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1. Formulation of Video-Language Graph
Matching

In this section, we provide a detailed overview and for-
mulation of the video-language graph matching. This inputs
to this layer are the enriched video representationX(bv)

v and
query representation X(bl)

l outputs of the single modality
stack of computational blocks. The graph matching layer
models the cross-modal context and allows for multi-modal
fusion. To this purpose the video-language matching graph
is constructed and three types of edges are designed: (i) Or-
dering Edge (O), (ii) Semantic Edge (S), and (iii) Matching
Edge (M).

To aggregate the information, we employ relation graph
convolution [5] on the constructed video-language match-
ing graph. Eq. 1 shows the high level representation of the
convolutions in this layer.

X(GM) =AOXWO+ASBXWS+AMΓXWM+X (1)

Here, X = {X(bv)
v,1 , . . . , X

(bv)
v,nv , X

(bl)
l,1 , . . . , X

(bl)
l,nl
} is the

feature representation of all the nodes in the video-language
matching graph. Ar and Wr for r ∈ {O,S,M} represent
the binary adjacency matrix and learnable weights for each
set of edges. Specifically, B and Γ scale the adjacency ma-
trices AS and AM. Both βi,j ∈ B and γi,j ∈ Γ are propor-
tional to x>i xj ,

βi,j =
exp [x>i xj ]∑

AS(k,j)=1 exp [x>k xj ]
, (2)

γi,j =
exp [x>i xj ]∑

AM(k,j)=1 exp [x>k xj ]
. (3)

In practise, to implement GPU-memory efficient graph
convolution operation, we replace the time-consuming ma-
trix multiplication by indexing operation of tensors. Thus,
the semantic and matching edge convolution can be present
as

ASBXWS =
∑

j∈NS
i

(ŴT
S [βjxj ||xi]), (4)

AMΓXWM =
∑

j∈NM
i

(ŴT
M[γjxj ||xi]), (5)

where N ∗i is the neighbourhood of node i connected by
edge with type ∗, ∗ ∈ {S,M}. The || sign means con-
catenation of features. ŴS , ŴM are learnable weights.

Moreover, as shown by A.2 of G-TAD[6], our ordering
edge convolution, can be efficiently computed as a 1D con-
volution with kernel size 3.

AOXWO = Conv1D[X] (6)

Therefore, we can equivalently formulate Eq. 1 as:

X(GM) = Conv1D[X]

+
∑

j∈NS
i

(ŴT
S [βjxj ||xi])

+
∑

j∈NM
i

(ŴT
M[γjxj ||xi])

+ X

(7)

2. Graph matching edges ablation
We ablate the contribution of the three different types

of edges designed for the graph matching module. We
report in Table 1 the performance of VLG-Net for the
TACoS dataset when each edge is removed from the ar-
chitecture. As previously stated, the Ordering Edges or
Semantic Edges are responsible for aggregating contextual
information within the graph matching module. When re-
moved, they lead to noticeable degradation of the perfor-
mance of 2.15% and 3.77%, respectively. Conversely, as
expected, when the Matching Edges are removed, the per-
formances are severely impaired. We assist in a drop of
27.34%, showcasing the high relevance of the matching op-
eration. Note that, the removal of the Matching Edges pre-
vents the fusion between the modalities. Nonetheless, the
two modalities still interact in the Masked Attention Pool-
ing module through the learnable cross-attention pooling
method. However, this limited interaction cannot bridge the
complex semantic information between modalities. The ab-
lation showcases the importance of designing effective op-
eration for multi-modal fusion to achieve high performance
on the grounding task. Nonetheless, we can conclude that
all edges are relevant and necessary to obtain state-of-the-
art performance.



Dataset Edge Types R@1 IoU0.5Ordering Semantic Matching

TACoS

3 3 3 34.19
7 3 3 32.04
3 7 3 30.42
3 3 7 6.85

Table 1: Ablation of different edges. We investigate the
impact of edges within the graph matching layer. We re-
port the performance of our VLG-Net when specific edges
are removed, as well as our best performance for TACoS
datasets.

3. Visualization graph matching attention

In Fig. 1, we plot the Matching Edge weights (before
SoftMax) for two video-query pairs, where the Matching
Edge weights are used to measure the similarity between
video snippets and language tokens. In graph convolutions,
a Matching Edge propagates more information if its weight
is high, and vice versa.

high

low

(a)

(a) Query: “She is holding an accordian as she talks.”

high

low

(b)

(b) Query: “Three people are riding a very

colorful camel on the beach.”

Figure 1: Visualization of graph matching attention. We
visualize the Matching Edge of the graph matching layer.
Correspondence between video snippets and query tokens
can be evaluated through the heat-map.

In Fig. 1a, we show the grounding result for a 2 minutes
accordian tutorial, with associated query: “She is holding
an accordian as she talks”. It can be observed from the
blue-yellow heat-map that high scores are assigned to the
words “holding”, “accordian”, and “talks”, which are the
most discriminative tokens for the query localization. Be-
low the heat-map, we visualize the snippets of the video.

The unrelated snippets (first and last) are associated with
low scores. Conversely, more relevant snippets (central
ones) have higher Matching Edge weights. This entails that
the algorithm is successfully correlating important language
cues with relevant video cues when performing the graph
matching operation.

Similarly, Fig. 1c shows the result for a 22 second camel
riding video, for which the associated query is: “Three peo-
ple are riding a very colorful camel on the beach.” The heat-
map highlights the keywords: “riding”, “colorful camel”,
and “beach”, which are relatively more informative in the
query sentence. Interestingly, the word “riding” is always
associated with high attention weights, and a visual inspec-
tion confirms that the action happens throughout the whole
video. This showcases that our VLG-Net can successfully
learn semantic video-language matching. If we focus on the
first two snippets of Fig. 1c, we can see that both have asso-
ciated high scores with the word “riding”. However, given
the smaller field of view of the first frame, only the second
frame contains a more distinguishable camel. In fact, for
this particular frame, we observe a high weight score for
the words “colorful” and “camel”. Moreover, the context of
“beach” can be learned from all the last three snippets.

4. Ablation of Masked Attention Pooling

As presented in the main paper, three different imple-
mentations of attention for moment pooling operation have
been tested. They differ for inputs and operations to achieve
the attention scores. Learnable self-attention (Fig. 2a), only
relies on the fused features of video and language modali-
ties, which are the output of the graph matching layer, while
the cross-attention and learnable cross-attention configura-
tions (Fig. 2b and 2c) also involve a global sentence repre-
sentation X(att)

l in the process. (See Sec. 3.5 of the paper
for more details.) We compare the performances of the three
different implementations in Tab 2.

Following the ablation settings in our main paper, we fo-
cus on R@1 IoU0.5 and R@5 IoU0.5 for TACoS dataset.
We find that the cross-attention setup leads to the lowest
performance. Conversely the learnable cross-attention con-

Learnable
Cross-attention

Learnable
self-attention cross-attention

R@1 IoU0.5 29.87 16.62 34.19

R@5 IoU0.5 50.24 40.14 56.56

Table 2: Ablation of masked attention pooling imple-
mentations. The experimental results show that the cross-
attention setup leads to sub-optimal performance. Instead,
the learnable cross-attention configuration obtains the best
performance.
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snippet feature only once while computing each moment’s
representation.

Specifically, we implement and ablate three different
schemes, namely: (i) learnable self-attention, (ii) cross-
attention, and (iii) learnable cross-attention. In (i), we ob-
tain the unnormalized attention weights by applying a 1D
convolutional layer that maps each clip feature to a single
score. In (ii) and (iii), we compute the sentence represen-
tation by applying self-attention pooling on top of the last
SyntacGCN layer X

(bl)
l , we refer to this quantity as X

(att)
l .

Configuration (iii) is depicted in Fig. 4.
Cross-attention obtains the unnormalized weights by

computing the inner product between the snippet and sen-
tence features, while learnable cross-attention concatenates
each snippet feature with the sentence feature and uses a
1D convolutional layer to obtain the weights. In all cases,
the unnormalized weight vector has shape w 2 Rnv⇥1 for
each video. The vector is repeated m times to obtain the
matrix W 2 Rnv⇥m, and a fixed mask M 2 Rnv⇥m is
applied to it. Similar to Songyang et al. [71], we generate
moment candidates and apply a sparse sampling strategy to
discard redundant moments. Therefore, the mask is gen-
erated according to the sampled moments, highlighting for
each of them, which are the clips that must be taken into
account when computing the moment’s pooled feature. The
attention scores are then obtained by applying the softmax
operation. Thanks to the masking operation, clips not re-
lated to the n-th moment will not be considered. Finally, the
moments’ features are obtained simply as a matrix multipli-
cation: Y = X(GM)SoftMax(W + M). Ablation results
are reported in the experiment section (Sec 4.4).

3.6. Moment Localization

The output of the previous module is then fed to a Multi-
Layer Perceptron (MLP) network to compute the score
pk for each moment candidate. This scores predicts the
Intersection-over-Union (IoU) of each moment with the
ground truth one. For training, we supervise this process
using a cross-entropy loss, shown in Eq. 5. We assign the
label tk = 1 if the IoU is greater than a threshold ✓ and
tk = 0 otherwise.

L =
1

m

mX

k=1

tk log pk + (1 � tk) log(1 � pk), (5)

At inference time, moment candidates are ranked accord-
ing to their predicted scores and non-maximum suppression
is adopted to discard highly overlapping moments. The re-
maining top- moments are involved in the recall compu-
tation. The temporal boundaries (ts,k, te,k) associated with
the top- moments are used to calculate the Intersection-
over-Union (IoU) with the ground-truth video moments
(⌧s, ⌧e) to determine the alignment performance. A formal

Dataset Num. Video-Sentence pairs Vocab.
Videos train val test Size

Activitynet-Captions [21] 14926 37421 17505 17031 15406
TACoS [39] 127 10146 4589 4083 2255
DiDeMo [1] 10642 33005 4180 4021 7523

Charades-STA [11] 6670 12404 0 3720 1289

Table 1. Video-language grounding dataset statistics

definition of the metric used and details about the training
strategy are presented in Sec. 4.2

4. Experiments

4.1. Datasets

ActivityNet-Captions [21] is a popular benchmark dataset
for the video grounding task. It is a large-scale action un-
derstanding dataset initially collected for the task of dense
captioning, but it has been recently restructured for the task
of moment localization with natural language [3, 26]. The
dataset contains 20k diverse videos with about 100k sen-
tence queries, subdivided into four splits: train, val 1, val 2,
and test. The test set is withheld for competition purposes
leaving the rest publicly available. See Tab. 1 for more de-
tails about the publicly available splits. Following the pre-
vious setting in [26], in this paper, we use val 1 as the vali-
dation set and val 2 as the testing set.
TACoS [39] consists of 127 videos selected from the MPII
Cooking Composite Activities video corpus [41]. It consists
of 18818 moment-query pairs of different cooking activities
in the kitchen. On average, every video in TACoS contains
148 queries, some of which are annotations of very short
video segments.
DiDeMo [1] consists of unedited video footage from Flickr
with sentences aligned to unique moments in its 10642
videos. It is split into 33008, 4180, and 4021 video-
language pairs for training, validation, and testing, respec-
tively. Note that moment start and end points are aligned to
five-second intervals and that the maximum annotated mo-
ment length is 30 seconds.
Charades-STA [11] consists of 16124 video-sentences
pairs resulting in the smallest dataset for the task in terms of
training and testing samples. Moreover, this dataset is also
characterized by the smallest vocabulary size (and average
sentence length). See Tab 1 for more details. In addition,
the dataset only has two splits available and lacks an official
validation split, making it prone to overfitting when hyper-
parameters are chosen with respect to training performance.
Although this dataset has been widely adopted for the task,
for the reasons listed above, we choose not to evaluate our
method on it. More discussion can be found in the Supple-
mentary Material. The lack of validation split makes it very
difficult to asses if hyper-parameters have been chosen to
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snippet feature only once while computing each moment’s
representation.

Specifically, we implement and ablate three different
schemes, namely: (i) learnable self-attention, (ii) cross-
attention, and (iii) learnable cross-attention. In (i), we ob-
tain the unnormalized attention weights by applying a 1D
convolutional layer that maps each clip feature to a single
score. In (ii) and (iii), we compute the sentence represen-
tation by applying self-attention pooling on top of the last
SyntacGCN layer X

(bl)
l , we refer to this quantity as X

(att)
l .

Configuration (iii) is depicted in Fig. 4.
Cross-attention obtains the unnormalized weights by

computing the inner product between the snippet and sen-
tence features, while learnable cross-attention concatenates
each snippet feature with the sentence feature and uses a
1D convolutional layer to obtain the weights. In all cases,
the unnormalized weight vector has shape w 2 Rnv⇥1 for
each video. The vector is repeated m times to obtain the
matrix W 2 Rnv⇥m, and a fixed mask M 2 Rnv⇥m is
applied to it. Similar to Songyang et al. [71], we generate
moment candidates and apply a sparse sampling strategy to
discard redundant moments. Therefore, the mask is gen-
erated according to the sampled moments, highlighting for
each of them, which are the clips that must be taken into
account when computing the moment’s pooled feature. The
attention scores are then obtained by applying the softmax
operation. Thanks to the masking operation, clips not re-
lated to the n-th moment will not be considered. Finally, the
moments’ features are obtained simply as a matrix multipli-
cation: Y = X(GM)SoftMax(W + M). Ablation results
are reported in the experiment section (Sec 4.4).

3.6. Moment Localization

The output of the previous module is then fed to a Multi-
Layer Perceptron (MLP) network to compute the score
pk for each moment candidate. This scores predicts the
Intersection-over-Union (IoU) of each moment with the
ground truth one. For training, we supervise this process
using a cross-entropy loss, shown in Eq. 5. We assign the
label tk = 1 if the IoU is greater than a threshold ✓ and
tk = 0 otherwise.

L =
1

m

mX

k=1

tk log pk + (1 � tk) log(1 � pk), (5)

At inference time, moment candidates are ranked accord-
ing to their predicted scores and non-maximum suppression
is adopted to discard highly overlapping moments. The re-
maining top- moments are involved in the recall compu-
tation. The temporal boundaries (ts,k, te,k) associated with
the top- moments are used to calculate the Intersection-
over-Union (IoU) with the ground-truth video moments
(⌧s, ⌧e) to determine the alignment performance. A formal

Dataset Num. Video-Sentence pairs Vocab.
Videos train val test Size

Activitynet-Captions [21] 14926 37421 17505 17031 15406
TACoS [39] 127 10146 4589 4083 2255
DiDeMo [1] 10642 33005 4180 4021 7523

Charades-STA [11] 6670 12404 0 3720 1289

Table 1. Video-language grounding dataset statistics

definition of the metric used and details about the training
strategy are presented in Sec. 4.2

4. Experiments

4.1. Datasets

ActivityNet-Captions [21] is a popular benchmark dataset
for the video grounding task. It is a large-scale action un-
derstanding dataset initially collected for the task of dense
captioning, but it has been recently restructured for the task
of moment localization with natural language [3, 26]. The
dataset contains 20k diverse videos with about 100k sen-
tence queries, subdivided into four splits: train, val 1, val 2,
and test. The test set is withheld for competition purposes
leaving the rest publicly available. See Tab. 1 for more de-
tails about the publicly available splits. Following the pre-
vious setting in [26], in this paper, we use val 1 as the vali-
dation set and val 2 as the testing set.
TACoS [39] consists of 127 videos selected from the MPII
Cooking Composite Activities video corpus [41]. It consists
of 18818 moment-query pairs of different cooking activities
in the kitchen. On average, every video in TACoS contains
148 queries, some of which are annotations of very short
video segments.
DiDeMo [1] consists of unedited video footage from Flickr
with sentences aligned to unique moments in its 10642
videos. It is split into 33008, 4180, and 4021 video-
language pairs for training, validation, and testing, respec-
tively. Note that moment start and end points are aligned to
five-second intervals and that the maximum annotated mo-
ment length is 30 seconds.
Charades-STA [11] consists of 16124 video-sentences
pairs resulting in the smallest dataset for the task in terms of
training and testing samples. Moreover, this dataset is also
characterized by the smallest vocabulary size (and average
sentence length). See Tab 1 for more details. In addition,
the dataset only has two splits available and lacks an official
validation split, making it prone to overfitting when hyper-
parameters are chosen with respect to training performance.
Although this dataset has been widely adopted for the task,
for the reasons listed above, we choose not to evaluate our
method on it. More discussion can be found in the Supple-
mentary Material. The lack of validation split makes it very
difficult to asses if hyper-parameters have been chosen to
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snippet feature only once while computing each moment’s
representation.

Specifically, we implement and ablate three different
schemes, namely: (i) learnable self-attention, (ii) cross-
attention, and (iii) learnable cross-attention. In (i), we ob-
tain the unnormalized attention weights by applying a 1D
convolutional layer that maps each clip feature to a single
score. In (ii) and (iii), we compute the sentence represen-
tation by applying self-attention pooling on top of the last
SyntacGCN layer X

(bl)
l , we refer to this quantity as X

(att)
l .

Configuration (iii) is depicted in Fig. 4.
Cross-attention obtains the unnormalized weights by

computing the inner product between the snippet and sen-
tence features, while learnable cross-attention concatenates
each snippet feature with the sentence feature and uses a
1D convolutional layer to obtain the weights. In all cases,
the unnormalized weight vector has shape w 2 Rnv⇥1 for
each video. The vector is repeated m times to obtain the
matrix W 2 Rnv⇥m, and a fixed mask M 2 Rnv⇥m is
applied to it. Similar to Songyang et al. [71], we generate
moment candidates and apply a sparse sampling strategy to
discard redundant moments. Therefore, the mask is gen-
erated according to the sampled moments, highlighting for
each of them, which are the clips that must be taken into
account when computing the moment’s pooled feature. The
attention scores are then obtained by applying the softmax
operation. Thanks to the masking operation, clips not re-
lated to the n-th moment will not be considered. Finally, the
moments’ features are obtained simply as a matrix multipli-
cation: Y = X(GM)SoftMax(W + M). Ablation results
are reported in the experiment section (Sec 4.4).

3.6. Moment Localization

The output of the previous module is then fed to a Multi-
Layer Perceptron (MLP) network to compute the score
pk for each moment candidate. This scores predicts the
Intersection-over-Union (IoU) of each moment with the
ground truth one. For training, we supervise this process
using a cross-entropy loss, shown in Eq. 5. We assign the
label tk = 1 if the IoU is greater than a threshold ✓ and
tk = 0 otherwise.

L =
1

m

mX

k=1

tk log pk + (1 � tk) log(1 � pk), (5)

At inference time, moment candidates are ranked accord-
ing to their predicted scores and non-maximum suppression
is adopted to discard highly overlapping moments. The re-
maining top- moments are involved in the recall compu-
tation. The temporal boundaries (ts,k, te,k) associated with
the top- moments are used to calculate the Intersection-
over-Union (IoU) with the ground-truth video moments
(⌧s, ⌧e) to determine the alignment performance. A formal

Dataset Num. Video-Sentence pairs Vocab.
Videos train val test Size

Activitynet-Captions [21] 14926 37421 17505 17031 15406
TACoS [39] 127 10146 4589 4083 2255
DiDeMo [1] 10642 33005 4180 4021 7523

Charades-STA [11] 6670 12404 0 3720 1289

Table 1. Video-language grounding dataset statistics

definition of the metric used and details about the training
strategy are presented in Sec. 4.2

4. Experiments

4.1. Datasets

ActivityNet-Captions [21] is a popular benchmark dataset
for the video grounding task. It is a large-scale action un-
derstanding dataset initially collected for the task of dense
captioning, but it has been recently restructured for the task
of moment localization with natural language [3, 26]. The
dataset contains 20k diverse videos with about 100k sen-
tence queries, subdivided into four splits: train, val 1, val 2,
and test. The test set is withheld for competition purposes
leaving the rest publicly available. See Tab. 1 for more de-
tails about the publicly available splits. Following the pre-
vious setting in [26], in this paper, we use val 1 as the vali-
dation set and val 2 as the testing set.
TACoS [39] consists of 127 videos selected from the MPII
Cooking Composite Activities video corpus [41]. It consists
of 18818 moment-query pairs of different cooking activities
in the kitchen. On average, every video in TACoS contains
148 queries, some of which are annotations of very short
video segments.
DiDeMo [1] consists of unedited video footage from Flickr
with sentences aligned to unique moments in its 10642
videos. It is split into 33008, 4180, and 4021 video-
language pairs for training, validation, and testing, respec-
tively. Note that moment start and end points are aligned to
five-second intervals and that the maximum annotated mo-
ment length is 30 seconds.
Charades-STA [11] consists of 16124 video-sentences
pairs resulting in the smallest dataset for the task in terms of
training and testing samples. Moreover, this dataset is also
characterized by the smallest vocabulary size (and average
sentence length). See Tab 1 for more details. In addition,
the dataset only has two splits available and lacks an official
validation split, making it prone to overfitting when hyper-
parameters are chosen with respect to training performance.
Although this dataset has been widely adopted for the task,
for the reasons listed above, we choose not to evaluate our
method on it. More discussion can be found in the Supple-
mentary Material. The lack of validation split makes it very
difficult to asses if hyper-parameters have been chosen to
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snippet feature only once while computing each moment’s
representation.

Specifically, we implement and ablate three different
schemes, namely: (i) learnable self-attention, (ii) cross-
attention, and (iii) learnable cross-attention. In (i), we ob-
tain the unnormalized attention weights by applying a 1D
convolutional layer that maps each clip feature to a single
score. In (ii) and (iii), we compute the sentence represen-
tation by applying self-attention pooling on top of the last
SyntacGCN layer X

(bl)
l , we refer to this quantity as X

(att)
l .

Configuration (iii) is depicted in Fig. 4.
Cross-attention obtains the unnormalized weights by

computing the inner product between the snippet and sen-
tence features, while learnable cross-attention concatenates
each snippet feature with the sentence feature and uses a
1D convolutional layer to obtain the weights. In all cases,
the unnormalized weight vector has shape w 2 Rnv⇥1 for
each video. The vector is repeated m times to obtain the
matrix W 2 Rnv⇥m, and a fixed mask M 2 Rnv⇥m is
applied to it. Similar to Songyang et al. [71], we generate
moment candidates and apply a sparse sampling strategy to
discard redundant moments. Therefore, the mask is gen-
erated according to the sampled moments, highlighting for
each of them, which are the clips that must be taken into
account when computing the moment’s pooled feature. The
attention scores are then obtained by applying the softmax
operation. Thanks to the masking operation, clips not re-
lated to the n-th moment will not be considered. Finally, the
moments’ features are obtained simply as a matrix multipli-
cation: Y = X(GM)SoftMax(W + M). Ablation results
are reported in the experiment section (Sec 4.4).

3.6. Moment Localization

The output of the previous module is then fed to a Multi-
Layer Perceptron (MLP) network to compute the score
pk for each moment candidate. This scores predicts the
Intersection-over-Union (IoU) of each moment with the
ground truth one. For training, we supervise this process
using a cross-entropy loss, shown in Eq. 5. We assign the
label tk = 1 if the IoU is greater than a threshold ✓ and
tk = 0 otherwise.

L =
1

m

mX

k=1

tk log pk + (1 � tk) log(1 � pk), (5)

At inference time, moment candidates are ranked accord-
ing to their predicted scores and non-maximum suppression
is adopted to discard highly overlapping moments. The re-
maining top- moments are involved in the recall compu-
tation. The temporal boundaries (ts,k, te,k) associated with
the top- moments are used to calculate the Intersection-
over-Union (IoU) with the ground-truth video moments
(⌧s, ⌧e) to determine the alignment performance. A formal

Dataset Num. Video-Sentence pairs Vocab.
Videos train val test Size

Activitynet-Captions [21] 14926 37421 17505 17031 15406
TACoS [39] 127 10146 4589 4083 2255
DiDeMo [1] 10642 33005 4180 4021 7523

Charades-STA [11] 6670 12404 0 3720 1289

Table 1. Video-language grounding dataset statistics

definition of the metric used and details about the training
strategy are presented in Sec. 4.2

4. Experiments

4.1. Datasets

ActivityNet-Captions [21] is a popular benchmark dataset
for the video grounding task. It is a large-scale action un-
derstanding dataset initially collected for the task of dense
captioning, but it has been recently restructured for the task
of moment localization with natural language [3, 26]. The
dataset contains 20k diverse videos with about 100k sen-
tence queries, subdivided into four splits: train, val 1, val 2,
and test. The test set is withheld for competition purposes
leaving the rest publicly available. See Tab. 1 for more de-
tails about the publicly available splits. Following the pre-
vious setting in [26], in this paper, we use val 1 as the vali-
dation set and val 2 as the testing set.
TACoS [39] consists of 127 videos selected from the MPII
Cooking Composite Activities video corpus [41]. It consists
of 18818 moment-query pairs of different cooking activities
in the kitchen. On average, every video in TACoS contains
148 queries, some of which are annotations of very short
video segments.
DiDeMo [1] consists of unedited video footage from Flickr
with sentences aligned to unique moments in its 10642
videos. It is split into 33008, 4180, and 4021 video-
language pairs for training, validation, and testing, respec-
tively. Note that moment start and end points are aligned to
five-second intervals and that the maximum annotated mo-
ment length is 30 seconds.
Charades-STA [11] consists of 16124 video-sentences
pairs resulting in the smallest dataset for the task in terms of
training and testing samples. Moreover, this dataset is also
characterized by the smallest vocabulary size (and average
sentence length). See Tab 1 for more details. In addition,
the dataset only has two splits available and lacks an official
validation split, making it prone to overfitting when hyper-
parameters are chosen with respect to training performance.
Although this dataset has been widely adopted for the task,
for the reasons listed above, we choose not to evaluate our
method on it. More discussion can be found in the Supple-
mentary Material. The lack of validation split makes it very
difficult to asses if hyper-parameters have been chosen to
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snippet feature only once while computing each moment’s
representation.

Specifically, we implement and ablate three different
schemes, namely: (i) learnable self-attention, (ii) cross-
attention, and (iii) learnable cross-attention. In (i), we ob-
tain the unnormalized attention weights by applying a 1D
convolutional layer that maps each clip feature to a single
score. In (ii) and (iii), we compute the sentence represen-
tation by applying self-attention pooling on top of the last
SyntacGCN layer X

(bl)
l , we refer to this quantity as X

(att)
l .

Configuration (iii) is depicted in Fig. 4.
Cross-attention obtains the unnormalized weights by

computing the inner product between the snippet and sen-
tence features, while learnable cross-attention concatenates
each snippet feature with the sentence feature and uses a
1D convolutional layer to obtain the weights. In all cases,
the unnormalized weight vector has shape w 2 Rnv⇥1 for
each video. The vector is repeated m times to obtain the
matrix W 2 Rnv⇥m, and a fixed mask M 2 Rnv⇥m is
applied to it. Similar to Songyang et al. [71], we generate
moment candidates and apply a sparse sampling strategy to
discard redundant moments. Therefore, the mask is gen-
erated according to the sampled moments, highlighting for
each of them, which are the clips that must be taken into
account when computing the moment’s pooled feature. The
attention scores are then obtained by applying the softmax
operation. Thanks to the masking operation, clips not re-
lated to the n-th moment will not be considered. Finally, the
moments’ features are obtained simply as a matrix multipli-
cation: Y = X(GM)SoftMax(W + M). Ablation results
are reported in the experiment section (Sec 4.4).

3.6. Moment Localization

The output of the previous module is then fed to a Multi-
Layer Perceptron (MLP) network to compute the score
pk for each moment candidate. This scores predicts the
Intersection-over-Union (IoU) of each moment with the
ground truth one. For training, we supervise this process
using a cross-entropy loss, shown in Eq. 5. We assign the
label tk = 1 if the IoU is greater than a threshold ✓ and
tk = 0 otherwise.

L =
1

m

mX

k=1

tk log pk + (1 � tk) log(1 � pk), (5)

At inference time, moment candidates are ranked accord-
ing to their predicted scores and non-maximum suppression
is adopted to discard highly overlapping moments. The re-
maining top- moments are involved in the recall compu-
tation. The temporal boundaries (ts,k, te,k) associated with
the top- moments are used to calculate the Intersection-
over-Union (IoU) with the ground-truth video moments
(⌧s, ⌧e) to determine the alignment performance. A formal

Dataset Num. Video-Sentence pairs Vocab.
Videos train val test Size

Activitynet-Captions [21] 14926 37421 17505 17031 15406
TACoS [39] 127 10146 4589 4083 2255
DiDeMo [1] 10642 33005 4180 4021 7523

Charades-STA [11] 6670 12404 0 3720 1289

Table 1. Video-language grounding dataset statistics

definition of the metric used and details about the training
strategy are presented in Sec. 4.2

4. Experiments

4.1. Datasets

ActivityNet-Captions [21] is a popular benchmark dataset
for the video grounding task. It is a large-scale action un-
derstanding dataset initially collected for the task of dense
captioning, but it has been recently restructured for the task
of moment localization with natural language [3, 26]. The
dataset contains 20k diverse videos with about 100k sen-
tence queries, subdivided into four splits: train, val 1, val 2,
and test. The test set is withheld for competition purposes
leaving the rest publicly available. See Tab. 1 for more de-
tails about the publicly available splits. Following the pre-
vious setting in [26], in this paper, we use val 1 as the vali-
dation set and val 2 as the testing set.
TACoS [39] consists of 127 videos selected from the MPII
Cooking Composite Activities video corpus [41]. It consists
of 18818 moment-query pairs of different cooking activities
in the kitchen. On average, every video in TACoS contains
148 queries, some of which are annotations of very short
video segments.
DiDeMo [1] consists of unedited video footage from Flickr
with sentences aligned to unique moments in its 10642
videos. It is split into 33008, 4180, and 4021 video-
language pairs for training, validation, and testing, respec-
tively. Note that moment start and end points are aligned to
five-second intervals and that the maximum annotated mo-
ment length is 30 seconds.
Charades-STA [11] consists of 16124 video-sentences
pairs resulting in the smallest dataset for the task in terms of
training and testing samples. Moreover, this dataset is also
characterized by the smallest vocabulary size (and average
sentence length). See Tab 1 for more details. In addition,
the dataset only has two splits available and lacks an official
validation split, making it prone to overfitting when hyper-
parameters are chosen with respect to training performance.
Although this dataset has been widely adopted for the task,
for the reasons listed above, we choose not to evaluate our
method on it. More discussion can be found in the Supple-
mentary Material. The lack of validation split makes it very
difficult to asses if hyper-parameters have been chosen to
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snippet feature only once while computing each moment’s
representation.

Specifically, we implement and ablate three different
schemes, namely: (i) learnable self-attention, (ii) cross-
attention, and (iii) learnable cross-attention. In (i), we ob-
tain the unnormalized attention weights by applying a 1D
convolutional layer that maps each clip feature to a single
score. In (ii) and (iii), we compute the sentence represen-
tation by applying self-attention pooling on top of the last
SyntacGCN layer X

(bl)
l , we refer to this quantity as X

(att)
l .

Configuration (iii) is depicted in Fig. 4.
Cross-attention obtains the unnormalized weights by

computing the inner product between the snippet and sen-
tence features, while learnable cross-attention concatenates
each snippet feature with the sentence feature and uses a
1D convolutional layer to obtain the weights. In all cases,
the unnormalized weight vector has shape w 2 Rnv⇥1 for
each video. The vector is repeated m times to obtain the
matrix W 2 Rnv⇥m, and a fixed mask M 2 Rnv⇥m is
applied to it. Similar to Songyang et al. [71], we generate
moment candidates and apply a sparse sampling strategy to
discard redundant moments. Therefore, the mask is gen-
erated according to the sampled moments, highlighting for
each of them, which are the clips that must be taken into
account when computing the moment’s pooled feature. The
attention scores are then obtained by applying the softmax
operation. Thanks to the masking operation, clips not re-
lated to the n-th moment will not be considered. Finally, the
moments’ features are obtained simply as a matrix multipli-
cation: Y = X(GM)SoftMax(W + M). Ablation results
are reported in the experiment section (Sec 4.4).

3.6. Moment Localization

The output of the previous module is then fed to a Multi-
Layer Perceptron (MLP) network to compute the score
pk for each moment candidate. This scores predicts the
Intersection-over-Union (IoU) of each moment with the
ground truth one. For training, we supervise this process
using a cross-entropy loss, shown in Eq. 5. We assign the
label tk = 1 if the IoU is greater than a threshold ✓ and
tk = 0 otherwise.

L =
1

m

mX

k=1

tk log pk + (1 � tk) log(1 � pk), (5)

At inference time, moment candidates are ranked accord-
ing to their predicted scores and non-maximum suppression
is adopted to discard highly overlapping moments. The re-
maining top- moments are involved in the recall compu-
tation. The temporal boundaries (ts,k, te,k) associated with
the top- moments are used to calculate the Intersection-
over-Union (IoU) with the ground-truth video moments
(⌧s, ⌧e) to determine the alignment performance. A formal

Dataset Num. Video-Sentence pairs Vocab.
Videos train val test Size

Activitynet-Captions [21] 14926 37421 17505 17031 15406
TACoS [39] 127 10146 4589 4083 2255
DiDeMo [1] 10642 33005 4180 4021 7523

Charades-STA [11] 6670 12404 0 3720 1289

Table 1. Video-language grounding dataset statistics

definition of the metric used and details about the training
strategy are presented in Sec. 4.2

4. Experiments

4.1. Datasets

ActivityNet-Captions [21] is a popular benchmark dataset
for the video grounding task. It is a large-scale action un-
derstanding dataset initially collected for the task of dense
captioning, but it has been recently restructured for the task
of moment localization with natural language [3, 26]. The
dataset contains 20k diverse videos with about 100k sen-
tence queries, subdivided into four splits: train, val 1, val 2,
and test. The test set is withheld for competition purposes
leaving the rest publicly available. See Tab. 1 for more de-
tails about the publicly available splits. Following the pre-
vious setting in [26], in this paper, we use val 1 as the vali-
dation set and val 2 as the testing set.
TACoS [39] consists of 127 videos selected from the MPII
Cooking Composite Activities video corpus [41]. It consists
of 18818 moment-query pairs of different cooking activities
in the kitchen. On average, every video in TACoS contains
148 queries, some of which are annotations of very short
video segments.
DiDeMo [1] consists of unedited video footage from Flickr
with sentences aligned to unique moments in its 10642
videos. It is split into 33008, 4180, and 4021 video-
language pairs for training, validation, and testing, respec-
tively. Note that moment start and end points are aligned to
five-second intervals and that the maximum annotated mo-
ment length is 30 seconds.
Charades-STA [11] consists of 16124 video-sentences
pairs resulting in the smallest dataset for the task in terms of
training and testing samples. Moreover, this dataset is also
characterized by the smallest vocabulary size (and average
sentence length). See Tab 1 for more details. In addition,
the dataset only has two splits available and lacks an official
validation split, making it prone to overfitting when hyper-
parameters are chosen with respect to training performance.
Although this dataset has been widely adopted for the task,
for the reasons listed above, we choose not to evaluate our
method on it. More discussion can be found in the Supple-
mentary Material. The lack of validation split makes it very
difficult to asses if hyper-parameters have been chosen to
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(c) Learnable cross-attention.

Figure 2: Masked attention pooling. Inputs are video
nodes X(GM)

v from the graph matching layer and the query
embedding X(att)

l computed through self-attention pooling
atop the graph matching output. The output Y represents all
moment candidates.

figuration instead, obtains the best performance. This is the
reason that motivated our choice of adopting the learnable
cross-attention approach to moment pooling in the main pa-
per.

Interestingly we notice that the learnable self-attention
setup can achieve relatively high performance. This can
be motivated by the intuition that our graph matching layer
can effectively fuse the video and language modalities, and
by relying on those enriched features only, can we obtain
a good representation of the moment’s feature. However,
involving a global language representation for guiding the
moment creation from the enriched snippets features has
been shown to yield the best results.

5. Charades-STA

Based on the results obtained from Activitynet-Caption,
TACoS, and DiDeMo, our method can theoretically achieve
state-of-the-art performance in the Charades-STA dataset.
However, we choose not to evaluate VLG-Net on this
dataset because of the following observations.

Dataset Num. Video-Sentence pairs Vocab.
Videos train val test Size

ActivityNet Captions [3] 14926 37421 17505 17031 15406
TACoS [4] 127 10146 4589 4083 2255
DiDeMo [1] 10642 33005 4180 4021 7523

Charades-STA [2] 6670 12404 − 3720 1289

Table 3: Datasets statistics. Same as Table 1 in main paper,
reported in Supplementary Material for completeness.

(1) This dataset is characterized by the smallest vocabu-
lary size and shortest language annotation with respect
all others datasets (see Tab. 3 and Tab. 4) For example,
its vocabulary contains 43% less unique words with re-
spect to TACoS [4], 83% with respect to DiDeMo [1], and
92% with respect to Activity-Captions [3]. This fact can
potentially hamper the development of successful methods
and reduce the applicability to a real-world scenario where
users might use a richer vocabulary when querying for
moments. Given the great importance of the language for
the task at hand, it’s diversity in terms of unique tokens’
number, and sentence lengths are important factors. This
suggests that Charades-STA is less favourable for evaluat-
ing the video-language grounding task.

(2) Charades-STA has the smallest number of video-
query pairs (16124) with respect to all other datasets (See
Tab 3). As deep learning methods benefit from a large
amount of annotated data, the reduced number of train-
ing/testing samples makes the dataset less suited for deep-
learning approaches.

(3) Most importantly, Charades-STA lacks an official
validation split. In machine learning applications, the val-
idation set is mandatory for hyper-parameters search, while
the test set is adopted for evaluating the generalization capa-
bilities of a given method to previously unseen data. Given
the absence of a validation set, nor a widely accepted proce-
dure for selecting the best models during the development
phase, some might use the test set for tuning the hyper-
parameters, therefore, harming the measurement of gener-
alization performance. The goal of research is to develop
tailor-made solutions for specific problems rather than find-

Sentence’s lengths
Dataset Avg. Std.

Activitynet-Captions [3] 14.4 6.5
TACoS [4] 9.4 5.4
DiDeMo [1] 8.0 3.4

Charades-STA [2] 7.2 1.9

Table 4: Language annotations statistics. We report aver-
age length (measured in number of tokens) and standard de-
viation for queries in each dataset. Statistics are computed
considering every split for each dataset.



ing the hyper-parameters that can fit the test set best. A
conservative researcher could attempt at using the training
set (or part of it) as a synthetic validation split. However,
this could lead the model to overfit on the specific set of
samples. Other methods could be potentially applied (e.g.
cross-validation), yet no previous work mentioned the adop-
tion of such techniques.

For all these reasons we can conclude that, despite the
popularity of Charades-STA as benchmark for the language
grounding in video task, we decide not to evaluate our
method on it.
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