-
trained on the same dataset used in the target tasks. How-
ever, TSP features consistently show the best performance
across all tasks. Specifically, TSP outperforms both base-

Table 2: Contribution of each TSP classification head to the
target task performance. We pretrain R(2+1)D-34 on Activi-
tyNet and test the features on ActivityNet TAL using G-TAD [81].

Feature Pretraining 0.5 0.75 0.95 Avg

TSP w/o Temporal Region 49.76 34.87 8.65 34.08
TSP w/o Action Label 51.23 36.79 9.91 35.72
TSP 51.26 37.12 9.29 35.81

lines by at least +1.73% in average mAP on TAL, +0.96%
in AUC on Proposals, and +0.54% in average METEOR on
Dense-Captioning. These significant gains underscore the
effectiveness of TSP pretraining in encoding better temporal
representations for untrimmed videos. (II) On the TAL task,
TSP features significantly boost performance at high tIoU
thresholds (e.g. mAP@0.75 is 37.12% for TSP vs. 34.87%
for TAC on ActivityNet). Better mAP at high tIoUs signi-
fies tighter temporal predictions around the ground truth
action instances. This indicates that TSP pretrained fea-
tures can encode better boundary contrast between the ac-
tion and its nearby background context. (III) While TSP
pretraining without the GVF (TSP w/o GVF in the table)
outperforms the baselines, using GVF for the second clas-
sification head consistently boosts performance across all
tasks (e.g. 8.75% vs. 8.42% in average METEOR on Dense-
Captioning). This validates our design choice and shows the
importance of GVF in helping the local features be more
temporally-sensitive. Given this observation, we omit TSP
w/o GVF from the remaining ablation studies. (IV) While
the Dense-Captioning experiment is conducted on the same
pretraining videos, the ActivityNet Captions temporal anno-
tations [35] used for training the Dense-Captioning meth-
ods do not necessarily align with the ActivityNet tempo-
ral action annotations used for our pretraining. Neverthe-
less, TSP still provides an improvement over the baselines.
(V) Table 2 studies the contribution of each TSP classifica-
tion head to the target task performance. We observe that
the performance boost comes mostly from the temporal re-
gion head, validating the importance of pretraining on fore-
ground and background clips to attain temporal-sensitivity.
Study 2: TSP for different video encoders. This experi-
ment explores TSP pretraining for different video architec-
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Table 3: TSP for different video encoders. We pretrain ResNet3D-18, R(2+1)D-18, and R(2+1)D-34 on ActivityNet and compare the
features on the ActivityNet TAL task using G-TAD [81] as the TAL algorithm. Our TSP features consistently outperform the baselines for
every encoder type, indicating the generalizability of our pretraining to different backbone architectures.

Backbone Architecture ResNet3D-18 R(2+1)D-18 R(2+1)D-34
Feature Pretraining 0.5 0.75 0.95 Avg. 0.5 0.75 0.95 Avg. 0.5 0.75 0.95 Avg.

TAC on Kinetics 47.97 33.21 8.96 32.78 47.57 33.11 8.10 32.46 48.54 34.24 7.85 33.32
TAC on ActivityNet 48.71 34.22 8.82 33.40 49.00 34.56 9.42 33.87 49.76 34.87 8.65 34.08
TSP on ActivityNet 49.81 34.81 8.63 34.10 50.07 35.61 8.96 34.71 51.26 37.12 9.29 35.81

tures. Specifically, we pretrain ResNet3D-18, R(2+1)D-18,
and R(2+1)D-34 on ActivityNet and compare the features
on the ActivityNet TAL task using G-TAD as the TAL al-
gorithm (refer to Table 3). Observations: (I) We observe
similar performance trends among the different pretraining
strategies regardless of the encoder type. In particular, our
TSP features successfully outperform the baselines for ev-
ery encoder. This indicates the generalization capability of
the TSP pretraining to different backbones. (II) Aligned
with observations made by previous works [70], R(2+1)D-
18 exhibits better performance compared to ResNet3D-18
(average mAP of 34.71% vs. 34.10%). (III) Not only
does the deeper R(2+1)D-34 pretrained with the TSP strat-
egy achieve better performance compared to R(2+1)D-18,
but interestingly, the performance gap between TSP and
TAC on Kinetics widens with the deeper encoder (+2.25%
for R(2+1)D-18 vs. +2.49% for R(2+1)D-34). Similarly,
TSP performance gap with TAC on ActivityNet increases
from +0.84% for R(2+1)D-18 to +1.73% for R(2+1)D-34.
This suggests that our pretraining can potentially show even
larger gains for more sophisticated and deeper encoders.

Study 3: TSP with other localization algorithms. We
investigate here whether TSP features can consistently im-
prove performance on the target task, regardless of the lo-
calization algorithm used. To that end, we conduct the same
TAL on ActivityNet experiment from Study 1 (cf. Table 1)
but with the BMN algorithm instead of G-TAD. Table 4
summarizes the results using BMN. Observations: (I) Our
TSP features used with BMN show similar performance
gains as when they are used with G-TAD, with at least a
0.92% gap in average mAP with the TAC-based pretrain-
ings. This demonstrates that our features are more discrim-
inative for the task and that they can benefit different algo-
rithms. (II) Both BMN and G-TAD originally use the same
features (TSN pretrained on Kinetics) and have a 0.24% gap
in average mAP. However, when both are trained using TSP
features, BMN bridges the performance gap with G-TAD to
be only 0.14%. This highlights the importance of having
temporally-sensitive video features for localization tasks.

Study 4: TSP on different datasets. Here, we study two
aspects of TSP: its applicability to other pretraining datasets
(i.e. TSP pretrained on THUMOS14 and tested for TAL

Table 4: TSP with other localization algorithms. We conduct
the same TAL on ActivityNet experiment from Table 1 but with
the BMN algorithm instead of G-TAD. Our TSP features achieve
the best performance when used with BMN as well.

Feature Pretraining 0.5 0.75 0.95 Avg.

TAC on Kinetics 49.95 35.31 8.61 34.46
TAC on ActivityNet 50.78 35.40 7.96 34.75
TSP on ActivityNet 51.23 36.78 9.50 35.67

Table 5: TSP on different datasets. We pretrain R(2+1)D-34
on THUMOS14 and on ActivityNet, and use P-GCN [85] and G-
TAD [81] for the TAL task on THUMOS14. TSP features are
applicable to and transferable across different datasets.

(a) P-GCN. Results are reported for the RGB model / RGB+Flow models.

Feature Pretraining 0.3 0.5 0.7

TAC on Kinetics 52.4 / 65.9 37.8 / 49.0 15.6 / 22.9
TSP on ActivityNet 54.2 / 65.4 39.4 / 51.0 14.7 / 22.2

TAC on THUMOS14 54.4 / 66.4 38.7 / 50.0 16.1 / 23.3
TSP on THUMOS14 58.0 / 69.1 44.2 / 53.5 18.5 / 26.0

(b) G-TAD

Feature Pretraining 0.3 0.4 0.5 0.6 0.7

TAC on Kinetics 50.6 43.2 34.5 24.1 15.5
TSP on ActivityNet 53.4 45.9 37.0 26.7 16.1

TAC on THUMOS14 52.6 45.5 35.8 26.2 15.6
TSP on THUMOS14 59.6 52.0 43.2 32.2 21.1

on THUMOS14), and its transferability across datasets (i.e.
TSP pretrained on ActivityNet and tested for TAL on THU-
MOS14). Specifically, we pretrain R(2+1)D-34 on THU-
MOS14 and on ActivityNet, then apply P-GCN and G-TAD
atop TSP features for the TAL task on THUMOS14. Table 5
compares the two TSP features with the baselines, TAC on
Kinetics and TAC on THUMOS14. Observations: (I) THU-
MOS14 is different from ActivityNet in two key aspects:
THUMOS14 is much smaller, and it has a higher back-
ground to foreground ratio (i.e. actions are sparser in THU-
MOS14). Despite these differences, TSP on THUMOS14
improves over the TAC-based baselines by significant mar-
gins, regardless of the localization algorithm. Specifically
when using P-GCN, TSP on THUMOS14 features improve
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Table 6: SOTA comparison for TAL and Dense-Captioning. We compare TSP with SOTA methods for (a) TAL on ActivityNet, (b) TAL
on THUMOS14, and (c) Dense-Captioning on ActivityNet Captions. We use G-TAD [81], P-GCN [85], and BMT [27] as the algorithms
trained atop our features for each task, respectively. TSP achieves SOTA performance on (a) and (b) and is competitive on (c).

(a) TAL on ActivityNet

Method 0.5 0.75 0.95 Avg.

C-TCN [38] 47.60 31.90 6.20 31.10
P-GCN [85] 48.26 33.16 3.27 31.11
BMN [42] 50.07 34.78 8.29 33.85
GTAN [47] 52.61 34.14 8.91 34.31
PBRNet [44] 53.96 34.97 8.98 35.01

G-TAD [81] 50.36 34.60 9.02 34.09
TSP (ours) 51.26 37.12 9.29 35.81

(b) TAL on THUMOS14

Method 0.3 0.4 0.5 0.6 0.7

G-TAD [81] 54.5 47.6 40.2 30.8 23.4
TAL-Net [9] 53.2 48.5 42.8 33.8 20.8
Zhao et al. [86] 53.9 50.7 45.4 38.0 28.5
PBRNet [44] 58.5 54.6 51.3 41.8 29.5
TSA-Net [22] 65.6 61.4 53.0 42.4 28.8

P-GCN [85] 63.6 57.8 49.1 – –
TSP (ours) 69.1 63.3 53.5 40.4 26.0

(c) Dense-Captioning

Method B@3 B@4 M

Bi-SST [72] 2.27 1.13 6.10
DVC [39] 2.27 0.73 6.93
MFT [77] 2.82 1.24 7.08
MDVC [28] 2.60 1.07 7.31
SDVC [51] 2.94 0.93 8.82

BMT [27] 3.84 1.88 8.44
TSP (ours) 4.16 2.02 8.75

Table 7: SOTA comparison for Proposals on ActivityNet. We
use BMN atop our features. TSP significantly improves over BMN
original performance and is competitive with SOTA.

Method [45] [86] [5] [40] [17] BMN [42] TSP

AR@100 74.54 75.27 76.73 76.65 78.63 75.01 76.63
AUC 66.43 66.51 68.05 68.23 69.93 67.10 69.04

the RGB model results by at least 5.5% in mAP@0.5.
Moreover, combining the predictions of our newly-trained
RGB model with that of the original (unchanged) Flow
modality boosts the overall performance by at least 3.5%
in mAP@0.5. (II) Using TSP features pretrained on Activ-
ityNet (TSP on ActivityNet) outperforms both TAC on Ki-
netics and TAC on THUMOS14 in mAP@0.5. This shows
that TSP features are transferable across TAL datasets.

4.3. State-of-the-Art (SOTA) Comparison

While the previous ablations shed light on the general-
ization of TSP across multiple tasks, video encoders, al-
gorithms, and datasets, this subsection puts our results in
perspective and compares them with SOTA algorithms for
each localization task. We report the comparative results
in Tables 6 and 7. Note that we build TSP upon the best-
performing publicly available code for each task, namely
G-TAD [81], P-GCN [85], BMN [42], and BMT [27]. In
TAL on ActivityNet (Table 6(a)), we reach SOTA perfor-
mance with TSP. We achieve 35.81% in average mAP, a
boost of 0.80% w.r.t. the previous SOTA PBRNet [44] and
a boost of 1.72% w.r.t. our baseline G-TAD [81]. More-
over, TSP (with RGB features only) outperforms SOTA
methods [38, 42, 44, 81, 85] that use RGB and Flow fea-
tures. In TAL on THUMOS14 (Table 6(b)), we achieve
53.5% in mAP@0.5, a boost of 0.5% w.r.t. the previous
SOTA TSA-Net [22] and a boost of 4.4% w.r.t. our baseline
P-GCN [85]. The results display different improvements
on both datasets, focusing on higher tIoU for ActivityNet
and lower tIoU on THUMOS14. We argue that this dis-

Table 8: SOTA SSL comparison. We compare TSP with XDC
for TAL on THUMOS14. Both use R(2+1)D-18 and G-TAD.

Feature Pretraining 0.3 0.4 0.5 0.6 0.7

TAC on Kinetics 45.4 38.9 30.5 19.7 11.5
TAC on THUMOS14 48.0 41.6 33.3 23.7 14.6
XDC on IG-Kinetics [3] 51.5 44.9 37.2 28.7 20.0
TSP on THUMOS14 57.1 50.2 41.0 30.4 19.7

crepancy originates from the different activity densities in
both datasets. In Action Proposal Generation (Table 7),
we reach 69.04% in AUC, a boost of 1.96% w.r.t. our base-
line BMN [42], but fall short of RapNet [17] (−0.89%). In
Dense Video Captioning (Table 6(c)), we reached 8.75% in
average METEOR, a 0.31% improvement over the baseline
BMT [27], but fall short of SDVC [51] (−0.07%). We ar-
gue that SDVC [51] uses a reinforcement learning paradigm
that optimizes for the METEOR metrics directly, trading off
BLEU performances to overfit on METEOR. In contrast,
the TSP-empowered BMT model achieves balanced perfor-
mances in both BLEU and METEOR metrics.

4.4. Comparison with Self-Supervised Encoders

Recent self-supervised learning (SSL) methods have
shown impressive performance on video tasks such as ac-
tion classification [33, 50, 73, 78]. Here, we compare TSP
features with SOTA SSL features for temporal localization
tasks. Specifically, we compare with XDC [3], a recent
SOTA SSL method that learns video and audio features
via cross-modal deep clustering. Table 8 compares TSP
and XDC features for TAL on THUMOS14 under the same
settings: R(2+1)D-18 encoder and G-TAD algorithm. Al-
though XDC impressively outperforms the supervised TAC
baselines, it falls short of TSP performance by 2.8% in
mAP@0.5. While it is expected that SSL requires more
video data for pretraining than supervised pretraining, it is
worthwhile to point out that XDC pretrains on 65M videos
from IG-Kinetics [20], i.e. 260 times more videos than TSP.
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Table 9: Performance as a function of action length. We re-
port the performance of TAL on ActivityNet for different action
lengths. TSP performs significantly better on Extra Short (XS)
and Short (S) actions. XS and S make up about 70% of all actions.

Instance Length XS S M L XL

% of the Dataset 53.7 16.2 16.8 9.7 4.0

TAC on Kinetics 16.4 41.3 53.2 68.4 72.3
TAC on ActivityNet 17.5 42.0 53.1 67.5 72.5
TSP on ActivityNet 19.3 44.2 53.9 67.8 71.3

5. Feature Analysis
We further analyze TSP pretrained features on ActivityNet.
DETAD analysis. Following DETAD [1], we analyze the
TAL on ActivityNet performance (average mAP) for five
different groups of activities based on their length (Table 9):
Extra Short (XS: (0s, 30s]), Short (S: (30s, 60s]), Medium
(M: (60s, 120s]), Long (L: (120s, 180s]), and Extra Long
(XL: > 180s). The extra short instances, XS, are known to
be the most challenging to localize [1], and they represent
more than half of the annotated instances (53.7%). Their
temporal extent is limited as is the information available
to recognize the activity. Such instances might be hidden
among a significant amount of background. It is clear that
TAC performs well in localizing long activities, in partic-
ular because they are predominant in their corresponding
videos. Yet, TAC achieves the worst performance on the
challenging shorter activities. We argue that their localiza-
tion is more sensitive to the classification of each single clip,
since TAC is unaware of what an activity does not look like
in its temporal surrounding. In contrast, TSP features out-
perform the TAC ones for the short activity instances (XS
and S). We believe our learned clip feature is more aware
of background, and thus more perceptive of temporal activ-
ity boundaries for localization. As a trade-off, it appears
that TSP does not perform as well on extra long activities.
We believe those long activities might include intermedi-
ate clips with content leaning toward a background activ-
ity, thus misleading the localization and resulting in slightly
worse performance. Nevertheless, the XL activities merely
represent 4.0% of the dataset, so the overall impact on per-
formance is insignificant.
Feature similarity among video clips. Here, we analyze
the similarity between video clip features within the same
video. We expect the clip features from the same activity
to be very similar (consensus), yet very different from the
background clips in its temporal surrounding (sharpness).
Figure 2 visualizes the cosine similarity between clips of the
same video using TAC on Kinetics vs. TSP features (more
examples are in the supplementary material). In (a), TAC
on Kinetics shows a high similarity between the activity
and the background. This will inevitably make localization

(a) (b) (c) (d)

Figure 2: Feature similarity. Each column shows the similarity
matrices for clips in a single video using TAC on Kinetics (top)
and TSP (bottom) features. The green lines represent the temporal
extent of ground truth actions. Better viewed in color.

more difficult. In comparison, TSP better discriminates be-
tween background and activity. In (b), it appears that TAC
on Kinetics is trying to split the activity in two. By learning
what background is and what it is not, TSP homogenizes
the similarity between all clip features in the foreground
activity. In (c), the TSP video encoder increases the dif-
ferences between background and foreground features. It
homogenizes the features within both activities (bottom left
and top right corners), yet it does not enforce background
features to be similar, resulting in an increase in dissimi-
larity within the background (see the apparent diagonal in
the central square). In (d), TAC on Kinetics displays a high
similarity for the clips of the foreground activity, yet they
might look similar to the remaining background. TSP learns
obvious dissimilarity between background and foreground.
The TAC pretraining is unaware of the existence of back-
ground clips. As a result, it might recognize the class of
some actions but is unable to localize them precisely. In
contrast, TSP makes the encoder aware of the existence of
background, and so the clip features across the video tend to
be more informative for localization. Thus, TSP improves
the encoder’s discriminative ability, reduces the smoothing
over the temporal axis, and leads to sharper localization.

6. Conclusion
We present TSP, a novel temporally-sensitive supervised

pretraining for video encoders, which not only trains to clas-
sify actions, but also considers background clips and global
information to gain temporal sensitivity. We show that TSP
features improve SOTA methods on the TAL, Proposals,
and Dense-Captioning tasks. We argue TSP features can be
preferred over other features to build more accurate models.
Acknowledgments. This work is supported the King Ab-
dullah University of Science and Technology (KAUST) Of-
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