VLG-Net: Video-Language Graph Matching Network for Video Grounding
Supplementary Material

1. Formulation of Video-Language Graph
Matching

In this section, we provide a detailed overview and for-
mulation of the video-language graph matching. This inputs
to this layer are the enriched video representation qubv) and
query representation X l(bl) outputs of the single modality
stack of computational blocks. The graph matching layer
models the cross-modal context and allows for multi-modal
fusion. To this purpose the video-language matching graph
is constructed and three types of edges are designed: (i) Or-
dering Edge (O), (ii) Semantic Edge (S), and (iii) Matching
Edge (M).

To aggregate the information, we employ relation graph
convolution [5] on the constructed video-language match-
ing graph. Eq. 1 shows the high level representation of the
convolutions in this layer.
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In practise, to implement GPU-memory efficient graph
convolution operation, we replace the time-consuming ma-
trix multiplication by indexing operation of tensors. Thus,
the semantic and matching edge convolution can be present
as
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where N is the neighbourhood of node i connected by

edge with type *, * € {S, M}. The || sign means con-
catenation of features. WS, WM are learnable weights.

Moreover, as shown by A.2 of G-TAD[6], our ordering
edge convolution, can be efficiently computed as a 1D con-
volution with kernel size 3.

AoXWp = ConvlD[X] (6)
Therefore, we can equivalently formulate Eq. 1 as:
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2. Graph matching edges ablation

We ablate the contribution of the three different types
of edges designed for the graph matching module. We
report in Table 1 the performance of VLG-Net for the
TACoS dataset when each edge is removed from the ar-
chitecture. As previously stated, the Ordering Edges or
Semantic Edges are responsible for aggregating contextual
information within the graph matching module. When re-
moved, they lead to noticeable degradation of the perfor-
mance of 2.15% and 3.77%, respectively. Conversely, as
expected, when the Matching Edges are removed, the per-
formances are severely impaired. We assist in a drop of
27.34%, showcasing the high relevance of the matching op-
eration. Note that, the removal of the Matching Edges pre-
vents the fusion between the modalities. Nonetheless, the
two modalities still interact in the Masked Attention Pool-
ing module through the learnable cross-attention pooling
method. However, this limited interaction cannot bridge the
complex semantic information between modalities. The ab-
lation showcases the importance of designing effective op-
eration for multi-modal fusion to achieve high performance
on the grounding task. Nonetheless, we can conclude that
all edges are relevant and necessary to obtain state-of-the-
art performance.



Edge Types
Dataset Ordering  Semantic Matching R@11oU0.5
v v v 34.19
X v v 32.04
TACOS | x v 30.42
v v X 6.85

Table 1: Ablation of different edges. We investigate the
impact of edges within the graph matching layer. We re-
port the performance of our VLG-Net when specific edges
are removed, as well as our best performance for TACoS
datasets.

3. Visualization graph matching attention

In Fig. 1, we plot the Matching Edge weights (before
SoftMax) for two video-query pairs, where the Matching
Edge weights are used to measure the similarity between
video snippets and language tokens. In graph convolutions,
a Matching Edge propagates more information if its weight
is high, and vice versa.
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(b) Query: “Three people are riding a very

colorful camel on the beach.”

Figure 1: Visualization of graph matching attention. We
visualize the Matching Edge of the graph matching layer.
Correspondence between video snippets and query tokens
can be evaluated through the heat-map.

In Fig. 1a, we show the grounding result for a 2 minutes
accordian tutorial, with associated query: “She is holding
an accordian as she talks”. It can be observed from the
blue-yellow heat-map that high scores are assigned to the
words “holding”, “accordian”, and “talks”, which are the
most discriminative tokens for the query localization. Be-

low the heat-map, we visualize the snippets of the video.

The unrelated snippets (first and last) are associated with
low scores. Conversely, more relevant snippets (central
ones) have higher Matching Edge weights. This entails that
the algorithm is successfully correlating important language
cues with relevant video cues when performing the graph
matching operation.

Similarly, Fig. 1c shows the result for a 22 second camel
riding video, for which the associated query is: “Three peo-
ple are riding a very colorful camel on the beach.” The heat-
map highlights the keywords: “riding”, “colorful camel”,
and “beach”, which are relatively more informative in the
query sentence. Interestingly, the word “riding” is always
associated with high attention weights, and a visual inspec-
tion confirms that the action happens throughout the whole
video. This showcases that our VLG-Net can successfully
learn semantic video-language matching. If we focus on the
first two snippets of Fig. 1c, we can see that both have asso-
ciated high scores with the word “riding”. However, given
the smaller field of view of the first frame, only the second
frame contains a more distinguishable camel. In fact, for
this particular frame, we observe a high weight score for
the words “colorful” and “camel”. Moreover, the context of
“beach” can be learned from all the last three snippets.

4. Ablation of Masked Attention Pooling

As presented in the main paper, three different imple-
mentations of attention for moment pooling operation have
been tested. They differ for inputs and operations to achieve
the attention scores. Learnable self-attention (Fig. 2a), only
relies on the fused features of video and language modali-
ties, which are the output of the graph matching layer, while
the cross-attention and learnable cross-attention configura-
tions (Fig. 2b and 2c) also involve a global sentence repre-
sentation X l(att) in the process. (See Sec. 3.5 of the paper
for more details.) We compare the performances of the three
different implementations in Tab 2.

Following the ablation settings in our main paper, we fo-
cus on R@1 IoUOQ.5 and R@5 ToUO0.5 for TACoS dataset.
We find that the cross-attention setup leads to the lowest
performance. Conversely the learnable cross-attention con-

Learnable . Learnable
Cross-attention

self-attention cross-attention

R@1 IoU0.5 29.87 16.62

34.19

R@5 IoU0.5 50.24 40.14 56.56

Table 2: Ablation of masked attention pooling imple-
mentations. The experimental results show that the cross-
attention setup leads to sub-optimal performance. Instead,
the learnable cross-attention configuration obtains the best
performance.
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(c) Learnable cross-attention.

Figure 2: Masked attention pooling. Inputs are video

nodes X ,(,GM) from the graph matching layer and the query

embedding X l(att) computed through self-attention pooling
atop the graph matching output. The output Y represents all
moment candidates.

figuration instead, obtains the best performance. This is the
reason that motivated our choice of adopting the learnable
cross-attention approach to moment pooling in the main pa-
per.

Interestingly we notice that the learnable self-attention
setup can achieve relatively high performance. This can
be motivated by the intuition that our graph matching layer
can effectively fuse the video and language modalities, and
by relying on those enriched features only, can we obtain
a good representation of the moment’s feature. However,
involving a global language representation for guiding the
moment creation from the enriched snippets features has
been shown to yield the best results.

5. Charades-STA

Based on the results obtained from Activitynet-Caption,
TACoS, and DiDeMo, our method can theoretically achieve
state-of-the-art performance in the Charades-STA dataset.
However, we choose not to evaluate VLG-Net on this
dataset because of the following observations.

Dataset Num. Video-Sentence pairs Vocab.
Videos | train val test Size
ActivityNet Captions [3] | 14926 | 37421 17505 17031 | 15406
TACoS [4] 127 10146 4589 4083 2255
DiDeMo [1] 10642 | 33005 4180 4021 7523
Charades-STA [2] ‘ 6670 ‘ 12404 - 3720 ‘ 1289

Table 3: Datasets statistics. Same as Table 1 in main paper,
reported in Supplementary Material for completeness.

(1) This dataset is characterized by the smallest vocabu-
lary size and shortest language annotation with respect
all others datasets (see Tab. 3 and Tab. 4) For example,
its vocabulary contains 43% less unique words with re-
spect to TACoS [4], 83% with respect to DiDeMo [1], and
92% with respect to Activity-Captions [3]. This fact can
potentially hamper the development of successful methods
and reduce the applicability to a real-world scenario where
users might use a richer vocabulary when querying for
moments. Given the great importance of the language for
the task at hand, it’s diversity in terms of unique tokens’
number, and sentence lengths are important factors. This
suggests that Charades-STA is less favourable for evaluat-
ing the video-language grounding task.

(2) Charades-STA has the smallest number of video-
query pairs (16124) with respect to all other datasets (See
Tab 3). As deep learning methods benefit from a large
amount of annotated data, the reduced number of train-
ing/testing samples makes the dataset less suited for deep-
learning approaches.

(3) Most importantly, Charades-STA lacks an official
validation split. In machine learning applications, the val-
idation set is mandatory for hyper-parameters search, while
the test set is adopted for evaluating the generalization capa-
bilities of a given method to previously unseen data. Given
the absence of a validation set, nor a widely accepted proce-
dure for selecting the best models during the development
phase, some might use the test set for tuning the hyper-
parameters, therefore, harming the measurement of gener-
alization performance. The goal of research is to develop
tailor-made solutions for specific problems rather than find-

Sentence’s lengths

Dataset Avg. Std.
Activitynet-Captions [3] | 14.4 6.5
TACoS [4] 9.4 5.4
DiDeMo [1] 8.0 3.4
Charades-STA [2] | 72 1.9

Table 4: Language annotations statistics. We report aver-
age length (measured in number of tokens) and standard de-
viation for queries in each dataset. Statistics are computed
considering every split for each dataset.



ing the hyper-parameters that can fit the test set best. A
conservative researcher could attempt at using the training
set (or part of it) as a synthetic validation split. However,
this could lead the model to overfit on the specific set of
samples. Other methods could be potentially applied (e.g.
cross-validation), yet no previous work mentioned the adop-
tion of such techniques.

For all these reasons we can conclude that, despite the
popularity of Charades-STA as benchmark for the language
grounding in video task, we decide not to evaluate our
method on it.
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