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Abstract

This paper presents VTN, a transformer-based frame-
work for video recognition. Inspired by recent developments
in vision transformers, we ditch the standard approach in
video action recognition that relies on 3D ConvNets and
introduce a method that classifies actions by attending
to the entire video sequence information. Our approach
is generic and builds on top of any given 2D spatial
network. In terms of wall runtime, it trains 16.1× faster
and runs 5.1× faster during inference while maintaining
competitive accuracy compared to other state-of-the-art
methods. It enables whole video analysis, via a single
end-to-end pass, while requiring 1.5× fewer GFLOPs. We
report competitive results on Kinetics-400 and Moments
in Time benchmarks and present an ablation study of
VTN properties and the trade-off between accuracy and
inference speed. We hope our approach will serve as a
new baseline and start a fresh line of research in the video
recognition domain. Code and models are available at:
https://github.com/bomri/SlowFast/blob/
master/projects/vtn/README.md.

1. Introduction
Attention matters. For almost a decade, ConvNets have

ruled the computer vision field [22, 7]. Applying deep
ConvNets produced state-of-the-art results in many visual
recognition tasks, i.e., image classification [32, 19, 34], ob-
ject detection [17, 16, 28], semantic segmentation [25], ob-
ject instance segmentation [18], face recognition [33, 30]
and video action recognition [9, 38, 3, 39, 23, 14, 13,
12]. But, recently this domination is starting to crack as
transformer-based models are showing promising results in
many of these tasks [10, 2, 35, 40, 42, 15].

Video recognition tasks also rely heavily on ConvNets.
In order to handle the temporal dimension, the fundamen-
tal approach is to use 3D ConvNets [5, 3, 4]. In contrast to
other studies that add the temporal dimension straight from
the input clip level, we aim to move apart from 3D net-
works. We use state-of-the-art 2D architectures to learn the
spatial feature representations and add the temporal infor-

Figure 1. Video Transformer Network architecture. Connecting
three modules: A 2D spatial backbone (f(x)), used for feature ex-
traction. Followed by a temporal attention-based encoder (Long-
former in this work), that uses the feature vectors (ϕi) combined
with a position encoding. The [CLS] token is processed by a clas-
sification MLP head to get the final class prediction.

mation later in the data flow by using attention mechanisms
on top of the resulting features. Our approach input only
RGB video frames and without any bells and whistles (e.g.,
optical flow, streams lateral connections, multi-scale infer-
ence, multi-view inference, longer clips fine-tuning, etc.)
achieves comparable results to other state-of-the-art mod-
els.

Video recognition is a perfect candidate for Transform-
ers. Similar to language modeling, in which the input words
or characters are represented as a sequence of tokens [37],
videos are represented as a sequence of images (frames).
However, this similarity is also a limitation when it comes
to processing long sequences. Like long documents, long
videos are hard to process. Even a 10 seconds video, such
as those in the Kinetics-400 benchmark [21], are processed
in recent studies as short, ˜2 seconds, clips.

But how does this clip-based inference would work on
much longer videos (i.e., movie films, sports events, or sur-
gical procedures)? It seems counterintuitive that the infor-
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Figure 2. Extracting 16 frames evenly from a video of the abseiling category in the Kinetics-400 dataset [21]. Analyzing the video’s full
context and attending to the relevant parts is much more intuitive than analyzing several clips built around specific frames, as many of these
frames might lead to false predictions.

mation in a video of hours, or even a few minutes, can be
grasped using only a snippet clip of a few seconds. Nev-
ertheless, current networks are not designed to share long-
term information across the full video.

VTN’s temporal processing component is based on a
Longformer [1]. This type of transformer-based model can
process a long sequence of thousands of tokens. The atten-
tion mechanism proposed by the Longformer makes it fea-
sible to go beyond short clip processing and maintain global
attention, which attends to all tokens in the input sequence.

In addition to long sequence processing, we also explore
an important trade-off in machine learning – speed vs. ac-
curacy. Our framework demonstrates a superior balance
of this trade-off, both during training and also at inference
time. In training, even though wall runtime per epoch is
either equal or greater, compared to other networks, our ap-
proach requires much fewer passes of the training dataset
to reach its maximum performance; end-to-end, compared
to state-or-the-art networks, this results in a 16.1× faster
training. At inference time, our approach can handle both
multi-view and full video analysis while maintaining simi-
lar accuracy. In contrast, other networks’ performance sig-
nificantly decreases when analyzing the full video in a sin-
gle pass. In terms of GFLOPS x Views, their inference cost
is considerably higher than those of VTN, which concludes
to a 1.5× fewer GFLOPS and a 5.1× faster validation wall
runtime.

Our framework’s structure components are modular
(Fig. 1). First, the 2D spatial backbone can be replaced
with any given network. The attention-based module can
stack up more layers, more heads or can be set to a differ-
ent Transformers model that can process long sequences.
Finally, the classification head can be modified to facilitate
different video-based tasks, like temporal action localiza-
tion.

2. Related Work
Spatial-temporal networks. Most recent studies in video
recognition suggested architectures that are based on 3D
ConvNets [20, 36]. In [5], a two-stream architecture was
used, one stream for RGB inputs and another for Optical
Flow (OF) inputs. Residual connections are inserted into

the two-stream architecture to allow a direct link between
RGB and OF layers. The idea of inflating 2D ConvNets into
their 3D counterpart (I3D) was introduced in [3]. I3D takes
2D ConvNets and expands its layers into 3D. Therefore it
allows to leverage pre-trained state-of-the-art image recog-
nition architectures in the spatial-temporal domain and ap-
ply them for video-based tasks.

Non-local Neural Networks (NLN) [39] introduced a
non-local operation, a type of self-attention, that computes
responses based on relationships between different loca-
tions in the input signal. NLN demonstrated that the core
attention mechanism in Transformers can produce good re-
sults on video tasks, however it is confined to processing
only short clips. In order to extract long temporal context,
[41] introduced a long-term feature bank that acts as the
entire video memory and a Feature Bank Operator (FBO)
that computes interactions between short-term and long-
term features. However, it requires precomputed features,
and it is not efficient enough to support end-to-end training
of the feature extraction backbone.

SlowFast [14] explored a network architecture that op-
erates in two pathways and different frame rates. Lateral
connections fuse the information between the slow pathway,
focused on the spatial information, and the fast pathway fo-
cused on temporal information.

The X3D study [13] builds on top of SlowFast. It argues
that in contrast to image classification architectures, which
have been developed via a rigorous evolution, the video
architectures have not been explored in detail, and histor-
ically are based on expanding image-based networks to fit
the temporal domain. X3D introduces a set of networks that
progressively expand in different axes, e.g., temporal, frame
rate, spatial, width, bottleneck width, and depth. Compared
to SlowFast, it offers a lightweight network (in terms of
GFLOPS and parameters) with similar performance.

Transformers in computer vision. The Transformers ar-
chitecture [37] reached state-of-the-art results in many NLP
tasks, making it the de-facto standard. Recently, Transform-
ers are starting to disrupt the field of computer vision, which
traditionally depends on deep ConvNets. Studies like ViT
and DeiT for image classification [10, 35], DETR for ob-
ject detection and panoptic segmentation [2], and VisTR for
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model
pretrain

(ImageNet accuracy (%))
top-1 top-5

R50-VTN ImageNet (76.2 [27]) 71.2 90.0
R101-VTN ImageNet (77.4 [27]) 72.1 90.3
DeiT-B-VTN ImageNet (81.8 [35]) 75.5 92.2
DeiT-BD-VTN ImageNet (83.4 [35]) 75.6 92.4
ViT-B-VTN ImageNet-21K (84.0 [10]) 78.6 93.7
ViT-B-VTN† ImageNet-21K (84.0 [10]) 79.8 94.2

Table 1. VTN performance on Kinetics-400 validation set for dif-
ferent backbone variations. A full video inference is used. We
show top-1 and top-5 accuracy. We report what pre-training was
done for each backbone and the related single-crop top-1 accuracy
on ImageNet. (†) Training with extensive data augmentation.

video instance segmentation [40] are some examples show-
ing promising results when using Transformers in the com-
puter vision field. Binding these results with the sequential
nature of video makes it a perfect match for Transformers.

Applying Transformers on long sequences. BERT [8]
and its optimized version RoBERTa [24] are transformer-
based language representation models. They are pre-trained
on large unlabeled text and later fine-tuned on a given target
task. With minimal modification, they achieve state-of-the-
art results on a variety of NLP tasks.

One significant limitation of these models, and Trans-
formers in general, is their ability to process long se-
quences. This is due to the self-attention operation, which
has a complexity of O(n2) per layer (n is sequence
length) [37].

Longformer [1] addresses this problem and enables
lengthy document processing by introducing an attention
mechanism with a complexity of O(n). This attention
mechanism combines a sliding window local-context self-
attention and task-specific global attention.

Similar to ConvNets, stacking up multiple windowed at-
tention layers results in a larger receptive field. This prop-
erty of Longformer gives it the ability to integrate informa-
tion across the entire sequence. The global attention part
focuses on pre-selected tokens (like the [CLS] token) and
can attend to all other tokens across the input sequence.

3. Video Transformer Network
Video Transformer Network (VTN) is a generic frame-

work for video recognition. It operates with a single stream
of data, from the frames level up to the objective task head.
In the scope of this study, we demonstrate our approach us-
ing the action recognition task by classifying an input video
to the correct action category.

The architecture of VTN is modular and composed of
three consecutive parts. A 2D spatial feature extraction
model (spatial backbone), a temporal attention-based en-
coder, and a classification MLP head. Fig. 1 demonstrates
our architecture layout.

VTN is scalable in terms of video length during infer-
ence, and enables the processing of very long sequences.
Due to memory limitation, we suggest several types of in-
ference methods. (1) Processing the entire video in an end-
to-end manner. (2) Processing the video frames in chunks,
extracting features first, and then applying them to the tem-
poral attention-based encoder. (3) Extracting all frames’
features in advance and then feed them to the temporal en-
coder.

3.1. Spatial backbone

The spatial backbone operates as a learned feature ex-
traction module. It can be any network that works on
2D images, either deep or shallow, pre-trained or not,
convolutional- or transformers-based. And its weights can
be fixed (pre-trained) or trained during the learning process.

3.2. Temporal attention-based encoder

As suggested by [37], we use a Transformer model ar-
chitecture that applies attention mechanisms to make global
dependencies in a sequence data. However, Transformers
are limited by the number of tokens they can process at the
same time. This limits their ability to process long inputs,
such as videos, and incorporate connections between distant
information.

In this work, we propose to process the entire video at
once during inference. We use an efficient variant of self-
attention, that is not all-pairwise, called Longformer [1].
Longformer operates using sliding window attention that
enables a linear computation complexity. The sequence of
feature vectors of dimension dbackbone (Sec. 3.1) is fed to the
Longformer encoder. These vectors act as the 1D tokens
embedding in the standard Transformer setup.

Like in BERT [8] we add a special classification token
([CLS]) in front of the features sequence. After propagat-
ing the sequence through the Longformer layers, we use the
final state of the features related to this classification token
as the final representation of the video and apply it to the
given classification task head. Longformer also maintains
global attention on that special [CLS] token.

3.3. Classification MLP head

Similar to [10], the classification token (Sec. 3.2) is pro-
cessed with an MLP head to provide a final predicted cat-
egory. The MLP head contains two linear layers with a
GELU non-linearity and Dropout between them. The input
token representation is first processed with a Layer normal-
ization.

3.4. Looking beyond a short clip context

The common approach in recent studies for video action
recognition uses 3D-based networks. During inference, due
to the addition of a temporal dimension, these networks are
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# layers top-1 top-5
1 78.6 93.4
3 78.6 93.7
6 78.5 93.6

12 78.3 93.3

(a) Depth: Comparing
different numbers of at-
tention layers in the Long-
former.

PE shuffle top-1 top-5
learned - 78.4 93.5
learned ✓ 78.8 93.6
fixed - 78.3 93.7
fixed ✓ 78.5 93.7
no - 78.6 93.7
no ✓ 78.9 93.7

(b) Positional embedding: Evaluating the im-
pact of different types of PE methods, with
and without shuffling the input frames. We
conducted this experiment with an older ex-
perimental setup using a different learning rate
scheduler, so the results of the learned without
shuffle are slightly different from what we re-
port in other tables: 78.4% vs. 78.6%.

temporal footprint # frames top-1 top-5
2.56 16 78.2 93.4
2.56 32 78.2 93.6
5.12 16 78.6 93.4
5.12 32 78.5 93.5
10.0 16 78.0 93.3

(c) Temporal footprint: Comparing the im-
pact of temporal footprint size (in seconds)
and the number of frames in a clip.

finetune top-1 top-5
- 71.6 90.3
✓ 78.6 93.7

(d) Finetune: Training
a ViT-B-VTN with three
attention layers with and
without fine-tuning the 2D
backbone. All other hy-
perparameters remain the
same.

Table 2. Ablation experiments on Kinetics-400. The results are top-1 and top-5 accuracy (%) on the validation set using the full video
inference approach.

limited by memory and runtime to clips of a small spatial
scale and a low number of frames. In [3], the authors use the
whole video during inference, averaging predictions tempo-
rally. More recent studies that achieved state-of-the-art re-
sults processed numerous, but relatively short, clips during
inference. In [39], inference is done by sampling ten clips
evenly from the full-length video and average the softmax
scores to achieve the final prediction. SlowFast [14] follows
the same practice and introduces the term “view” – a tem-
poral clip with a spatial crop. SlowFast uses ten temporal
clips with three spatial crops at inference time; thus, 30 dif-
ferent views are averaged for the final prediction. X3D [13]
follows the same practice, but in addition, it uses larger spa-
tial scales to achieve its best results on 30 different views.

This common practice of multi-view inference is some-
what counterintuitive, especially when handling long
videos. A more intuitive way is to “look” at the entire video
context before deciding on the action, rather than viewing
only small portions of it. Fig. 2 shows 16 frames extracted
evenly from a video of the abseiling category. The actual
action is obscured or not visible in several parts of the video;
this might lead to a false action prediction in many views.
The potential in focusing on the segments in the video that
are most relevant is a powerful ability. However, full video
inference produces poor performance in methods that were
trained using short clips (Table 3 and 4). In addition, it is
also limited in practice due to hardware, memory, and run-
time aspects.

4. Video Action Recognition with VTN
In order to evaluate our approach and the impact of con-

text attention on video action recognition, we use several
spatial backbones pre-trained on 2D images.

ViT-B-VTN. Combining the state-of-the-art image classi-
fication model, ViT-Base [10], as the backbone in VTN. We

use a ViT-Base network that was pre-trained on ImageNet-
21K. Using ViT as the backbone for VTN produces an end-
to-end transformers-based network that uses attention both
for the spatial and temporal domains.

R50/101-VTN. As a comparison, we also use a standard
2D ResNet-50 and ResNet-101 networks [19], pre-trained
on ImageNet.

DeiT-B/BD/Ti-VTN. Since ViT-Base was trained on
ImageNet-21K we also want to compare VTN by using sim-
ilar networks trained on ImageNet. We use the recent work
of [35] and apply DeiT-Tiny, DeiT-Base, and DeiT-Base-
Distilled as the backbone for VTN.

4.1. Implementation Details

Training. The spatial backbones we use were pre-trained
on either ImageNet or ImageNet-21k. The Longformer and
the MLP classification head were randomly initialized from
a normal distribution with zero mean and 0.02 std. We train
the model end-to-end using video clips. These clips are
formed by choosing a random frame as the starting point,
then sampling 2.56 or 5.12 seconds as the video’s temporal
footprint. The final clip frames are subsampled uniformly
to a fixed number of frames N(N = 16, 32), depending on
the setup.

For the spatial domain, we randomly resize the shorter
side of all the frames in the clip to a [256, 320] scale and
randomly crop all frames to 224 × 224. Horizontal flip is
also applied randomly on the entire clip.

The ablation experiments were done on a 4-GPU ma-
chine. Using a batch size of 16 for the ViT-VTN (on
16 frames per clip input) and a batch size of 32 for the
R50/101-VTN. We use an SGD optimizer with an initial
learning rate of 10−3 and a different learning rate reduction
policy, steps-based for the ViT-VTN versions and cosine
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Figure 3. Illustrating all the single-head first attention layer weights of the [CLS] token vs. 16 frames pulled evenly from a video. High
weight values are represented by a warm color (yellow) while low values by a cold color (blue). The video’s segments in which abseiling
category properties are shown (e.g., shackle, rope) exhibit higher weight values compared to segments in which non-relevant information
appears (e.g., shoes, people). The model prediction is abseiling for this video.

Figure 4. Evaluating the influence of attention on the training
(solid line) and validation (dashed line) curves for Kinetics-400.
A similar ViT-B-VTN with three Longformer layers is trained for
both cases, and we modify the attention heads between a learned
one (red) and a fixed uniform version (blue).

schedule decay for the R50/101-VTN versions. In order to
report the wall runtime, we use an 8-V100-GPU machine.

Since we use 2D models as the spatial backbone, we can
manipulate the input clip shape xclip ∈ RB×C×T×H×W by
stacking all frames from all clips within a batch to create a
single frames batch of shape x ∈ R(B·T )×C×H×W . Thus,
during training, we propagate all batch frames in a single
forward-backward pass.

For the Longformer, we use an effective attention win-
dow of size 32, which was applied for each layer. Two other
hyperparameters are the dimensions set for the Hidden size
and the FFN inner hidden size. These are a direct derivative
of the spatial backbone. Therefore, in R50/101-VTN we
use 2048 and 4096, respectively, and for ViT-B-VTN we
use 768 and 3072, respectively. In addition, we apply At-
tention Dropout with a probability of 0.1. We also explore
the impact of the number of Longformer layers.

The positional embedding (PE) information is only rele-
vant for the temporal attention-based encoder (Fig. 1). We
explore three positional embedding approaches (Table 2b):
(1) Learned positional embedding - since a clip is repre-

sented using frames taken from the full video sequence, we
can learn an embedding that uses as input the frame loca-
tion (index) in the original video, giving the Transformer
information regarding the position of the clip in the entire
sequence; (2) Fixed absolute encoding - we use a similar
method to the one in DETR [2], and modified it to work on
the temporal axis only; and (3) No positional embedding -
no information is added in the temporal dimension, but we
still use the global position to mark the special [CLS] token
position.

Inference. In order to show a comparison between differ-
ent models, we use both the common practice of infer-
ence in multi-views and a full video inference approach
(Sec. 3.4).

In the multi-view approach, we sample 10 clips evenly
from the video. For each clip, we first resize the shorter
side to 256, then take three crops of size 224 × 224 from
the left, center, and right. The result is 30 views per video,
and the final prediction is an average of all views’ softmax
scores.

In the full video inference approach, we read all the
frames in the video. Then, we align them for batching pur-
poses, by either sub- or up-sampling, to 250 frames uni-
formly. In the spatial domain, we resize the shorter side to
256 and take a center crop of size 224× 224.

5. Experiments
5.1. Ablation Experiments on Kinetics-400

Kinetics-400 dataset. The original Kinetics-400 dataset
[21] consists of 246,535 training videos and 19,761 vali-
dation videos. Each video is labeled with one of 400 hu-
man action categories, curated from YouTube videos. Since
some YouTube links are expired, we could only download
234,584 of the original dataset, thus missing 11,951 videos
from the training set, which are about 5%. This leads to a
slight drop in performance of about 0.5%1.

In the validation set, we are missing one video. To test
our data’s validity and compare it to previous studies, we

1https://github.com/facebookresearch/
video-nonlocal-net/blob/master/DATASET.md
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model
training wall

runtime (minutes)
# training

epochs
validation wall

runtime (minutes)
inference
approach

params
(M)

top-1 top-5

I3D* 30 - 84 multi-view 28 73.5 [11] 90.8 [11]
NL I3D (our impl.) 68 50 150 multi-view 54 74.1 91.7
NL I3D (our impl.) 68 50 31 full-video 54 72.1 90.5
SlowFast-8X8-R50* 70 196 [14] 140 multi-view 35 77.0 [11] 92.6 [11]
SlowFast-8X8-R50* 70 196 [14] 26 full-video 35 68.4 87.1
SlowFast-16X8-R101* 220 196 [14] 244 multi-view 60 78.9 [11] 93.5 [11]
R50-VTN 62 40 32 full-video 168 71.2 90.0
R101-VTN 110 40 32 full-video 187 72.1 90.3
DeiT-Ti-VTN (3 layers) 52 60 30 full-video 10 67.8 87.5
ViT-B-VTN (1 layer) 107 25 48 full-video 96 78.6 93.4
ViT-B-VTN (3 layers) 130 25 52 full-video 114 78.6 93.7
ViT-B-VTN (3 layers)† 130 35 52 full-video 114 79.8 94.2

Table 3. To measure the overall time needed to train each model, we observe how long it takes to train a single epoch and how many epochs
are required to achieve the best performance. We compare these numbers to the validation top-1 and top-5 accuracy on Kinetics-400 and the
number of parameters per model. To measure the training wall runtime, we ran a single epoch for each model, on the same 8-V100-GPU
machine, with a 16GB memory per GPU. The models marked by (*) were taken from the PySlowFast GitHub repository [11]. We report
the accuracy as written in the Model Zoo, which was done using the 30 multi-view inference approach. To measure the wall runtime, we
used the code base of PySlowFast. To calculate the SlowFast-16X8-R101 time on the same GPU machine, we used a batch size of 16.
The number of epochs is reported, when possible, based on the original model paper. All other models, including the NL I3D, are trained
using our codebase and evaluated with a full video inference approach. (†) The model in the last row was trained with extensive data
augmentation.

Figure 5. Kinetics-400 learning curves for our implementation of
NL I3D (blue) vs. DeiT-B-VTN (red). We show the top-1 accuracy
for the train set (solid line) and the validation set (dash line). Top-
1 accuracy during training is calculated based on a single random
clip, while during validation we use the full video inference ap-
proach. DeiT-B-VTN shows high performance in every step of the
training and validation process. It reaches its best accuracy after
only 25 epochs compared to the NL I3D that needs 50 epochs.

evaluated the SlowFast-8X8-R50 model, published in PyS-
lowFast[11], on our validation data. We got 76.45% top1-
accuracy vs. the reported 77%, thus a drop of 0.55%. This
drop might be related to different FFmpeg encoding and
rescaling of the videos. From this point forward, when com-
paring to other networks, we report results taken from the
original studies except when we evaluate them on the full

video inference in which we use our validation set. All our
approach results are reported based on our validation set.

Spatial backbone variations. We start by examining how
different spatial backbone architectures impact VTN perfor-
mance. Table 1 shows a comparison of different VTN vari-
ants and the pretrain dataset the backbone was first trained
on. ViT-B-VTN is the best performing model and reaches
78.6% top-1 accuracy and 93.7% top-5 accuracy. The pre-
training dataset is important. Using the same ViT backbone,
only changing between DeiT (pre-trained on ImageNet) and
ViT (pre-trained on ImageNet-21K) we get an improvement
in the results.

Longformer depth. Next, we explore how the number of
attention layers impacts the performance. Each layer has 12
attention heads and the backbone is ViT-B. Table 2a shows
the validation top-1 and top-5 accuracy for 1, 3, 6, and 12 at-
tention layers. The comparison shows that the difference in
performance is small. This is counterintuitive to the fact that
deeper is better. It might be related to the fact that Kinetics-
400 videos are relatively short, around 10 seconds. We be-
lieve that processing longer videos will benefit from a large
receptive field obtained by using a deeper Longformer.

Longformer positional embedding. In Table 2b we com-
pare three different positional embedding methods, focus-
ing on learned, fixed, and no positional embedding. All ver-
sions are done with a ViT-B-VTN, a temporal footprint of
5.12 seconds, and a clip size of 16 frames. Surprisingly,
the one without any positional embedding achieved slightly
better results than the fixed and learned versions.
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model
inference
approach

# frames per
inference view

# of views
test crop

size
inference
GFLOPs

top-1

NL I3D (our impl.) multi-view 32 30 224 2,625 74.1
NL I3D (our impl.) full-video 250 1 224 1,266 72.2
SlowFast-8X8-R50* multi-view 32 30 256 1,971 77.0 [11]
SlowFast-8X8-R50* full-video 250 1 256 517 68.4
SlowFast-16X8-R101* multi-view 64 30 256 6,390 78.9 [11]
SlowFast-16X8-R101* full-video 250 1 256 838 -
R50-VTN (3 layers) multi-view 16 30 224 2,106 70.9
R50-VTN (3 layers) full-video 250 1 224 1,059 71.2
R101-VTN (3 layers) multi-view 16 30 224 3,895 72.0
R101-VTN (3 layers) full-video 250 1 224 1,989 72.1
ViT-B-VTN (1 layer) multi-view 16 30 224 8,095 78.5
ViT-B-VTN (1 layer) full-video 250 1 224 4,214 78.6
ViT-B-VTN (3 layers) multi-view 16 30 224 8,113 78.6
ViT-B-VTN (3 layers) full-video 250 1 224 4,218 78.6

Table 4. Comparing the number of GFLOPs during inference. The models marked by (*) were taken from the PySlowFast GitHub
repository [11]. We reproduced the SlowFast-8X8-R50 results by using the repository and our Kinetics-400 validation set and got 76.45%
compared to the reported value of 77%. When running this model using a full video inference approach, we get a significant drop in
performance of about 8%. We did not run the SlowFast-16X8-R101 because it was not published. The inference GFLOPs is reported by
multiplying the number of views with the GFLOPs calculated per view. ViT-B-VTN with one layer achieves 78.6% top-1 accuracy, a 0.3%
drop compared to SlowFast-16X8-R101 while using 1.5× fewer GFLOPS.

As this is an interesting result, we also use the same
trained models and evaluate them after randomly shuffling
the input frames only in the validation set videos. This is
done by first taking the unshuffled frame embeddings, then
shuffle their order, and finally add the positional embedding.
This raised another surprising finding, in which the shuffle
version gives better results, reaching 78.9% top-1 accuracy
on the no positional embedding version. Even in the case
of learned embeddings it does not have a diminishing ef-
fect. Similar to the Longformer depth, we believe that this
might be related to the relatively short videos in Kinetics-
400, and longer sequences might benefit more from posi-
tional information. We also argue that this could mean that
Kinetics-400 is primarily a static frame, appearance based
classification problem rather than a motion problem [31].

Temporal footprint and number of frames in a clip. We
also explore the effect of using longer clips in the temporal
domain and compare a temporal footprint of 2.56 vs. 5.12
seconds. And also how the number of frames in the clip im-
pact the network performance. The comparison is done on
a ViT-B-VTN with one attention layer in the Longformer.
Table 2c shows that top-1 and top-5 accuracy are similar,
implying that VTN is agnostic to these hyperparameters.

Finetune the 2D spatial backbone. Instead of fine-tuning
the spatial backbone, by continuing the back-propagation
process, when training VTN, we can use a frozen 2D net-
work solely for feature extraction. Table 2d shows the vali-
dation accuracy when training a ViT-B-VTN with three at-
tention layers with and without also training the backbone.
Fine-tuning the backbone improves the results by 7% in
Kinetics-400 top-1 accuracy.

Does attention matter? A key component in our approach
is the impact of attention functionally on the way VTN per-
ceives the full video sequence. To convey this impact we
train two VTN networks, using three layers in the Long-
former, but with a single head for each layer. In one net-
work the head is trained as usual, while in the second net-
work instead of computing attention based on query/key dot
products and softmax, we replace the attention matrix with
a hard-coded uniform distribution that is not updated during
back-propagation.

Fig. 4 shows the learning curves of these two networks.
Although the training has a similar trend, the learned atten-
tion performs better. In contrast, the validation of the uni-
form attention collapses after a few epochs demonstrating
poor generalization of that network. Further, we visualize
the [CLS] token attention weights by processing the same
video from Fig. 2 with the single-head trained network and
depicted, in Fig. 3, all the weights of the first attention layer
aligned to the video’s frames. Interestingly, the weights are
much higher in segments related to the abseiling category.
In Appendix A. we show a few more examples.

Training and validation runtime. An interesting observa-
tion we make concerns the training and validation wall run-
time of our approach. Although our networks have more pa-
rameters, and therefore, are longer to train and test, they are
actually much faster to converge and reach their best perfor-
mance earlier. Since they are evaluated using a single view
of all video frames, they are also faster during validation.
Table 3 shows a comparison of different models and several
VTN variants. Compared to the state-of-the-art SlowFast
model, our ViT-B-VTN with one layer achieves almost the
same results but completes an epoch faster while requiring
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model pretrain MiT version inputs top-1 top-5
ResNet50 ImageNet v1 RGB 27.2 [26] 51.7 [26]
I3D ImageNet v1 RGB + OF 29.5 [26] 56.1 [26]
AssembelNet-50 [29] Kinetics400 v1 RGB + OF 33.9 60.9
AssembelNet-101 [29] Kinetics400 v1 RGB + OF 34.3 62.7
I3D ImageNet v2 RGB 28.4* 54.5*
NL I3D (our impl.) Kinetics400 v2 RGB 30.1 57.3
ViT-B-VTN Kinetics400 v2 RGB 37.4 65.3
ViT-B-VTN (w/ shuffle) Kinetics400 v2 RGB 37.4 65.4

Table 5. Comparison with the state-of-the-art on MiT-v1 and MiT-v2. The results marked by (*) are based on MiT GitHub repository3.

fewer epochs. This accumulates to a 16.1× faster end-to-
end training. The validation wall runtime is also 5.1× faster
due to the full video inference approach.

To better demonstrate the fast convergence of our ap-
proach, we wanted to show an apples-to-apples compari-
son of different training and evaluating curves for various
models. However, since other methods use the multi-view
inference only post-training, but use a single view evalua-
tion while training their models, this was hard to achieve.
Thus, to show such comparison and give the reader addi-
tional visual information, we trained a NL I3D (pre-trained
on ImageNet) with a full video inference protocol during
validation (using our codebase and reproduced the original
model results). We compare it to DeiT-B-VTN which was
also pre-trained on ImageNet. Fig. 5 shows that the VTN-
based network converges to better results much faster than
the NL I3D and enables a much faster training process com-
pared to 3D-based networks.

Data augmentation. Recent studies showed that data
augmentation significantly improves the performance of
transformers-based models [35]. To demonstrate its im-
pact on VTN, we apply extensive data augmentation as sug-
gested in DeiT [35] and RandAugment [6]. Table 3 shows
that our method reaches 79.8% top-1 accuracy, a 1.2% im-
provement vs. the same model trained without such aug-
mentations. Training with augmentations requires 10 more
epochs but didn’t impact the training wall runtime.

Final inference computational complexity. Finally, we
examine what is the final inference computational com-
plexity for various models by measuring GFLOPs. Al-
though other models need to evaluate multiple views to
reach their highest performance, ViT-B-VTN performs al-
most the same for both inference protocols. Table 4 shows a
significant drop of about 8% when evaluating the SlowFast-
8X8-R50 model using the full video approach. In contrast,
ViT-B-VTN maintains the same performance while requir-
ing, end-to-end, fewer GFLOPs at inference.

5.2. Experiments on Moments in Time

The Moments in Time (MiT) dataset is a large-scale col-
lection of short (3 seconds) videos [26]. MiT is a chal-

lenging dataset, with state-of-the-art results just above 34%
top-1 accuracy [29]. In this work, we use MiT-v2, con-
sisting of 727,305 training videos and 30,500 validation
videos. Each video is labeled with one of 305 classes of
dynamic events. Although previous studies worked on MiT-
v1 (802,264 training videos, 33,900 validation videos, 339
classes), this dataset is no longer available. In Table 5, we
show the results of various models on MiT-v1 and MiT-
v2. Since the relation between v1 and v2 in terms of per-
formance was not established and thus unknown, we also
trained our implementation of NL I3D on MiT-v2 using
RGB inputs and achieved comparable results to those of
I3D (RGB+OF) published on MiT-v1 [26]. Furthermore,
ViT-B-VTN achieves the highest top-1 accuracy on MiT-v2
while using only RGB frames as input.

6. Conclusion

We presented a modular transformer-based framework
for video recognition tasks. Our approach introduces an
efficient way to evaluate videos at scale, both in terms of
computational resources and wall runtime. It allows full
video processing during test time, making it more suitable
for dealing with long videos. VTN is especially useful for
video editing tasks, in which long-term video understand-
ing is of great importance. Various video editing-related
tasks, such as video shortening and summarization, rely
on the ability to process very long videos in a single full-
video pass efficiently. Although current video classification
benchmarks are not ideal for testing long-term video pro-
cessing ability, hopefully, in the future, when such datasets
become available, models like VTN will show even larger
improvements compared to 3D ConvNets. Thus, enabling
assisted video editing using advanced machine learning and
AI technologies.

Acknowledgements. We thank Ross Girshick for provid-
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3https://github.com/zhoubolei/moments_models
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