
Learning Where to Cut from Edited Videos

Yuzhong Huang*

University of Southern California
Information Sciences Institute

yuzhongh@isi.edu

Xue Bai Oliver Wang Fabian Caba Aseem Agarwala

Adobe Research
{xubai, owang, caba, asagarwa}@adobe.com

Abstract

In this work we propose a new approach for accelerat-
ing the video editing process by identifying good moments
in time to cut unedited videos. We first validate that there is
indeed a consensus among human viewers about good and
bad cut moments with a user study, and then formulate this
problem as a classification task. In order to train for such a
task, we propose a self-supervised scheme that only requires
pre-existing edited videos for training, of which there is
large and diverse data readily available. We then propose a
contrastive learning framework to train a 3D ResNet model
to predict good regions to cut. We validate our method with
a second user study, which indicates that clips generated by
our model are preferred over a number of baselines.

1. Introduction

Video editing is a time-consuming and challenging task
traditionally performed by highly trained experts. In the
most basic sense, video editing is time selection—selecting
a series of clips that tell a story from raw, unedited footage,
and then trimming each video down to its relevant part. As
such, editors are performing two main tasks: the high-level
task of deciding which content to show, and the low-level
task of precisely placing cut points in a way that is not dis-
tracting to viewers. In this work we address the second
task—the fine-scale placement of cuts (which can be equiv-
alently thought of as clip trimming), assuming that the high-
level direction of which clips to choose has been decided
by the editor. We believe this component is better suited
to automation as it is less dependent on high-level context
or artistic choices, while being difficult and tedious to exe-
cute in practice, as it requires frame-level precision. Due to
the increase in popularity of social video sharing websites,
more and more novice users are creating and sharing edited
video content, often times produced (shot, edited, and dis-
tributed) entirely on mobile devices. These users lack the

*Work performed during internship at Adobe Research

time, expertise, and equipment to perform frame-level tasks
such as cut placement.

In this work, we introduce the concept of “cut suitabil-
ity”, an instantaneous score for how good a cut would be
if placed at that time. We ignore audio and focus purely
on good visual times to cut. In our experience, audio and
language determine clearly bad times to cut (e.g., during
human voices, in the middle of sentences, and during loud
noises), but otherwise provide a fairly uniform probability
and is easy to determine using existing methods that can be
combined with visual cuts in a late-fusion stage.

Before we begin to approach this problem of visual cut-
ting, one might ask whether there is even any agreement
among viewers as to what makes a “good” time to cut. We
first validate this question by conducting a user study, which
indicated that there is indeed a consensus about good and
bad cut points. Generally good cut points occur at visu-
ally non-distracting times, in-between actions, or static mo-
ments right before or after camera motion, etc.

As cut suitability is a complex and hard to define func-
tion, we choose a data-driven approach that learns to asso-
ciate visual features from real cut points. One challenge is
that large scale datasets consisting of unedited and edited
footage are hard to come by. In this work, we instead pro-
pose to use a weakly-supervised approach where we train a
model entirely on edited video in the wild. This allows us
to collect large-scale and diverse edited video (video with
cuts), and then learn a one-sided function for the start and
end placement of cuts (note that in this data, information
across the cut for a single unedited clip is unavailable). We
gather a dataset of 61,486 edited videos from YouTube and
Vimeo.

Using this dataset, we propose a multimodal 3D Resnet
architecture and train two separate models for starting and
ending cut point prediction via contrastive learning. We de-
sign a progressive learning strategy to enforce the model to
differentiate positive samples from negative samples with
similar visual appearances. We use a randomized frame
rate conversion method to augment the input videos, which
effectively improves the model’s robustness against video

3215



compression.
We then evaluate our models on both our collected

dataset and a new set of unedited livestreaming videos. The
experimental results show that our model is able to predict
good cut positions close to the ground truth in the test set.
Furthermore, we conduct a user study to evaluate the sub-
jective preferences of human viewers.
Contributions.

We propose a model that predicts dense, continuous
scores for cut suitability. Our key contributions include the
following.

1. We introduce a novel task for computational video
editing to automate the time-consuming manual pro-
cess.

2. We propose a self-supervised contrastive learning
framework that is completely data-driven and utilizes
abundantly available edited videos without any manual
annotation.

3. We define a number of baselines, and evaluate our ap-
proach with respect to human preference with a user
study.

2. Related Work
Computational Cinematography. Previous papers on
computational cinematography have looked towards au-
tomating difficult parts of the production process. Some
work is on the camera side, such as stabilizing and centering
the video on content as a post process [6]. In addition, prior
work has investigated context-specific editing tasks, for ex-
ample providing a transcript-centered interface for editing
interviews [2], or a tool to leverages additional audio an-
notation created during filming [27]. Leake et al. [15] in-
troduce a system to automatically generate edits from di-
alog scenes, where cuts are determined based on a set of
high-level constraints, such as dialog and shot type. Arev
et al. [1] propose a system to produce cuts using multiple
social cameras. In this work, we propose a complementary
video editing task: fine-scale placement of cuts for general-
purpose footage, based on low-level content and motion
cuts.

Edited Video in Computer Vision. Most video content
online has at least a few basic edits, including cuts. This
holds in genres ranging from short social clips to elabo-
rate narrative videos. The computer vision community has
leveraged such edited videos to train and benchmark di-
verse vision tasks including action recognition [13], speaker
recognition[4], event localization[18], scene detection[20],
among others. While edited video has served as a rich
source to develop general-purpose video understanding sys-
tems, only a few approaches have leveraged the rich struc-
ture encoded within the video edits to learn video represen-
tations [19]. In this paper, we learn a cut suitability function

that contrasts the visual features of moments just before and
after a cut with features of all other moments in a video.

Video Shortening. The computer vision community has
studied several video shortening problems, such as tem-
poral action localization [17, 5] and event segmentation
[23, 22]. While action boundaries could be places of high
cut suitability, existing approaches for action localization
have been designed to detect coarse moments in time, such
as sport actions [11], high-level activities[3], and events in
movies[18]. These are quite different movements to those
who trigger cuts. Recently Shou et al. introduced the task
of generic event boundary detection [22]. Even though their
new study relaxes the shortening task from only actions to
taxonomy-free event boundaries, it is unclear whether these
general event boundaries correlate with good places to cut.
Another widely-studied task addressing video shortening is
video summarization [24, 7]. These methods process one
video stream and cut that stream into multiple shots, mak-
ing the video much shorter. Despite the similarities with our
task, video summarization focuses on reducing the video
length while maintaining the semantic meaning of the video
unchanged. In short, all previous methods for video short-
ening offer only a rough time range prediction to delin-
eate the start and end times of moments of interest in an
untrimmed video. This observation makes them not viable
as baselines for predicting frame-level cut suitability.

3. Problem Setting
As mentioned earlier, we are interested in the fine-scale

localization of cuts. We formulate this task as two separate
classification problems: whether a clip is a good starting
clip, and whether a clip is a good ending clip. In each of
these two problems, the task is then to predict a binary clas-
sification from the visual features contained in each clip,
evaluated using a sliding window.

First, we verify whether there is in fact human agree-
ment of “cut suitability” by conducting a user study. We
developed a web interface that shows two clips, and ask the
users which one is the better starting or ending clip. The
user study shows that human’s preference on which clip has
a better cut agrees with the ground truth is 76% for starting
point and 90% for ending point (elaborated in Table 2), indi-
cating that there is agreement on what makes a good or bad
cut. In this work, we use 2-second clips, which we found to
contain enough semantic motion to establish context.

3.1. Learning from Edited Videos

Learning cut points could be done from paired data con-
sisting of videos of raw footage, the trimmed clips and the
timestamps of the edit points. However, acquiring diverse
and large scale annotated data in this form is challenging.

3216



© 2017 Adobe Systems Incorporated.  All Rights Reserved.  Adobe Confidential.

Data-driven Approach

Learn from one-sided information of cuts in edited videos

1. Run shotcut detection (from Oliver)

2. Generate positive and negative samples (2-sec-clips, 16x112x112x3)

3. Train two binary classifiers

9

2 secpositive, start negative

clips

video

starting ending

negative positive, end

Figure 1. Data sampling for our method used in the start and end
prediction tasks. Positive samples are clips that start (or end) with
a cut, and negative samples drawn randomly from the rest of the
video.

Alternatively, we look for edited videos (without original
footage) that are widely available at scale on public video
sharing platforms such as YouTube and Vimeo. We run
a cut detection algorithm to identify cut points in edited
footage [8] and break up the videos into clips. In this way
we can collect cut points and the video content from one
side of the raw footage (Fig. 1). Although the trimmed
video content on the other side of each cut is missing, this
setting has the advantage of being able to leverage virtually
unlimited public videos for free.

We collect our dataset from public-video sharing web-
sites by downloading random subsets from travel, narrative
and food categories. In addition, we add the vimeo-90k
dataset [29] to our collection. A sample of the collected
video along with extracted clips is available online. 1 Our
dataset contains 718 YouTube videos and 60,768 Vimeo
videos. The total number of non-overlapping clips is 2.85
million. The average video duration is 205.86 seconds, and
each video contains 46.51 clips on average.

4. Method

4.1. Architecture

3D CNN architectures have been proven to be useful for
video-based tasks, such as action recognition [9]. We hy-
pothesize that motion and object information are important
factors in the determination of cut locations, and so we add
additional inputs in the form of Mask R-CNN labels and
optical flow. As shown in Fig. 2, each N -second video clip
is therefore represented in 3 ways:

RGB pixel values. Frames are downsampled to 112 ×
112, with 3-channel RGB format and 16 frames (8 fps). The
tensor shape is 3× 16× 112× 112.

Mask R-CNN labels. The pre-trained Mask R-CNN has
81 classes. We use a 1×1 convolution layer to project these
features to 3-channels. The tensor shape is 3× 16× 112×
112.

1http://www.yuzhonghuang.org/blog/VideoTrim/

RGB Values
3x16x112x112

Mask R-CNN Label
81x16xWxH

81x16x112x112

Scale, nearest

3x16x112x112

1x1 convolution

Concatenated Input
8x16x112x112

64x16x56x56

64x8x28x28

128x4x14x14

256x2x7x7

512x1x4x4

512

2

Optical Flow Vector
2x16x112x112

Source Video Clip
3xTxWxH

Scaling & FPS conversion

FPS conversion
& Mask R-CNN

Scaling & FPS conversion
& Optical Flow

Figure 2. Architecture of proposed network. Please see Section
4.1 for details.

Optical Flow. We use a pretrained optical flow model
[25] that computes a 2D motion vector for each pixel. The
tensor shape is 2× 16× 112× 112

These inputs are concatenated and passed through a se-
ries of 3D convolution layers. The model is trained to do
binary classification. As described in Section 3, We train
separate instances of this binary classifier for different tasks;
predicting the start of a cut, and predicting the end of a cut.
We also trained a unified model that performs 3-way classi-
fication, but it does not perform as well as the two separate
models. We will elaborate this in Section 5.1.

We use the known cut locations as positive labels, and
assign negative labels to randomly sampled N -second clips
that are at least N seconds away from cut locations. Note
that a random time is not necessarily a bad cut, so our
negative samples are noisy. Considering a good cut point
could last a few frames, we add a small degree of label
smoothing here, which we found improved accuracy. For
start (and similarly end) tasks, we assign soft label values
0.5, 0.25, 0.125 to 3 frames after (before) the cut point. It
is possible to train a model by minimizing the cross entropy
between the model prediction and these smoothed labels,
however we found that the trained model did not generalize

3217



well to test videos. (Section 5.1)

4.2. Contrastive Training

We observed two issues in network performance with the
naive cross-entropy loss and simple frame rate conversion
methods for the input video.

Model overfitting. We saw large gaps between the train-
ing and test accuracy in models with the cross-entropy loss,
which might be caused by insufficient positive samples
compared to the large network capacity. (See Baseline in
Table 1)

Video compression. Most edited videos in our dataset
have been compressed for streaming. Some compression
algorithms use key-frames and motion estimation, which
creates spatial and temporal dependencies in the processed
frames. In particular, the frames near the edit points may
be compressed differently, and the model may be trained to
learn from the small structures or artifacts.

In order to address the first issue, we instead train our
network using a supervised contrastive loss[14]. Given a
mini-batch of 2N samples, Nỹi

is the total number of sam-
ples in the mini-batch that has the same label, ỹi as the an-
chor, i. z is the embedding of a sample. The supervised
contrastive loss for this batch Lsup could be written as:

Lsup =

2N∑
i=1

Lsup
i (1)

Lsup
i =

−1

2Nỹi
− 1

2N∑
j=1

1i ̸=j · 1ỹi=ỹj
· log exp (zi · zj/τ)∑2N

k=1 1i̸=k · exp (zi · zk/τ)

Several properties of the supervised contrastive loss ide-
ally fit our task.

Contrastive power increases with more negatives [14]
Videos are usually recorded at frame rates of least 24 fps.
In a video clip, only a few frames are good cut points (pos-
itive), while most frames are not good places to cut (nega-
tive). So our task has inherently imbalanced labels, (each
clip containing 1 positive and 34 negatives on average.) and
contrastive loss could take advantage of it.

Non-symmetric loss for positive and negative samples
As seen in Eq. 4.2, zj and zk are a positive and negative
samples respectively. Lsup is directly correlated with zi · zj
while correlated to the reciprocal of zi · zk. The loss term
for negative sample will quickly decay as zi · zk increase,
but won’t decay for positive samples.

This is a desired property for our task. Such setup of
loss will enforce positive samples to get similar embeddings
with other positive samples, even if they have very different
visual appearances. For negative samples, we design it to

© 2017 Adobe Systems Incorporated.  All Rights Reserved.  Adobe Confidential.

Sampling Schemes

We use 4 sampling schemes for training with contrastive loss (starting task) 

19

Hard

Medium

Easy

Very hard

anchor

positive

negative

Figure 3. Sampling Schemes. In each row we show two edited
videos (grey bars), with cuts shown as vertical lines. By changing
where positive and negative samples are drawn from relative to an
anchor placed on a cut in the first video, we can make the task
easier, or harder.

enforce them to be far away from positive samples. The
intuition behind this is that there is only a small subset of
clips that are indeed good cut points with shared consensus,
while the negative clips are much more diverse.

In addition, we employ a curriculum learning strategy,
where we progressively generate samples with increasing
levels of difficulty for the network to learn. Fig. 3 shows an
example of the schemes for the starting clip task. A positive
sample from a clip is used as the anchor. In easy scheme,
we sample the positive from another clip in the same video,
and the negative from a different video. In medium scheme,
the negative comes from a different clip in the same video,
which is more similar to the anchor. We then make the
scheme harder by moving the negative sample in the same
clip as the anchor, and moving the positive sample to a dif-
ferent video. In this way, the network needs to learn shared
features between two visually distinct positive samples, and
learn to distinguish samples of different classes from the
same scene. It becomes even more challenging by moving
the negative sample very close to the anchor and forcing the
network to differentiate two samples that have very similar
visual appearances, as shown in the very-hard scheme.

During training, we start from the easy sampling scheme
for better convergence, and gradually shift towards more
difficult sampling schemes to improve classification accu-
racy on challenging videos.

The contrastive loss and the sampling schemes encour-
ages the network to cluster inter-class samples and distin-
guish intra-class samples regardless of their visual similar-
ity. As a result, we can train a much more robust model with
high accuracy (Section 5.1).

4.3. Temporal Augmentation

To address the second issue, we propose a new temporal
augmentation method.

We convert the input videos to a fixed FPS of 8 such
that every input video sample contains 16 frames. FFmpeg

3218



Figure 4. Randomized Frame Rate Conversion. We augment our
training samples by jittering sampling locations during rate con-
version.

[26] supports several frame conversion methods, includ-
ing frame rounding, frame blending, and optical flow based
blending, but these methods are designed for good viewing
experiences rather than effective data sampling methods.
Frame rounding cannot utilize available data effectively as it
rounds to nearest frames to the desired timestamps. Frame
blending and optical flow methods both produce different
frames than the source thus the model might learn from data
in different domains.

Inspired by [16, 28], we propose a randomized frame
sampling method that selects the first and last frame of the
source video, and then randomly selects the remaining 14
frames in ascending order (Fig. 4).

This randomized frame sampling method augments the
training data with more variants. It prevents the network
from learning any temporal patterns, structures or artifacts
from video compression, and as a result we found that mod-
els trained with this augmentation generalized better to un-
seen videos.

Our model was trained with 0.1 learning rate using SGD
optimizer with momentum, with an early stopping strat-
egy that stops when the validation loss did not decrease
for 3 epochs. We then recovered the lowest validation loss
weight. The model was trained for 78 epochs. Training took
about 42.7 hours on a single Nvidia V100.

5. Experiments
Baselines Recent works related to video cut point predic-
tion include highlight prediction, video segmentation and
action recognition. To the best of our knowledge, there are
no models specifically designed to predict dense, continu-
ous scores of cut feasibility at frame level. Therefore, we
introduce a number of naive baselines by ablating the var-
ious components of our method, and also experiment with
using an action recognition model [12] as our baseline, with
the hypothesis that cut suitability is often a function of when

actions have been completed. We use this baseline by fixing
the pretrained action recognition weights, and fine-tuning
the last layer on our collected dataset using a standard cross-
entropy loss.

5.1. Classification Evaluation

As ground truth labels in unedited footage are not widely
available, we use our collected YouTube and Vimeo videos
for self supervision and quantitative evaluation. Please note
that although we use edited videos for evaluation, our model
only sees continuous (unedited) video clips, whereas the
shotcut detection model sees edits. (Fig. 5). Our model
needs to learn from the video content from a single clip and
infer whether it is a good start or end.

We evaluate on a 80/20 split of training and testing, and
report training and test accuracy on both start and end tasks
in Table 1. From these results, we conclude

1. The model generalizes well to a very large set of di-
verse, unseen videos (87.51% test accuracy for start
task and 79.84% for end task). This suggests that our
model is able to learn the common features at the start
or end of human-edited clips.

2. Cut point prediction is a high-level task that bene-
fits high-level features (semantic labels, motion vec-
tors) derived from training related tasks. The ablation
study results shows that our proposed model improve
the classification accuracy of the baseline model by
28.54% for start task and 21.99% for end task.

3. The start task and end task have different behavior and
presumably are learning different features. The 3-way
classification model get lower accuracy than separate
models in start and end task. That partially explains
why we need two models and they couldn’t be unified.

4. The contrastive loss and temporal augmentation sig-
nificantly increase the model’s prediction accuracy. In
particularly, the gaps between training and test are de-
creased, which suggests better robustness and general-
ization.

5.2. Distribution of model prediction scores

As shown in Fig. 6, we compute the average scores of all
test videos on 16 frames after a true starting point. These 16
frames are all the temporally downsampled frames within
the 2-second clip. We can see that the predicted score is
the highest on the first frame and quickly drops to small
values on frames away from the start. This distribution con-
firms that the model’s prediction approximates the ground
truth. We observe a similar distribution for the ending task
model where the high values are concentrated towards the
last frame.

3219



Figure 5. Difference between the shotcut detector and our model.
The shotcut detector fires when the window includes a cut. Our
model sees continuous, unedited clips and the window does not
contain any cuts.

Input Model Start Task End Task
Train Test Train Test

RGB XE (Baseline) 91.71 58.97 95.69 58.85

RGB 3 way XE 54.79 55.05 58.24 55.37
RGB CT w/ TA 77.12 68.33 70.07 61.14
RGB CT w/o TA 85.23 58.44 82.45 57.14

Optical Flow [25] XE 75.23 62.89 69.33 57.14
Mask RCNN [10] XE 62.15 56.85 61.24 53.73
RGB+Optical Flow XE 89.28 75.91 88.93 68.29
RGB+Mask RCNN XE 87.88 78.00 86.78 78.42

RGB+Optical Flow+Mask RCNN XE 97.45 68.29 94.53 65.32
⋆ RGB+Optical Flow+Mask RCNN CT w/ TA 93.42 87.51 89.76 79.84

Table 1. Quantitative comparison of accuracy values for different
baselines and ablations. In this table XE stands for cross entropy
loss, CT stands for contrastive loss, and TA stands for temporal
augmentation. The last row prefixed by ⋆ is our proposed model.
We can see that adding the higher-level features improves accu-
racy, and our proposed contrastive learning training scheme im-
proves generalization to our test set.

5.3. User Study Evaluation

We conduct a user study to analyze the users’ subjective
evaluations on the predicted scores of cut feasibility. The
participants are 15 individuals hired from the video produc-
tion community on upwork.com who worked on video
projects ranging from consumer to professional levels. We
present to the participants a web page that shows a pair of
short clips, and ask them to review and click on the one with
better starting or ending, respectively; left-right order is ran-
domized. We generate a total of 3,000 pairs of clips that
are sampled from the test set and a new, out of domain set
of unedited livestreaming videos (all natural videos) from
twitch.com. To add redundancy, we design the user
study so that each web page is viewed and clicked by five
different users, which allows us to analyze the consensus of
each selection among different individuals.

There are 3 types of tasks when users select the clip:

1. Start. Choose the clip with better starting from two
N -second-clips.

2. End. Choose the clip with better ending from two N -

Dataset
Task

Start End Clip

GT 90.00 76.66 81.66
Ours 80.45 69.44 71.66

Livestream 69.16 63.33 66.66

Table 2. User study results. Average evaluation scores (in per-
centage) for different tasks and datasets. A higher number indi-
cates that human viewers agree more with the model’s prediction
or the ground truth.

second-clips.

3. Clip. Choose the clip with better starting and ending.
The clips are generally longer (between 2 seconds to
15 seconds) than those in the other two tasks, and they
are closer approximation to real world video editing
tasks.

For each video pair, we generate the positive one by sam-
pling local peak values from the continuous curve predicted
by the model. A peak is defined as a local maximum inside
the clip with predicted value above 0.9 threshold. The peak
value indicates that the video sample is likely to have a good
starting/ending cut point. Similarly, we generate the nega-
tive one by sampling local valley values below 0.1. If the
users are able to select the positive clip, it suggests that the
model is making a correct classification that matches hu-
man viewers’ subjective decision for what makes a “good
cut location”.

To find an upper bound of human agreement, and to val-
idate our ground truth, we also ask the users to perform the
same set of tasks on clips generated with ground truth la-
bels, by sampling the true clip boundaries as positive, and
random samples elsewhere as negative.

We compute the subjective score of each selection by
majority voting, which means we say that one clip “wins” if
there are more than half of the users making that decision.
The average accuracy for three tasks are reported in Table 2.
The results show that an expected upper bound for human
agreement should be around 77%-90%, as demonstrated on
the GT dataset where cuts have been hand chosen by ed-
itors. This indicates that there is a statistically significant
consensus among users that the positive and negative sam-
ples can be separated by humans. Further, we see that on
our held out test set, humans agree with our model 69%-
80% of the time. We also evaluate 0-shot dataset transfer
by testing on the aforementioned out-of-domain livestream
dataset (unedited livesteaming video), and see that accuracy
scores are lower 63%-69%, although still are significantly
over chance (50%). This is likely due to the different do-
main than the training data.

3220



offset (frames) offset (frames)

Average Predicted Scores

Figure 6. Average predicted scores on frames near the clip boundary. The x-axis is the offset of the input clip as it shifts away from the
boundary. The model’s prediction is highly concentrated on the true positive at clip boundaries.

Figure 7. Grad-CAM visualization of an input video clip. We can
see that the network pays attention to regions with motion, e.g.,
the waiving hands.

Figure 8. Grad-CAM visualization of an input video clip. We can
see that the network pays particular attention to salient features
such as the horizon

5.4. Grad-CAM Visualization

To understand what our model is looking at, we utilize
Grad-CAM [21] to visualize the activation heat map. A few
examples are shown in Fig. 7, 8. Our model detects seman-
tically meaningful regions in the scenes and pays attention
to moving objects, landmarks and human faces, etc. This
analysis gives us insights into the model’s decision on eval-
uating a good cut position.

Figure 9. An example of automatic cut point prediction using our
model. Given an input video, the model predicts two curves. The
starting cuts (orange) and ending cuts (red) are detected at peak
values of the curves. A candidate clip (blue segment) can be gener-
ated by combining the cut points in either automatic or interactive
fashion.

6. Applications

We use the models to predict the cut suitability on every
frame. The local maximums (or values above a threshold)
can be used as candidate cut points for starting or ending
tasks. A starting cut point can be combined with an ending
cut point to generate a clip. We envision possible applica-
tions to assist users with video editing tasks such as cutting,
trimming and selection. See Fig. 9.

Cut point suggestion. The model recommends the most
likely cut positions that can be combined to produce clips.

Refine clip boundaries of a rough selection. The user
selects a clip and then the clip boundaries will snap to the
closest candidate cut points predicted by the model.

Avoid bad cuts. Cutting is disabled in regions with very
low prediction scores.

7. Conclusion and Future Work

In conclusion, we take a first step towards evaluating and
learning from the cutting points, introduced a new problem

3221



of cut suitability prediction from video data using weakly-
supervised edited videos collected in-the-wild, and demon-
strate potential application of proposed method. Our paper
provides practical examples of how AI could be used for
understanding and accelerating video editing.

Using proposed method, we are able to simplify the
video editing process by “snapping” cuts to frames that are
preferred by viewers, as validated by a user study. Our
method uses contrastive learning with a sampling curricu-
lum designed for this task that improves results over a num-
ber of baselines. In addition, we have showed that adding
features derived from other high-level tasks such as motion
estimation and object segmentation improve the overall ac-
curacy of our approach.

We hope that as edited videos become a more common
form of communication and self-expression, that this and
other similar computational cinematography technologies
will enable new users to participate in this medium. In the
future, we would like to investigate the decision-making
process of humans when editing videos, which will help
us understand the gap between human preference and the
model’s prediction. We plan to add the audio cut points in a
late-fusion stage for regions of videos containing speech or
music. While we report the average accuracy on a very large
dataset (2.85 million clips), we can augment the study by
classifying the videos into different categories using meta-
data or scene classifiers, and report the numbers for each
video type such as sports, touring, speech, etc. Training
specialized models for each video domain will help increase
the accuracy.

References
[1] Ido Arev, Hyun Soo Park, Yaser Sheikh, Jessica Hod-

gins, and Ariel Shamir. Automatic editing of footage
from multiple social cameras. ACM Trans. Graph.,
33(4), July 2014. 2

[2] Floraine Berthouzoz, Wilmot Li, and Maneesh
Agrawala. Tools for placing cuts and transitions in in-
terview video. ACM Transactions on Graphics (TOG),
31(4):1–8, 2012. 2

[3] Fabian Caba Heilbron, Victor Escorcia, Bernard
Ghanem, and Juan Carlos Niebles. Activitynet: A
large-scale video benchmark for human activity un-
derstanding. In Proceedings of the ieee conference on
computer vision and pattern recognition, pages 961–
970, 2015. 2

[4] Mark Everingham, Josef Sivic, and Andrew Zisser-
man. Hello! my name is... buffy”–automatic naming
of characters in tv video. In BMVC, volume 2, page 6,
2006. 2

[5] Adrien Gaidon, Zaid Harchaoui, and Cordelia
Schmid. Temporal localization of actions with actoms.

IEEE transactions on pattern analysis and machine
intelligence, 35(11):2782–2795, 2013. 2

[6] Michael L Gleicher and Feng Liu. Re-
cinematography: Improving the camerawork of
casual video. ACM transactions on multimedia com-
puting, communications, and applications (TOMM),
5(1):1–28, 2008. 2

[7] Boqing Gong, Wei-Lun Chao, Kristen Grauman, and
Fei Sha. Diverse sequential subset selection for su-
pervised video summarization. In Advances in neu-
ral information processing systems, pages 2069–2077,
2014. 2

[8] Michael Gygli. Ridiculously fast shot boundary detec-
tion with fully convolutional neural networks. CoRR,
abs/1705.08214, 2017. 3

[9] Kensho Hara, Hirokatsu Kataoka, and Yutaka Satoh.
Can spatiotemporal 3d cnns retrace the history of 2d
cnns and imagenet? In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition
(CVPR), pages 6546–6555, 2018. 3

[10] K. He, G. Gkioxari, P. Dollár, and R. Girshick. Mask
r-cnn. In 2017 IEEE International Conference on
Computer Vision (ICCV), pages 2980–2988, 2017. 6

[11] Haroon Idrees, Amir R Zamir, Yu-Gang Jiang, Alex
Gorban, Ivan Laptev, Rahul Sukthankar, and Mubarak
Shah. The thumos challenge on action recognition for
videos “in the wild”. Computer Vision and Image Un-
derstanding, 155:1–23, 2017. 2

[12] Hirokatsu Kataoka, Tenga Wakamiya, Kensho Hara,
and Yutaka Satoh. Would mega-scale datasets further
enhance spatiotemporal 3d cnns?, 2020. 5

[13] Will Kay, Joao Carreira, Karen Simonyan, Brian
Zhang, Chloe Hillier, Sudheendra Vijayanarasimhan,
Fabio Viola, Tim Green, Trevor Back, Paul Natsev,
et al. The kinetics human action video dataset. arXiv
preprint arXiv:1705.06950, 2017. 2

[14] Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron
Sarna, Yonglong Tian, Phillip Isola, Aaron Maschinot,
Ce Liu, and Dilip Krishnan. Supervised contrastive
learning, 2020. 4

[15] Mackenzie Leake, Abe Davis, Anh Truong, and
Maneesh Agrawala. Computational video editing
for dialogue-driven scenes. ACM Trans. Graph.,
36(4):130–1, 2017. 2

[16] Juhyun Lee. Non-deterministic video frame sampling
to thwart frame insertion attacks. 2017. 5

[17] Tianwei Lin, Xu Zhao, Haisheng Su, Chongjing
Wang, and Ming Yang. Bsn: Boundary sensitive net-
work for temporal action proposal generation. In Eu-
ropean Conference on Computer Vision, 2018. 2

3222



[18] Xiaolong Liu, Yao Hu, Song Bai, Fei Ding, Xi-
ang Bai, and Philip HS Torr. Multi-shot tempo-
ral event localization: a benchmark. arXiv preprint
arXiv:2012.09434, 2020. 2

[19] Georgios Pavlakos, Jitendra Malik, and Angjoo
Kanazawa. Human mesh recovery from multiple
shots. arXiv preprint arXiv:2012.xxxxxx, 2020. 2

[20] Anyi Rao, Linning Xu, Yu Xiong, Guodong Xu,
Qingqiu Huang, Bolei Zhou, and Dahua Lin. A local-
to-global approach to multi-modal movie scene seg-
mentation. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition,
pages 10146–10155, 2020. 2

[21] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam,
D. Parikh, and D. Batra. Grad-cam: Visual explana-
tions from deep networks via gradient-based localiza-
tion. In 2017 IEEE International Conference on Com-
puter Vision (ICCV), pages 618–626, 2017. 7

[22] Mike Zheng Shou, Deepti Ghadiyaram, Weiyao
Wang, and Matt Feiszli. Generic event boundary de-
tection: A benchmark for event segmentation, 2021.
2

[23] H. S. Sokeh, V. Argyriou, D. Monekosso, and P. Re-
magnino. Superframes, a temporal video segmenta-
tion. In 2018 24th International Conference on Pat-
tern Recognition (ICPR), pages 566–571, 2018. 2

[24] Yale Song, Jordi Vallmitjana, Amanda Stent, and Ale-
jandro Jaimes. Tvsum: Summarizing web videos us-
ing titles. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 5179–
5187, 2015. 2

[25] Deqing Sun, Xiaodong Yang, Ming-Yu Liu, and Jan
Kautz. PWC-Net: CNNs for optical flow using pyra-
mid, warping, and cost volume. 2018. 3, 6

[26] Suramya Tomar. Converting video formats with ffm-
peg. Linux Journal, 2006(146):10, 2006. 5

[27] Anh Truong, Floraine Berthouzoz, Wilmot Li, and
Maneesh Agrawala. Quickcut: An interactive tool for
editing narrated video. In Proceedings of the 29th
Annual Symposium on User Interface Software and
Technology, UIST ’16, page 497–507, New York, NY,
USA, 2016. Association for Computing Machinery. 2

[28] Limin Wang, Yuanjun Xiong, Zhe Wang, Yu Qiao,
Dahua Lin, Xiaoou Tang, and Luc Val Gool. Tem-
poral segment networks: Towards good practices for
deep action recognition. In ECCV, 2016. 5

[29] Tianfan Xue, Baian Chen, Jiajun Wu, Donglai Wei,
and William T Freeman. Video enhancement with
task-oriented flow. International Journal of Computer
Vision (IJCV), 127(8):1106–1125, 2019. 3

3223


