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1. Broader Impact
Video Person-Clustering is an appealing topic in Com-

puter Vision, with many downstream applications such as
story understanding, video navigation, and video organisa-
tion. A successful person-clustering framework (such as
that presented in this work) takes a significant step towards
realising these applications by alleviating the tremendous
annotation cost that would otherwise be necessary.

For all potential impacts and applications of video person-
clustering, it is essential that the datasets that methods
are evaluated on are representative of the real-world in

which they (or their downstream applications) may be de-
ployed [13]. This is essential if the research is to be acces-
sible by different communities around the world. A repre-
sentative dataset can accurately foreshadow and ultimately
prevent any algorithmic discrimination on specific demo-
graphic groups. Previous person-clustering datasets (which
focused on the narrower task of face-clustering) were non-
representative of most demographic groups. To this end, in
this work we presented VPCD, which represents a wide and
diverse range of characters, and so is more representative of
the diversity in the real-world.

The person-clustering task aims at recognising and clus-
tering identities. Re-identifying people in the real-world
generally poses a threat to their privacy, and could carry
risks if used inappropriately. In VPCD however, the iden-
tities are all actors playing the part of characters. This is
not private data, and none of the videos have been obtained
from social media or search engines. All videos in VPCD
are in fact from public films and television material.

2. VPCD Details
Here, we give additional details on the annotation (Sec-

tion 2.1) and feature extraction (Section 2.2) process for the
body-tracks in VPCD. These sections are complementary to
Sections 4.2 & 4.3 in the main manuscript. We then give
further statistics and details of the voice-tracks in VPCD
(Section 2.3).

2.1. Annotation Process

Here, we provide additional details for the body-track
annotation in VPCD. To set the scene, we have body-tracks
computed for all program sets in VPCD. The task at this
stage is to annotate the body-tracks with the names of the
characters that are annotated in the face-tracks.

The body-tracks fall into two categories, which are an-
notated separately. (1) The body-track shows the person
from the front and contains a visible, annotated face. For
these cases we automatically label the body-tracks by mak-
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ing assignments to labelled face-tracks. Within each shot,
the assignment is done using the Hungarian Algorithm [8]
with a cost function of the spatial intersection over union
(IOU) between face and body-tracks in the frames that they
co-occur. If there are more body-tracks than face-tracks,
then a body-track can not be assigned, and vice-versa. In
95% of cases this association is trivial and the assignment
proceeds automatically. Where multiple assignment costs
for the same face-track are below a threshold, indicating
that the assignment was non-trivial, we instead make the
assignments manually. (2) The body-track does not contain
a visible face, i.e. the back is turned to the camera. We
manually annotate all of these cases throughout each video.
On average, 10-15% of body-tracks correspond to manually
labelled bodies from behind.

2.2. Feature Extraction

Here, we describe in more detail the feature extraction
process for the body-tracks.

Features are extracted from each of the body-tracks us-
ing a ResNet50 architecture [5]. Our goal is to train the
body features to discriminate identity based on the highly
discriminative clothing that people are wearing. We train a
ResNet50 on the CSM dataset [6], which contains identity-
labelled body detections frommovies. This dataset contains
the same label for all body detections of each identity, regard-
less of their clothing. Instead, we decompose the samples for
each class (identity) in CSM into sub-classes containing im-
ages of the same identity in the same outfit. Our assumption
is that if two detections occur close-by temporally within
the same movie, then the person is likely to be wearing the
same clothing. Each body detection is annotated with the
shot that the detection is found in. We cluster the body de-
tections in each class according to their temporal location,
resulting in several sub-classes for each identity, where they
are wearing the same clothing. We train the model in a
contrastive manner using the Smooth-AP loss from [2]. For
the network to be variant to both identity and clothing, we
sample positives from the same identity wearing the same
outfit, and negatives from different identities.

2.3. VPCD Voice-Track Statistics

Here, we give further details and statistics for the voice-
tracks in VPCD. In total, there are 27,163 voice-tracks in
VPCD (Table 1). This includes annotations for the ‘laughter’
track from the live studio audience in TBBT and Friends,
and additionally laughter from each character in all pro-
gram sets. Features, and the associated annotations for
all of these voice-tracks are provided for future research
use with VPCD. The distribution of lengths of these voice-
tracks is shown in Figure 1. These figures for the number
of voice-tracks are different to those provided in Table 1 in
the main manuscript. MuHPC implements a pre-processing

Figure 1: Voice-track lengths in VPCD. The distribution of all voice-
track lengths in VPCD.

step on the voice-tracks, such that only the most identity-
discriminating voice-tracks are used in the clustering pro-
cess (explained in Section 3).

3. Implementation Details
In this section, we give details on a pre-processing step

for MuHPC, which aims to remove voice-tracks that might
not be identity-discriminating from the clustering process.
Some of the voice-tracks in MuHPC are not used, due to
overlap between multiple voice-tracks, or due to them being
too short. Here, we explain this process, and provide statis-
tics on how many voice-tracks are ignored at this stage (Ta-
ble 1). First, the temporal overlap between multiple voice-
tracks. Our goal here is to use the voice-track features as
a discriminative signal for identity. If multiple voice-tracks
from different identities have large temporal overlap, then
the resulting features will be very similar, and they will not
provide a good identity-discriminating signal. We choose
to ignore any voice-tracks that have 20% overlap with a
different voice-track. Second, the temporal length of the
voice-tracks. As shown in [16], there is a strong positive
correlation between the discriminative capabilities of voice-
track features and the length of the voice-track. In order to
maximise the discriminativeness of the voice-track features,
we ignore those that are less than 1 second in length. Table 1
shows the total number of voice-track annotations in VPCD
before (“All Annotations”) and after these steps (“Filtered”).

4. Metrics
As mentioned in Section 5 in the main manuscript, for

each dataset in VPCD, we use Weighted Cluster Purity
(WCP) and Normalized Mutual Information (NMI). Fur-
thermore, we introduce the metrics of Character Precision
and Recall. Here, we describe in more detail the WCP and
NMI metrics and give some motivation behind the proposed



TBBT Buffy Sherlock Friends HF ALN Total

All Annotations 2,035 4,339 4,025 11,321 2,060 2,036 27,163
Filtered 1,047 1,835 1,615 3,961 404 303 9,165

Table 1: Voice-Track statistics in VPCD. The number of voice-
tracks for each program set in VPCD both before and after a fil-
tering step (Section 2.1). All Annotations – the total voice-track
annotations provided with VPCD. Filtered – the total voice-track
annotations used by our person-clustering method, after ignoring
short and overlapping tracks (same as Table 1 in main manuscript).
Total – the summation over all six program sets.

Character Precision and Recall (CP, CR).

Weighted Clustering Purity (WCP). WCP weights the
purity of a cluster by the number of samples belonging in it;
to compute purity, each cluster 2 containing =2 elements is
assigned to the class which is most frequent in the cluster.
WCP is highest at 1 when within each cluster, all samples
are from the same class. For a given clustering, C, with N
total tracks in the video: ,�% = 1

#

∑
2∈� =2 · ?DA8CH2 .

Normalized Mutual Information (NMI) [9]. NMI mea-
sures the trade-off between clustering quality and number of
resulting clusters. Given class labels . and cluster labels �,
NMI(., �) = 2 � (. ;�)

� (. )+� (�) , where � (.) is the entropy and
� (. ;�) = � (. ) − � (.\�) the mutual information.

Character Precision and Recall (CP, CR). We introduce
Character Precision (CP) and Recall (CR), twometrics com-
puted using the ground truth number of clusters. CP is the
proportion of tracks in a cluster that belong to its assigned
character, while CR is the proportion of that character’s
total tracks that appear in the cluster. The assignment is
done using the Hungarian algorithm [8] by using CR as
the cost function. Note that this assignment is unique, i.e.
two characters cannot be assigned to the same cluster. We
measure CP and CR and report results averaged across all
characters. Our motivation is that the standard metrics are
weighted according the number of samples in each clus-
ter, thus disproportionately favouring frequently appearing
characters and disregarding tail distributions. Instead, sim-
ilar to character AP [10], CP and CR weight all characters
equally. Similar to the Hungarian matching accuracy used
in [1, 15], CP and CR are computed using the ground truth
number of clusters. Thus, they measure complementary in-
formation to WCP and NMI, which do not have access to
this information.

5. Qualitative Results
Further qualitative examples of the clustering process for

characters in two of the program sets in VPCD are shown

in Figure 2. In both cases, Stage 1 is shown to produce
high-precision clusters of the character. The face alone
cannot confidently merge these clusters, due to each cluster
containing different views of the same character (e.g. frontal
and profile). These clusters are merged via speaking person-
tracks, using themulti-modal bridges of Stage 2. Back views
of the same character are then merged into the clusters in
Stage 3. The resulting clusters contain differing views of the
same character, with varying pose, lighting conditions, and
camera viewpoints, all while maintaining high precision.



Stage 1

Stage 2

Stage 3

Cluster #1 Cluster #2

(a) Clustering Process of MuHPC for a character in Buffy. Stage 1 produces high-precision clusters. Cluster #1 contains
mainly profile and downwards-facing views of the character, while Cluster #2 contains frontal facing views. Both clusters
contain very different clothing and body poses. The face modality alone can no longer confidently merge these clusters. Stage
2 merges the two clusters using multi-modal bridges between a speaking person-track from each cluster. Stage 3 then merges
back views into these clusters via body features. Back views of the character are merged via frontal appearances in nearby
shots where the character is wearing the same clothing.

Stage 1

Stage 2

Stage 3

Cluster #1 Cluster #2

(b) Clustering Process of MuHPC for a character in Sherlock. Stage 1 produces high-precision clusters. Cluster #1
contains mainly frontal face views, while Cluster #2 contains profile face views. Both clusters contain very different lighting
conditions, body poses; and camera-views of the same character. Stage 2 merges the two clusters where the face alone could
not, by using multi-modal bridges between a speaking person-track from each cluster. Stage 3 then merges back views into
these clusters via body features. Back views of the character (both full-body, and over-the-shoulder views) are merged via
frontal appearances in nearby shots where the character is wearing the same clothing.

Figure 2: Clustering Process of MuHPC. For two program sets from VPCD, (a)-Buffy, and (b)-Sherlock, we show the clustering process for one of the
principal characters.



Modality Protocol Average

F B V WCP NMI CP CR
MuHPC1>3H X AT 60.6 46.9 63.4 48.1
MuHPCE>824 X AT 71.0 67.9 54.6 50.3
MuHPC 5 024 X AT 93.4 89.4 93.0 90.2

MuHPC1>3H X OC 58.1 43.7 50.6 44.8
MuHPCE>824 X OC 77.5 70.4 58.1 55.2
MuHPC 5 024 X OC 91.7 87.2 84.7 81.9

Table 2: Person-Clustering Results on VPCD after Stage 1 – Cluster-
ing only speaking person-tracks. We report the averaged metrics for both
AT and OC protocol, averaged across all program sets. Every experiment
shown is clustering only a subset of the person-tracks that contain all three
modalities (face, body and voice) in order to isolate the clustering perfor-
mance when each modality is used alone. The three reported methods,
MuHPC1>3H , MuHPCE>824 , MuHPC 5 024 , use a different modality as
the single modality in Stage 1 (body, voice and face, respectively). The
numbers reported are taken after Stage 1.

6. Modality Analysis

In this section, we provide further analysis into the dis-
criminative capabilities of each of the three modalities used
in MuHPC (face, body and voice). In Stage 1 of MuHPC,
high-precision clusters are created using just the face modal-
ity, as it is the most discriminative of the three. Here, we
justify this by instead using the other modalities in Stage 1.
Table 2 shows results averaged across all program sets in
VPCD for both AT and OC protocol, when each of the avail-
able modalities are used in Stage 1 (termed MuHPC1>3H ,
MuHPCE>824; and MuHPC 5 024). Next, we explain some
experimental details, and then analyse these results.

For fair comparison between MuHPC1>3H ,
MuHPCE>824; and MuHPC 5 024, we cluster the same
person-tracks in each of the experiments. This limits
the experiments to person-tracks with all three available
modalities i.e. talking person-tracks with a visible face.
To isolate the role of each of the modalities, we report
clustering performance after Stage 1. Similarly to gtight

5
in

MuHPC, for these experiments we learn nearest neighbour
distance thresholds for each modality on the VPCD val. set.

As shown in Table 2, only the face modality can be reli-
ably used in Stage 1 to produce high-precision clusters, as
reflected by the high values for WCP in both protocol. This
justifies the use of the face modality in Stage 1 of MuHPC.
This is understandable, as different identities can sound the
same when expressing similar emotions (e.g. anger, sad-
ness), and bodies from different identities can look very
similar when wearing similar clothing. According to WCP
and NMI, MuHPCE>824 produces better clustering perfor-
mance thanMuHPC1>3H , indicating that the voice modality
is better at discriminating identity than the body modality.

7. Person-Clustering Results
In this section, we provide extensive analysis of the

person-clustering results obtained by MuHPC as well as
results for an additional experiment. First, we explore the
impact of Stages 1 and 2 ofMuHPC on some episodes from
the Friends program set in VPCD (Section 7.1). Second, we
provide further person-clustering results from MuHPC on
VPCD using the OC protocol. Third, we examine the results
when clustering tracks from all program sets in VPCD, con-
catenated by their research order of broadcast (Section 7.3).
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Figure 3: Stage 1 and Stage 2 Person-Clustering results from the program set, Friends. %WCP and %NMI for episodes of Friends
from VPCD, for the Automatic Termination protocol (AT). The blue line illustrates the results after Stage 1, while the orange one illustrates
the results after Stage 2, i.e. bridging clusters by exploiting the voice modality. #� is the ground truth number of clusters for each episode.

7.1. Per-Stage Analysis

We examine the effects of Stages 1 and 2 (Section 3
in the main manuscript) on the performance of MuHPC on
episodes from the Friends program set inVPCD. To this end,
we plot in Figure 3 the %WCP and %NMI results over the
number of clusters after each partition of the method for four
episodes. Each circle in the plot displays the partition (i.e.
showing the number of clusters of the resulting partition and
the corresponding metric value). The blue lines and circles
represent the clustering process at Stage 1 ofMuHPC, while
the orange ones display the Stage 2 results.

We observe that in most cases after the first partition
(first blue dot) the WCP maintains high values (above 99%).
While Stage 1 progresses, the WCP drops only by a small
margin (i.e. less than 1% in most cases), whereas the NMI
increases significantly (i.e. up to +50%). This validates that
Stage 1 indeed results in high-precision clusters, as the purity
(indicated by WCP) is not compromised, and also the NMI
increases.

The orange dots signify the additional partition from
Stage 2. Stage 2 consistently and significantly increases
the NMI of the resulting clusters (i.e. by up to 5%), without
sacrificing their purity (WCP remains constant). This indi-
cates that Stage 2 bridges high-precision clusters of the same
identity, thus retaining the high WCP, while decreasing the
identity overlap between clusters.

7.2. Oracle Clusters Results

Table 3 gives person-clustering results for the OC pro-
tocol. The experiments, ablation studies and baselines are
the same as those used for the AT protocol, and explained
in Section 5.1 of the main manuscript. Similarly to the AT
protocol,MuHPC– significantly outperforms both baselines
across all metrics and program sets. MuHPC gives a further
boost when averaged across all program sets. The voice
modality provides comparably less of a performance boost
in the OC protocol (here) relative to the AT protocol (Table
2 in the main manuscript). This is due to the Oracle Cluster
protocol (OC), which forces the clusters to merge beyond the
automatic termination point until the ground truth number
of clusters is reached. Next, we explain this in further detail.

MuHPC automatically stops clustering when the features
within each cluster can no longer confidently be used to
discriminate between clusters of the same identity. To reach
the oracle number of clusters, the clusters are merged in
a non-discriminative way. In this case, this reverses the
positive impact of the voice modality (seen in Table 2 in the
main manuscript) by merging the new clusters incorrectly
until the oracle number of clusters is reached. This opens
possibilities for future research into more effective ways
of reducing to the ground truth number of clusters. The
Automatic Termination protocol is the more realistic setting
for real-world deployment of person-clustering algorithms
on videos with unknown numbers of characters.



# Modality #�B= #�B= #�B= #�B= #�B= #�B= #�B=TBBT
130

Buffy
165

Sherlock
50

Friends
239

Hidden Figures
10

About Last Night
24

Average
618

F B V WCP NMI CP CR WCP NMI CP CR WCP NMI CP CR WCP NMI CP CR WCP NMI CP CR WCP NMI CP CR WCP NMI CP CR
B-ReID X 66.2 54.9 11.4 33.0 52.0 48.8 40.6 24.6 60.3 24.0 10.7 36.0 62.8 56.0 49.8 56.4 33.7 10.5 17.6 31.7 27.3 17.9 19.9 19.3 50.4 35.4 25.0 33.5
B-C1C X X 91.7 79.1 54.4 55.9 74.5 62.7 46.8 44.7 77.1 44.4 33.2 43.3 88.0 82.4 74.5 78.9 69.5 51.8 29.7 46.4 73.1 64.8 55.7 53.8 79.0 64.2 49.1 53.8

MuHPC- X 94.3 85.8 84.1 81.8 81.1 68.0 76.2 76.3 86.79 56.87 74.8 69.3 90.0 76.6 90.8 82.8 85.7 77.3 76.7 56.7 97.9 91.4 98.9 86.9 89.3 76.0 83.6 75.6
MuHPCE X X 94.3 85.8 84.1 81.8 81.1 68.5 76.2 75.8 86.1 62.3 72.8 68.8 89.8 77.3 89.6 84.6 85.7 77.3 76.7 56.7 97.8 91.9 98.9 87.0 89.3 76.4 83.4 75.5
MuHPC1 X X 97.7 93.9 86.9 83.8 86.9 76.9 80.0 79.1 87.1 57.5 74.9 66.8 94.2 84.6 95.7 86.0 85.6 77.1 76.6 56.7 97.8 91.2 98.9 86.9 91.5 80.2 86.0 77.0
MuHPC X X X 97.7 93.9 86.9 83.8 86.9 77.6 79.8 78.5 86.4 63.0 73.1 68.7 94.0 85.5 94.6 88.1 85.6 77.1 76.6 56.7 97.8 91.6 98.9 87.0 91.4 81.5 85.0 77.1

Table 3: Person-Clustering Results on VPCD. For each program set, each metric is averaged across all episodes. OC protocol. The ‘Average’ column
reports averaged metrics across all six program sets. #�B is the sum of ground truth clusters across each episode. We report two strong baselines (B-ReID,
B-C1C, Section 5.1 in main manuscript) and an ablation on the modalities used. Keys: F-face, B-body, V-voice. Modality: used modalities.

Program Sets

Program Sets

Figure 4: Person-Clustering Results when clustering multiple program sets simultaneously. Incrementally, more and more tracks are considered by
adding different program sets together. There are discrete data points for each time the tracks from an additional episode or movie are added. Each data point
considers the total cumulative number of tracks up to that point. All experiments are for the Automatic Termination (AT) protocol for person-clustering for
MuHPC. Top: The WCP and NMI measurements. Bottom: The total predicted number of clusters (cluster pred), measured against the ground truth number
of clusters (cluster GT). Note that “cluster GT” is different to #�B in the main manuscript. #�B is the summed number of ground truth clusters (number of
characters) across multiple episodes. For example, episodes 1 and 2 of Sherlock have 13 and 22 ground truth clusters, respectively. In this case, #�B = 35.
However, some characters appear in both episodes, such as “John” or “Sherlock”. Instead, “cluster GT” is the total number of unique ground truth characters
and therefore clusters across multiple episodes. For the same example of episodes 1 and 2 of Sherlock, “cluster GT” is equal to 31, as 4 characters feature in
both episodes.

7.3. Clustering on Multiple Program Sets Simulta-
neously

In this section, we present results for the person-clustering
task when clustering tracks from multiple program sets si-
multaneously. In the main manuscript, all experiments are
conducted on individual program sets from VPCD. Here, we
cluster tracks from multiple program sets at the same time.
In detail we incrementally consider additional episodes and
movies from each of the program sets. Results for the WCP,
NMI and the number of predicted clusters against the ground
truth number of characters for the AT protocol for person-
clustering are shown in Figure 4. The order with which
program sets are added to the clustering experiment is in
line with the timing of their first use in Computer Vision re-
search (i.e. first Buffy [3], followed byTBBT [11], then Sher-

lock [10] and so on). Episodes within each of the TV-shows
are added chronologically (starting with the first episode in
the program set).

Impressively, Figure 4 shows that when clustering all
tracks from VPCD simultaneously, the WCP and NMI re-
main high at 80.6% and 79.3%, respectively. This indicates
that most clusters have high purity, even with 323 different
characters and over 30,000 tracks, over the visually disparate
TV-shows and movies. As expected, these metrics drop as
the total number of tracks increases, as the task becomes
much more difficult. Until the introduction of tracks from
episodes from Friends (14,642 tracks), the predicted num-
ber of clusters lies very close to the ground truth number of
clusters. This indicates that VPCD is accurately predicting
the number of different characters in the tracks. As the total



number of tracks increases, the predicted number of clus-
ters diverges from the ground truth number, and MuHPC
predicts more clusters than there are characters. This is
in line with and partially explained by the combination of
cannot-link constraints and decreasing WCP. As the purity
of clusters decreases, the cannot-link constraints start pre-
venting clusters containing tracks of the same identity from
merging. This results inMuHPC automatically terminating
the clustering when there are more clusters than characters.
We observe similar results when adding datasets in different
orders. Similar experiments for combining the TBBT and
Buffy datasets for face-clustering are presented in [14].

8. Face-Clustering Results
Here, we give further analysis of the face-clustering re-

sults shown in Table 3 of the main manuscript (and repeated
in Table 4). This is an extension of Section 5.3 in the
main manuscript. In detail, the extra analysis concerns the
automated termination (AT) criterion, and the relation of
MuHPC to previous methods. To summarise Section 5.3
of the main manuscript,MuHPC significantly surpasses the
performance of previous methods across all program sets,
all metrics and both AT and OC protocol.

First, we analyse the AT protocol results. The goal of
the AT protocol is to automatically terminate clustering and
assess the quality of the resulting clusters. This is a realistic
protocol for videos in-the-wild where the number of char-
acters is unknown. Here, the number of predicted clusters,
#�? , can be measured relative to the ground truth number
of clusters, #�B . In all program sets,MuHPC predicts more
clusters than the ground truth. This is becauseMuHPC pri-
oritises high-precision. For TBBT, #�? is very close to #�B
(168 vs. 130), and is in fact closer than the predictions of all
previous methods. This is impressive seeing as the goal of
BCL [14] is to predict the ground truth number of clusters.
For the other program sets, #�? is slightly further from #�B
than previous methods (e.g. a difference from #�B of 36 for
Sherlock vs. 25 for C1C [7]). We now give two reasons why
despite this, the clusters fromMuHPC are far more desirable
than those from previous methods.

First, the clusters from MuHPC are far higher quality. It
would be expected that when predicting more clusters than
there are ground truth clusters, any method would achieve
higher WCP. However, NMI is also significantly higher for
MuHPC than previousmethods (e.g. on average 9.8% higher
than the best prior work across all program sets). Second, for
downstream applications, it is far more useful to have many
high-precision clusters, than few very low-precision clusters.
The latter in this case requires a large amount of human
labelling in order to correctly label the person-tracks from
the clusters (a cluster property reflected by the Operator
Clicks Index (OCI-k) [4] metric). Furthermore, a good way
of measuring the utility of clusters for a downstream task

Method protocol TBBT #�B = 130 Buffy #�B = 165
WCP NMI CP CR #�? WCP NMI CP CR #�?

BCL [14] AT 90.8 85.7 - - 83 85.0 78.8 - - 121
C1C [7] AT 89.2 87.4 29.1 40.9 41 66.3 68.8 14.9 27.1 40

MuHPC– AT 99.4 97.8 87.8 88.6 168 96.1 92.8 85.6 85.5 223
MuHPCE AT 99.4 97.8 87.8 88.6 168 96.1 93.7 85.9 84.8 221

Finch [12] OC 90.8 80.5 46.1 44.2 82.9 75.3 49.6 41.0
BCL [14] OC 94.0 85.0 - - 86.5 77.6 - -
C1C [7] OC 95.3 84.5 54.9 57.3 88.1 79.1 58.1 55.4

MuHPC– OC 99.1 97.4 79.3 83.0 95.6 92.2 72.3 73.8
MuHPCE OC 99.1 97.4 79.3 83.0 95.6 93.1 71.5 73.2

Friends #�B = 239 Sherlock #�B = 50
C1C [7] AT 88.2 89.8 62.4 73.2 185 76.3 50.3 20.2 41.0 25

MuHPC– AT 98.7 94.9 98.1 94.0 543 86.7 60.3 79.1 71.2 96
MuHPCE AT 98.4 95.9 97.7 95.3 522 86.3 66.0 78.4 74.5 86

Finch [12] OC 92.2 89.9 85.2 85.6 81.6 58.6 59.8 56.8
C1C [7] OC 94.3 93.2 79.1 85.5 81.6 53.8 40.5 51.7

MuHPC– OC 96.3 92.7 89.0 88.8 84.0 56.5 55.4 59.9
MuHPCE OC 97.1 94.6 92.3 92.6 85.1 63.9 59.6 62.9

Table 4: Face-Clustering Results. Comparisons to previous state of
the art on four program sets, using only face-tracks with unknown (AT),
and known (OC) number of clusters. We report metrics averaged over
each episode in each program set, and the number of predicted clusters,
summed over each episode (#�?). MuHPC– uses only face, whereas
MuHPCE uses the multi-modal bridges from voice and face. Where not
reported in respective publications, numbers are computed using official
implementations. Finch has no stopping criterion so results for AT are not
reported.

is the character precision and recall metrics. These metrics
assign each character uniquely to a cluster, and measure
the resulting precision and recall of these pseudo-labels.
MuHPC significantly achieves a CP and CR of 56.0% and
39.3% higher, respectively, than C1C across all program
sets. This indicates that although prior work may predict a
number of clusters closer to the ground truth than MuHPC,
these clusters however are of almost no use for downstream
applications, unlike the clusters from MuHPC.

Next, we discuss MuHPC in relation to previous meth-
ods. C1C continues using face to cluster even when there are
large distances between clusters, and therefore degenerates
in the later partitions, leading to lower WCP and NMI. Un-
like BCL,MuHPC uses pre-trained features, thus alleviating
the computational burden of training, allowing for greater
generalisation, and as we demonstrate leading to better re-
sults. BCL uses the assumption that each identity occupies
the same hyper-spherical volume in their learnt latent space.
We argue that complex similarity structures and variation
between faces of the same identity mean that they cannot
be constrained to within fixed-radius hyper-spheres (BCL),
even when training with this objective. Instead, MuHPC
does not enforce such a constraint, and uses a nearest neigh-
bour constraint with multi-modality to connect highly dis-
similar tracks.

9. Parameter Selection & Sweeps
In this section, we give a parameter sweep for the near-

est neighbour distance threshold gtight
5

(Section 3.1 in main
manuscript), and give further description and analysis on
the automatic parameter selection method for glooseE (Section



(a) TBBT (b) Buffy (c) Sherlock

(d) Friends (e) Hidden Figures (f) About Last Night

Figure 5: Parameter sweep for gtight
5

on the six program sets in VPCD. For each program set, the NMI, WCP and number of clusters are plotted, for the

Automatic Termination criterion, for varying values of gtight
5

. We additionally show for each program set, the ground truth number of clusters, #C, marked
on the Number of Clusters axis of each plot. For the numerical values of #C, we refer the reader to Table 2 in the main manuscript.

3.2 in main manuscript).

9.1. Nearest Neighbor Distance Threshold

Here, we givemetrics across all program sets inVPCD for
parameter sweeps on the nearest neighbour distance thresh-
old, gtight

5
. These are displayed in Figure 5. As detailed in

the main manuscript, the value was chosen on the validation
partition of VPCD. To isolate the role of gtight

5
, all metrics

are evaluated at the Automated Termination criterion, af-
ter Stage 1, and using only the face-track annotations. The
metrics at the chosen value of gtight

5
= 0.48, are therefore

equivalent to MuHPC– at AT protocol in Table 3 in the
main manuscript. We notify the reader that in the main
manuscript, it reads that gtight

5
= 0.52. This is incorrect, the

value is gtight
5

= 0.48.
Across most program sets, the same relationship between

the metrics and gtight
5

is seen. Namely, as gtight
5

increases,
NMI increases, while WCP and the total number of clusters
decreases. In more detail, as gtight

5
increases, the maximum

distance at which clusters can merge increases. This leads
to more cluster merges before the automatic termination of
Stage 1. This is reflected by the decreasing number of clus-
ters at the termination point. Firstly, there is an increased
likelihood of incorrect merges, where clusters depicting dif-
ferent identities merge together, leading to lower precision
clusters, as shown by decreasing WCP. Increasing gtight

5
also

leads to more correct merges. This is reflected by the rising
NMI, which shows that the identity overlap between clusters

is decreasing. An increasingNMI can be interpreted as there
being more correct merges than incorrect merges. In some
program sets (e.g. Buffy, Sherlock), NMI starts to decrease
as gtight

5
increases, indicating that more incorrect merges are

being made than correct merges.

In a window surrounding the learnt value of 0.48, the
NMI and WCP are roughly stable at very high values across
all program sets (high relative to the respective prior work on
those program sets - see Table 3 in main manuscript). This
demonstrates that this learnt parameter generalises well to
the different program sets, that the face features are indeed
universal; and that MuHPC is not particularly sensitive to
this choice of parameter. The program sets in VPCD are
highly visually disparate. These results therefore indicate
that MuHPC could be simply and effectively used on any
number of different program sets not in VPCD.

At the chosen value of gtight
5

= 0.48, often more clusters
are predicted than the ground truth number (marked as #C
in Figure 5). In some program sets, this is by just a small
number (168 vs #� = 130 for TBBT, 223 vs #� = 165 for
Buffy). There is a trade-off between obtaining a number of
clusters similar to #C, and the precision of these clusters.
Our design choice at Stage 1 is to produce clusters with
very high-precision. Stage 2 leads to a further reduction of
these clusters by usingmultiple modalities to merge clusters.
A discussion in Section 8 explains why over-predicting the
number of clusters is beneficial for downstream uses of the
clusters.



(a) TBBT (b) Sherlock

Figure 6: Voice similarities in two program sets from VPCD. Here
we show similarities between voices of the same identity (positives) and
different identities (negatives). These are found via the cannot-link con-
straints (negatives) and the clusters from Stage 1 (positives and negatives).
Similarities are computed via (1 minus cosine similarity). This process
finds less positives than negatives, hence the frequency of the positives is
scaled to match that of the negatives.

TBBT Buffy Sherlock Friends HF ALN

glooseE 0.36 0.17 0.19 0.31 0.19 0.33

Table 5: The automatically learnt values for glooseE for the
different program sets in VPCD.

9.2. Automatically Learnt Hyper-Parameters

The values for the threshold on the voice similarities
that are used in the multi-modal bridges, glooseE , are learnt
automatically for each of the audibly disparate program
sets in VPCD (this is detailed in Section 3.4 in the main
manuscript). Here, we give the values that are learnt for
each program set, provide some analysis, and visualise the
voice distances that the hyper-parameters were learnt from.

The values of glooseE learnt automatically for the differ-
ent program sets are given in Table 5. The voice distances
between different identities are found via a combination of
cannot-link constraints and the clusters from Stage 1. We
observe that for some program sets these voice distances are
quite high. This in turn leads to a relatively high value of
glooseE (e.g. TBBT, Friends). We additionally show the simi-
larities between voices for the same identity (positives) and
different identities (negatives) in Figure 6 for two program
sets from VPCD.

A high value of glooseE indicates that the characters all
sounded different to the voice embedding network, and in
turn the respective features from different speakers were able
to be separated in the embedding space (Figure 6 - left). For
the multi-modal bridges, this means that the voices from
two speaking person-tracks can sound quite different and a
bridge can still confidently be formed.

For other program sets, the voice distances between the
different identities are quite low, and therefore glooseE is also
low (e.g. Buffy, Sherlock). In these cases, there are many
similar sounding characters; hence, the voice embedding
network cannot separate the embeddings fromdifferent iden-

tities well (Figure 6 - right). For the multi-modal bridges,
this means that the voices from two speaking person-tracks
must sound very similar for a bridge to still confidently be
formed, as only then can the voice modality (together with
the concurrent agreement from the face modality) be sure
that it is the same person.
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